
Towards a Continuous Reinforcement Learning

Module for Navigation in Video Games

Thierry Gourdin and Olivier Sigaud

LIP6/AnimatLab
8 rue du Capitaine Scott

75015 PARIS
Thierry.Gourdin@lip6.fr, Olivier.Sigaud@lip6.fr

Abstract. Video games are highly non-stationary environments. Our
goal is to build a navigation module for video games based on Continu-
ous Reinforcement Learning techniques. A study of the state-of-the-art of
these techniques reveals that memory-based approaches are particularly
suitable for our application context. More precisely, among memory-
based reinforcement learning techniques, we compare a case-based ap-
proach, proposed by Santamaria, Sutton and Ram to an instance-based

approach, proposed by Smart and Kaelbling. We show on the standard
version of Mountain-Car benchmark problem that our modi�ed version
of the former converges faster than the latter. Then we show that our
algorithm can deal with di�erent non-stationary extensions of the same
problem, which is a �rst step towards the application to video games.

1 Introduction

The video games industry is growing fast. The growth of computational power
of personal computers has �rst been translated into improved visual rendering,
resulting in a more realistic immersion of the players into the simulated worlds
they play with. Nowadays, more and more game development companies are
looking for more realistic behaviors for the Non Player Characters (NPCs, or
bots) involved in the games. This results in a surge of interest for Arti�cial In-
telligence (AI) techniques, as exempli�ed in several recent game development re-
lated conferences (GameOn, Game Developers Conference, SIGGRAPH, AAAI
and IJCAI workshops).

From the perspective of AI laboratories, the video games industry o�ers
an attractive application domain: the realistic nature of their simulated worlds
makes them as interesting as robotic applications, but at a much lower cost,
both �nancially and in terms of experimental e�ort since the experiments can
be run for weeks without the di�culties inherent to robotics.

In particular, from a Reinforcement Learning (RL) perspective, these appli-
cations are convenient since it is often easier to de�ne punishments and rewards
in the context of a game than to design a suitable behavior for any situation. But
video games are also a challenging domain because they are generally multiagent
(with human players involved), thus highly non-stationary and unpredictable,

2

they are generally continuous in nature even if they can be discretized and the
perception of NPCs is limited, resulting in partial observability problems.

Recently, Robert [1] has designed a dedicated Learning Classi�er Systems
(LCSs) architecture combined with a multiobjective action selection mechanism
in order to control a team of soldiers in Team Fortress Classic (Valve R©). Thanks
to RL mechanisms, his agents were able to defeat a medium level team of hand-
coded bots called HBPBot and to rival the much more accurate team called
FoxBot. One of the reasons of the success of Robert's work is that it relies on a
carefully chosen set of high level discrete perceptions and actions. In particular,
as far as navigation is concerned, his bots can only choose among a very limited
set of destinations and then the classical A∗ algorithm [2] is used to de�ne the
path from the current location of the bot to its destination.

Instead of the navigation mechanism used by Robert, our long term goal is
to use a continuous state and action spaces RL mechanism able to optimize the
movement of the bot at any moment given its current context and objectives.
This paper presents a preliminary work dedicated to the identi�cation of the
most suitable technique in this challenging non-stationary application context.

More precisely, in the next section, we present a state-of-the-art of RL tech-
niques dedicated to continuous state and action spaces, and explain why the so
called �memory-based� approaches appear the best choice. There are two classes
of �memory-based� algorithms, called �case-based� and �instance-based�. In sec-
tion 3, we present our own model which derives from a case-based algorithm
published by Santamaria, Sutton et Ram [3]. In section 4, we use the well-known
Mountain-Car benchmark problem to experimentally compare our algorithm to
the instance-based algorithm called Hedger from Smart and Kaelbling [4]. We
also examine the behavior of our algorithm in the context of a non-stationary
version of the Mountain-Car problem and discuss the fact that the faster conver-
gence of our algorithm makes it more suitable for the context of non-stationary
environments that we will face in video games. In section 5, we conclude to the
e�ciency of our approach and discuss the extensions that will be necessary to
face the more challenging context of commercial video games.

2 Continuous State and Action RL

2.1 Background

The Markov Decision Processes (MDPs) framework [5] is probably the best
understood and most suitable mathematical framework when one wants to model
the sequential interaction of an agent with its environment, particularly when
this interaction is uncertain or stochastic. The framework de�nes:

� a �nite set S of states s and a �nite set A of actions a,
� a transition function T : S × A → Π(S) which maps (st, at) couples to
probability distributions over the next state st+1 if at is performed in the
state st. Given the probabilistic nature of transitions, T (st, at)(st+1) is also
written Pr(st+1|st, at),

3

� a scalar reward function R : S × A → IR which de�nes the immediate
reinforcement signal that the agent will get if it makes action a in state s.

