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Université Pierre et Marie Curie (Paris VI) bôıte 252
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Abstract— This paper presents a new solution for solving the
grasping force optimization problem, fundamental in dextrous ma-
nipulation by multifingered robotic hands. Several methods have
been proposed in the literature, yielding optimal solutions, with
either recursive or non linear programming techniques. However,
most of them involve many computations and cannot be used online.
Furthermore, they do not offer a smooth solution regarding to
possible changes in the contact conditions due to finger rolling or
gaiting, or in the desired resultant force to be exerted on the grasped
object. The more recent ones are fast and smooth enough for real-
time computation but the method we present here is faster, easier
to implement and provide very satisfying results, even though the
solution is sub-optimal. The method is based on the minimization
of a cost function that gives an analytical solution but does not
ensure by itself the satisfaction of the static frictional constraints.
An associated iterative adjustment modifies this function until the
internal forces enter the friction cone. The minimal solution is found
within a few iterations. Force determination is therefore included in
the simulation of an hybrid position/force controller to prove the
effectiveness of such an approach for updating the force references
during the grasped object motion.

I. INTRODUCTION

The study of the object manipulation by multi-fingered
robotic hands has been the source of many works over the
twenty past years. This research area involves the conception
of efficient mechanical structures and control schemes, and
implies issues like the kinematics and statics in the closed
kinematic chain ([1],[2],[3],[4]), the optimization of the internal
forces and the hybrid position/force control of the hand ([5],[6]).
Other topics in robotic manipulation are the reconfiguration
of the grasp ([7],[8]) and the determination of the optimal
grasp ([9],[10],[11]), that is, the grasp that ensures the best
robustness against slippage. The main concern of this paper
is the optimization of the internal forces to be exerted on the
manipulated object.
The determination of the optimal forces raises difficulty dealing
with the nonlinearity of the contact friction models, usually
chosen. Therefore, early works linearized the static frictional
constraints to use linear programming methods like simplex or
gradient search ([12],[13]). The drawbacks of such methods are
the non respect of contact isotropy and the non smoothness of
the solution as small perturbations in the grasp parameters may
generate large changes in the solution. However, great advances
have been done in the grasping force optimization problem
with the work of Buss, Hashimoto and Moore (noted BHM
thereafter). Indeed, [14] expressed the frictional constraints
as the positive definiteness of a symmetric matrix, obeying
also to linear constraints. The grasping force optimization was
then written as an optimization problem on the manifold of
linearly constrained and positive definite matrices and solved
using gradient flow algorithms. This method was efficient but

required a valid initial point to start the gradient algorithm. In
reference [15], Han, Trinkle and Li proposed a variant (noted
here HTL). The matrix whose positive definiteness represents
the frictional constraints is written as a linear combination
of matrices; the optimization problem becomes a linear ma-
trix inequalities problem, using the determinant maximization
(max-det). The chosen cost function is composed of one term
minimizing the normal components of the contact forces and
another term keeping the solution away from the frictional
constraint boundaries. Finally, Liu and Li ([16]) proposed a
solution for the initialization and a very good synthesis of
the BHM’s and HTL’s works. They also implemented the
algorithms and run them on a real experiment platform with
the HK-UST three-fingered hand.
This paper presents an online method for the computation
of optimal contact forces. In order to solve the redundancy
involved by the multiple contacts between the fingers and the
object, the inequality constraints such as the static frictional
constraints are added to the set of the equilibrium equations.
A new quadratic function to be minimized is built so that its
positive definiteness is always guaranteed. Given the analytical
expression of its minimum, the optimal solution is found
without a lot of effort, allowing real-time implementation.
The result of such a computation is therefore introduced in
a hybrid position/force control structure for controlling the
manipulation of an object. The grasping forces to be exerted
by the fingers are adjusted during the motion according to
the characteristics of the contacts, the desired resultant force
and momentum, and the manipulated object mass properties.
Although the presented method does not claim to offer better
results than others, it provides reliable solutions, faster and is
easier to implement.

II. BASIC EQUATIONS

The cooperative manipulation of a rigid object by the fingers
of a m-fingered mechanical hand is considered. Each finger is
assumed to have a frictional point contact with the object. Fi

is the force applied to the object by the ith finger (Fig. 1). This
section quickly reviews the necessary mechanical background.