The Markov property is veri�ed when the probability distribution over the next
state can be exactly computed knowing only the current state and the action
selected by the agent :

Pr(st+1|st, at, st−1, at−1, ..., s0, a0) = Pr(st+1|st, at)

Mapping an action to each state de�nes a policy π. The framework was
�rst used to de�ne and solve the so called �planning problem�, i.e. �nd the
policy an agent should follow in order to maximize its return, expressed as some
function of the rewards received at each time step from the environment [6]. The
most common return function is the discounted return: Eπ(s0) =

∑∞
t=0 γtRt,

where the discount factor γ re�ects the relative importance of short or long
term rewards and Rt is the reward received at time t.

These methods consist in introducing a value function V π where V π(s) rep-
resents the expected return of an agent if it follows policy π from state s. It is
shown that, when the Markov hypothesis holds, this function is solution of the
Bellman equation [5]:

∀s ∈ S, V π(s) =
∑

a

π(st, at)[R(st, at) + γ
∑
st+1

Pr(st+1|st, at)V π(st+1)] (1)

From equation 1, the optimal value function V ∗ can be reached using Dy-
namic Programming (DP) methods such as Policy Iteration [7, 8] and Value
Iteration [6]. Instead of the value function V , it is often more convenient to in-
troduce a function Q where Q(s, a) evaluates the quality of doing action a in
state s. Everything that has been said about the function V can be transposed
to the function Q, given that V (s) = maxa Q(s, a).

The problem with DP methods is that they require a perfect knowledge of
the transition and reward functions. Such a requirement cannot be generally
satis�ed in complex and unpredictable environments such as video games. But
the same framework can also be used in order to de�ne and solve the so called
�learning problem�, i.e. reach the optimal policy when the transitions between
states and the sources of reward are not known in advance [9].

The counterpart of DP methods in the context of learning problems are called
Temporal Di�erence (TD) methods. The �rst TD methods whose convergence
to optimality was proved are TD, Sarsa and Q-learning [10�12].

TD(0) The basic TD algorithm, called TD(0) [13], is based on a comparison
between the reward actually received and the expected reward given the previous
estimates. More precisely, the temporal di�erence error δ = Rt+1 + γV (st+1)−
V (st) [13] corresponds to the error between the actual values of estimates of
V (st) and the values they should have. The TD method, whose convergence is

4

proved in [14], consists in correcting V (st) little by little thanks to a Widrow-Ho�
equation using a learning rate α:

V (st)← V (st) + α[Rt+1 + γV (st+1)− V (st)] (2)

However, in a RL context, if the agent does not know the transition function,
it cannot derive e�ciently a policy from the value function: it does not know
which action it should execute to reach the next state with the highest value.
This explains why TD(0) is not used in practice when the model of transitions
is unknown. Rather than estimating the value function V , most RL algorithms
rely on the estimation of the Q-function.

Sarsa The Sarsa algorithm is the counterpart of the TD algorithm when one
uses the Q-function rather than the value function. Its update rule is:

Q(st, at)← Q(st, at) + α[Rt+1 + γQ(st+1, at+1)−Q(st, at)] (3)

The name Sarsa comes from the necessary information for such an update, the
quintuplet (st, at, Rt+1, st+1, at+1). Thus, in order to compute this update, the
agent must know in advance its next state st+1 and the action at+1 it is going
to take in that state. Such a method is said �On-Policy� since it implies a strong
dependency between the policy of the agent and its ability to update its model
of the Q-function.

Q-learning Q-learning is simpler than Sarsa. Its update rule is:

Q(st, at)← Q(st, at) + α[Rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (4)

The term Q(st+1, at+1) in equation 3 has been replaced by maxaQ(st+1, a)
in equation 4. This time, the update rule is independent of what the agent will
do next, thus the algorithm is said �O�-policy�. This brings several practical ad-
vantages (in particular, the learning process is more independent of the decision
process and seems more robust, see [15, 16] for a discussion) but also results in
a simpler proof of convergence [11]. Note that both equations would be identical
if the agent was following a greedy policy, but it is not the case in general since
an agent must explore its environment in order to learn.