The static equilibrium is expressed with respect to the object
mass center as:

Q = WF (1)

Where Q is the resultant generalized force applied to the
object, F = (F T

1 , F T
2 , ...F T

m)T represents the individual contact
forces and W is the well known grasp matrix. Since Q is
the generalized load required to move the object, one has to
predict the individual finger contributions F for controlling the



Fig. 1. Contact forces

articulated hand. The solution is clearly found in inverting the
previous equation but the matrix W is not square; a general
solution can be obtained with a Moore-Penrose generalized
inversion leading to the decomposition of the force into two
terms as:

F = W +Q + (I − W +W )y (2)

Where W + = W T (WW T )−1 , is the identity matrix and y an
arbitrary 3m-vector, with m the number of fingers (contacts).
The first term in this equation is the so-called external force
Fext that balances the gravity force and inertial effects to move
the object. The second term corresponds to the internal forces
Fint that do not cause the object motion.

F = Fext + Fint (3)

Redundancy is inherently present in the multi-fingered system
and the redundant degrees of freedom are used to adjust the
internal forces. So, there is no unique solution for choosing the
arbitrary vector y. Consequently, Fint is necessarily derived
from an optimization process like the one described in the
next section. This paper aims to give a new solution to this
optimization problem, for computing on-line the internal forces
during the manipulation.

III. GRASPING FORCE OPTIMIZATION

For any vector y, the vector computed from (2) satisfies (1)
but grasp stability is not guaranteed for any set of contact
forces. The contacts between the fingers and the grasped
object are generally represented by one of the following friction
models: point contact with friction (PCWF) or soft finger
contact with elliptical approximation (SFCE). Let Fni and Fti

be the normal and tangential components, respectively, of the
ith contact force as represented in Fig. 2 and µi the Coulomb
friction coefficient of this contact.

Fig. 2. Friction cone at contact point

In case of a PCWF model, no moment can be exerted through
the contact, nor pulling force. The frictional constraint is

expressed by:

‖Fni‖ ≥ 1
µi

‖Fti‖ (4)

Fni · ni > 0 (5)

On the contrary, in case of a SFCE model, a moment can be
exerted around the normal direction ni and the constraints
become:

‖Fni‖ ≥
√

1
µ2

i

‖Fti‖2 + 1
µ2

ti

‖mi‖2 (6)

Fni · ni > 0 (7)

Where mi is the moment exerted along the contact normal
and µti an additional friction coefficient. In both cases, these
inequalities form together a set of m linear constraints and m
quadratic constraints for a m-fingered hand. However, they
do not allow us to discriminate a single solution from all
possible. A criterion is necessarily optimized to find the right
grasping force configuration. As large internal forces are not
appropriate for breakable objects and may give rise to an
unexpected moment at the center of mass, resulting in object
slipping, optimal forces are accordingly the minimal forces
that generate the specified resultant force Q under the static
frictional constraints. The optimization problem is then stated
as:

minimize F T F

with respect to

{
Ki > 0
Fni · ni > 0

(8)

Where Ki depends on the chosen contact model.

Ki = ‖Fni‖ − 1
µi

‖Fti‖ PCWF model

or Ki = ‖Fni‖ −
√

1
µ2

i

‖Fti‖2 + 1
µ2

ti

‖mi‖2 SFCE model

Two main approaches are chiefly used to solve this optimization
problem: an iterative approach and an analytical approach. The
iterative approach consists in a numerical procedure. Many
algorithms have been proposed, either based or not on the
gradient knowledge. However, methods based on the gradient
may derive solutions that correspond to local minima. In such
cases, a slight modification in the contact positions when the
fingers roll or when the desired resultant force changes may
generate an important modification in the solution of the
algorithm. Such discontinuities can affect the stability of the
hand.
Some recent techniques like the one developed by Han et al.
([15],[16]), offer excellent results, allowing real-time but their
complexity makes their implementation fastidious and they still
need a powerful computing system to run fast. The analytical
approach is based on the Lagrange non linear programming
method. A solution is easily obtained when the Lagrange
function is quadratic with respect to the parameter of the cost
function. Here, this condition is verified since the force magni-
tude criterion is quadratic and the 2m inequality constraints
are linear or quadratic. This procedure has been developed
by Nakamura ([6]). Unfortunately, the calculation must be
repeated a large number of times and the advantage of having
an analytical solution is lost. For example, 3 fingers leading
to 6 inequality constraints, 64 parameter combinations have to
be examined, each involving a 3-square matrix inversion. Such



a solution cannot be utilized for an on-line implementation.
The original method proposed in this paper first transforms
the constrained problem into an unconstrained one, then finds
an analytical solution and, finally, uses an iterative tuning for
the fine adjustment of the internal forces.

IV. PROPOSED METHOD

The main idea of the proposed method consists in transform-
ing the constrained optimization problem to be solved into an
unconstrained quadratic one in such a way that an analytical
solution is easily obtained. A classical solution could have been
to introduce the 2m inequality constraints (with m the number
of fingers) into the criterion thanks to a penalty approach. In
this case, however, the m quadratic inequalities cannot directly
provide an analytical optimal solution because the positive
definiteness of the second-order derivative is not true in all
cases. Hence, the term corresponding to these constraints to
be introduced in the criterion must be linear. A new criterion
is therefore chosen as:

J = F T F −
∑

i

σifni (9)

where fni = Fni · ni.
The second term aims to increase the normal components and,
consequently, draws up the forces Fi within the friction cone.
The larger the weight parameter σi is, the better the force
belongs to the friction cone but the larger the force magnitude
is.
The new criterion J is equivalently written as follows:

J = F T F − (Nσ)T F (10)

with:

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

n1 03×1 · · · · · · 03×1

03×1 n2

. . . 03×1

...
...

. . .
. . .

. . .
...

... 03×1

. . .
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⎞
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for PCWF model

(11)

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n
′
1 04×1 · · · · · · 04×1

04×1 n
′
2

. . . 04×1

...
...

. . .
. . .

. . .
...

... 04×1

. . .
. . . 04×1

04×1 · · · · · · 04×1 n
′
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for SFCE model

(12)
where n1, n2, . . . , nm are the contact normals,

n
′
i =

[
ni

0

]
and σ =

⎡
⎢⎣

σ1

...
σm

⎤
⎥⎦ (13)

We now want to find the vector F that minimizes J under the
condition WF − Q = 0.
For that purpose, we apply a non-linear programming method
based on the Lagrange multipliers. The Lagrange function is
written as follows:

L(F, λ) = F T F − (Nσ)T F + λT (WF − Q) (14)

It is quadratic with respect to F and its second order derivative
in F is positive definite. The necessary and sufficient condition
for (F0, λ0) to be the minimum of L(F, λ) is:

∂L

∂F

∣∣∣
F=F0;λ=λ0

= 0 and
∂L

∂λ

∣∣∣
F=F0;λ=λ0

= 0 (15)

Resolving (15) yields the analytical solution:

F = W +Q +
1

2
(I − W +W )Nσ (16)

Note that this solution looks close to the general solution (2) of
WF = Q but contains only m unknowns, i.e. one unknown per
contact (versus 3 × m for the general one with PCWF model
and 4×m with SFCE model, i.e. three and four unknowns per
contact, respectively).
However, this expression in which only the vector σ is variable,
does not ensure that this solution is suitable for grasp stability.
Indeed, it does not ensure that each contact force vector belongs
to its friction cone. The additional term introduced in the
criterion plays a similar role to penalty function. Consequently,
an iterative procedure is now necessary to adjust the weight
parameters in order to satisfy the inequality constraints and
a sub-optimal solution is finally obtained by carrying the two
following steps.
In the first step, a rough estimation of the parameters σi is
found by noting that increasing the coefficient σi associated
with the ith contact increases the corresponding contact force
normal component fni and that this component must be all
the more big as the object weight Mg is big, the finger number
m is small and the friction coefficient µ small. So we propose
the initialization of σi as follows:

σi =
Mg

µm
(17)

The resulting force F and parameters Ki are computed under-
taking (9) and (16).
This estimation does not automatically ensure that the static
frictional constraints are all satisfied, but is a good initialization
for the next step. In the second step, the weighting factors are
progressively increased to make each force vector Fi belong to
the friction cone, according to the following procedure where
c is the iteration index and α < 1, an incrementing factor:

1) For each i,
IF Ki < 0 or fni < 0

THEN σc+1
i =

σc
i

α

ELSE
{ IF Ki > 0 and fni > 0

THEN σc+1
i = α σc

i }
2) Compute F with the new parameter vector σc+1

3) IF ∃i, Fi �∈ friction cone
THEN return to step 1.
ELSE exit the program.
A condition can be added to this third step to ensure that
the contact forces are close to the friction cone boundaries
like “do not leave the loop if Ki < bK” (with b a number
less than but close to 1) that will decrease the norm of
the contact forces.

Remarks:

1) As it will be shown by numerical examples, a few
iterations are involved and, as a matter of fact, the
computation time is largely lower than the computation



time of other methods (no matrix inversion is involved,
except in the computation of W+).

2) If the coefficient α is increased, the number of iterations
decreases but the force magnitude increases.

3) In an on-line object manipulation, the value of the vector
σ can be initialized, at each step of the control loop,
by taking the value computed at the previous step.
Consequently, the conditions (values of Q, W or N) being
not very different, only a small iteration number will
be needed. Moreover, this initialization offers a smooth
solution during the manipulation; small changes in Q,
W or N will not generate a great change of computed
internal forces.

4) Algorithm convergence: the form of the proposed reso-
lution method –a procedure using IF instruction in the
solution computation –makes hard to prove wether or not
and at which conditions it finds a solution. Nevertheless,
doing lots of tests, we observed that it always finds a
solution excepted when the conditions are close to the
problem feasibility limit. However methods like BHM and
HTL ones need a valid initial condition and methods
to find this valid initial condition,like the one of Liu
and Li[16], even if they should theoretically succeed,
practically need too much time, for realtime applications,
to find a solution in these cases.

V. NUMERICAL EXAMPLES

The method was implemented in C++ language. Several
examples have been tested to verify its effectiveness. In this
section, we give the results obtained for two of them. The
computation times correspond to experiments conducted on
a simple desktop PC (Intel Pentium IV, 1.8GHz, 480 Mo
RAM). For simplicity reasons, the dimensions were chosen as
round values since they have no influence on the computation
convergence.
The first example corresponds to the case of a 4-fingers grasp
of a cube object with PCWF contact model and non-planar
contact positions (Fig. 3):

r1 = [ −0.5 −0.5 −1 ]T n1 = [ 0 0 1 ]T

r2 = [ 0 −1 −0.5 ]T n2 = [ 0 1 0 ]T

r3 = [ 1 −0.5 0 ]T n3 = [ −1 0 0 ]T

r4 = [ −1 0.5 0.5 ]T n4 = [ 1 0 0 ]T

We want a resultant force that compensates for the gravity for
a 1kg-object and submits the object to a moment around the
z-axis:

Q = [ 0 0 9.81 0 0 2 ]T

The friction coefficient of all the contacts is 0.6 and the vectors
are initialized as in (17). α is arbitrarily chosen as 0.9.
The results are summarized as follows:

Fx Fy Fz Ki

finger 1 -0.0189 -0.9005 1.5392 0.5852

finger 2 0.7673 3.4715 1.2974 0.4342

finger 3 -12.0835 3.9651 5.5229 0.5627

finger 4 11.3351 -6.5361 1.4505 0.5906√
F T F 19.57

Computing time 0.140ms=140 µs

Matlab language 0.20s

Fig. 3. Top view of the grasp.

Remark :
As shown in the following table, the solution conver-
gence is improved when the coefficient α increases but
the force magnitude increases too. The adjustment
of this coefficient is the result of a compromise.

α 0.7 0.8 0.9 0.99

iteration number 12 18 32 298

computing time (ms) 0.062 0.078 0.140 1.234√
F T F 23.93 21.76 19.57 19.02

The HTL method using the maxdet Matlab module, found
in http://www.stanford.edu/ boyd/MAXDET.html gives the
minimal finger force normal components sum when choosing
the appropriate weight vector:

Fx Fy Fz Ki

finger 1 1.6778 0.1394 2.8060 0.6000

finger 2 0.0431 0.0748 -0.0124 0.5997

finger 3 -10.0850 4.0990 4.4511 0.6000

finger 4 8.3642 -4.3133 2.5653 0.6000√
F T F 15.62

As shown in this table, the results are close from what we
found above. However, the computation time is four times
the computation time of the proposed method (0.82s versus
0.20s with a Matlab program). For this example, we used
the LMI formulation of the problem and Matlab LMI toolbox
(lmilab) to determinate –if it exists– the friction coefficient
value under which the problem becomes unfeasible. We found
µ = 0.50429. Our method can not find a solution for µ values
under 0.525. For others methods, the only difficulty is to find a
valid initial condition. Using the Liu and Li algorithm ([16]) to
find this initial condition leads to an unacceptable computing
time (complete optimal force computation using HTL method
under Matlab takes more than 50s) while using Matlab LMI
toolbox leads to a computation time of 1.2s.

The second example illustrates the case of a SFCE contact
model (Fig. 4) so that a moment around each contact normal
is created.

r1 = [ −1 2 0 ]T n1 = [ 1 0 0 ]T

r2 = [ −1 −2 0 ]T n2 = [ 1 0 0 ]T

r3 = [ 1 1 0 ]T n3 = [ −1 0 0 ]T

r4 = [ 1 −1 0 ]T n4 = [ −1 0 0 ]T

We want a resultant force that compensates for the gravity
for a 1kg-object, pushes it along x-axis and exerts a moment
around the x-axis:

Q = [ 5 0 9.81 2 0 0 ]T



Fig. 4. Top view of the grasp.

The friction coefficients µi and µti are both 0.5.
The results are given in the following table:

Fx Fy Fz mi

finger 1 7.672 -0.097 2.738 0.143

finger 2 7.215 -0.097 2.167 0.143

finger 3 -5.206 0.097 2.595 -0.143

finger 4 -4.680 0.097 2.309 -0.143√
F T F 13.57

Computing time (ms) 0.844ms=844µs

Iteration number 201

With HTL method:
Fx Fy Fz mi

finger 1 7.581 0.000 2.734 0.235

finger 2 7.229 0.000 2.170 0.284

finger 3 -5.257 0.000 2.263 0.000

finger 4 -4.552 0.000 2.276 0.000√
F T F 13.50

The computing times for Matlab language programs are still
very different: 0.22s for the proposed method and 0.75s for
the HTL method, respectively. In this example, the problem
is always feasible, whatever are the friction coefficient values.
The proposed method converges however friction coefficient are
small.

VI. REAL TIME APPLICATION

This section presents the numerical results obtained from
the complete simulation of a manipulation task. It was made
using the Open Dynamics Engine (ODE) C++ library [17] that
allows to simulate articulated bodies and rigid bodies contact
dynamics. The simulated hand is constituted of four 3-DOF
fingers (Fig. 5) that are controlled by a force-position control
scheme already described in [18]-[19]. At each sampling period
of the control loop, during the object motion, new contact
force commands are generated according to the evolution of
the positions and normals of the contacts, due to finger rolling
or gaiting, and to the changes of the desired resultant force
of the body. For that purpose, the vector computed at the
previous cycle time is used as an initialization for the internal
force computation. The manipulation task shown here is a
screwing movement of a box-shaped object: it must be lift up
and turned around the vertical axis. In order to show that the

method can deal with difficult situations, a contact is broken
at an arbitrary chosen time. The object characteristics and
simulation parameters are the followings:

initial desired

Position(cm) 4.7 8

Orientation (rad) [0 0 0] 0 [0 0 1] π/8

Dimensions (cm) 3 × 3 × 6

Mass (kg) 0.1

Contact model point contact
with friction

Friction coefficient 1

Time step of dynamics
layer of the simulation (ms) 1

Sampling period of
the simulated control loop (ms) 10

coefficient α used by
the weights tuning procedure 0.95

Fig. 5. TimesNewRomanPSMTpsyro
Four steps of the screwing movement
with breaking of a contact.

During the manipulation, the desired resultant force changes
smoothly since it is provided by the controllers that are in
charge of the servoing of the object position and orientation. As
shown in Fig. 6, the desired contact forces evolve as smoothly
thanks to the chosen iterative method.

Fig. 6. Desired contact force of one of the
fingers -calculated with our method-
and the real contact force. Contact is
made at 0.5s and broken at 1.5s after
the beginning of the simulation.

Fig. 7 represents the evolution of the iteration number needed
to perform the contact force computation. As expected, it is



high immediately after the beginning of the grasp and the
breaking of the contact, and decreases quickly after. It always
remains low enough to ensure computation times less than
0.1ms whereas the computation times of the other methods
are about several ms.

Fig. 7. Evolution of the iterations number.

VII. CONCLUSION

This paper presented an efficient method for computing
the internal forces in a multi-fingered hand system. Grasping
force optimization leads basically to the minimization of a
quadratic function with respect to linear and quadratic con-
straints. Instead of solving this primal optimization problem,
a new unconstrained problem was stated first. The inequality
constraints were taken into account by introducing an adequate
quadratic term in the objective function. Consequently, the
solution was easily obtained by a m-matrix inversion and forces
were strained within the friction cone by tuning up weighting
parameters. Simulation results showed the effectiveness of the
approach for solving on line the grasping force optimization
problem during a manipulation task.
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