Discussion From the background section above, we can already draw two con-
clusions on the most suitable methods for our application problem:

� DP methods cannot be used as such in the context of video games, because
the dynamics of the interaction between agents and their environment is
too complex and unpredictable to be modeled by hand. There also exists
model-based RL methods such as Dyna methods [17] that learn the model
of the environment before applying DP methods, but cannot be applied here
because learning a non-stationary model of transition and rewards is too
di�cult so far. Thus we have to rely on plain TD methods;

5

� among TD methods, we prefer the O�-policy methods such as Q-learning to
On-policy methods such as Sarsa for the robustness reasons mentioned just
above.

Thus, in the next section, we will focus on Model-Free methods based on a
O�-Policy algorithm such as Q-learning.

2.2 Continuous Q-learning: a restricted state-of-the-art

In the previous section, we have examined RL methods in discrete state and
action spaces. When states and actions become continuous, the standard adap-
tation of the RL methods consists in choosing a class of approximation functions
to represent the continuous value function and in tuning their parameters so as
to match the values known from single experiences. Tuning the parameters can
be done using a Widrow-Ho� update rule on the gradient of the Q-function 1:

∀i ∈ [0, N],∆ωi = αδQL
∂Q(st, at)

∂ωi

But Baird has shown that these methods, though they are fast, may not
converge [18]. Instead, he shows the convergence of residual gradient methods

based on the gradient of the TD error. We set b = arg max a′Q(st+1, a
′) and we

have:

∀i ∈ [0, N],∆ωi = −αδQL[
∂δQL

∂ωi
] = αδQL[

∂Q(st, at)
∂ωi

− γ
∂Q(st+1, b)

∂ωi
]

Once the tuning method is chosen, we can examine the classes of approxi-
mation functions that have been proposed to apply O�-policy RL algorithms to
continuous state and action spaces. We will do so thanks to the following list of
relevant properties inspired from [16], but adapted to our particular context.

Generalization ability Generalization comes from the ability of approxima-
tion functions to give a correct value in states that the agent never experi-
enced before.

Model-independence To match our application requirement, the method must
not assume the availability of the transition and reward functions in any way.

Fast retrieval of the best action (FRBA) Given that the state and action
are continuous, �nding the best action for a particular state given the dif-
ferent approximation function may be computationally expensive if the data
structures are heavy. This may be incompatible with the real-time require-
ment of video games.

Continuity Since our application is navigation, we want our system to give
very similar actions as output from very similar states.

1 We note δQL the temporal di�erence error computed by Q-learning

6

Locality If the system learns something around a particular state, we do not
want the modi�cation to impair something learned elsewhere in the state
space.

Readability The more readable the output of the learning process is, the easier
it is to debug and reuse the knowledge expressed.

All systems studied in our state-of-the-art rely on an approximation of the
Q-function, thus they all bene�t from a generalization ability. Furthermore, we
restrict the study to Model-independent systems.

CMAC Introduced by [19], the Cerebellar Model Articulation Controller (CMAC)
discretizes a continuous state and action space into N overlapping partitions.
Each element of each partition approximates the Q-function. The global value
of a given state is the sum of the values given by all partitions. Being one of the
earliest systems, CMAC is a reference in the domain, but most recent systems
have a better performance and more interesting properties [3].

Learning Classi�er Systems LCSs are rule-based systems combining RL
algorithms with Genetic Algorithms. XCS, the most studied LCS so far, has
recently been extended to deal with continuous states [20] and actions [21]. The
main advantages of LCSs are their readability and the fact that learning is local.
But they are very ine�cient at retrieving the best action and the continuity
property is not guaranteed since two di�erent rules with similar conditions can
trigger very di�erent actions.

Discrete actions Neural Q-learning One way to deal with continuous states
and actions consists in using a Neural Network (NN) with one input unit per
perception and one output unit per action. The triggered action at each time
step is the one whose corresponding output unit is the most activated. Some of
these systems have been trained with Q-learning [22, 23]. The problem is that
the more actions are needed, the bigger the network must be. Moreover, like
most NN systems, this approach fails on the locality and readability properties,
particularly in the case of multi-layer perceptrons. The case of RBF networks is
particular and, in fact, much closer to our model presented in section 3, but we
will not expand on that topic here.

Continuous actions Neural Q-learning Among NN approaches combining
Q-learning with continuous states and actions, Dynamic Neural Fields [24] and
Q-Kohon, a kind of Self Organizing Map, [25] do not match our needs because
they are slow to reach a steady state, hence to provide the best action.

The Wire Fitting Neural Network technique [16] is of much more interest to
us. It combines a single layer perceptron approximating the Q-function in any
state with a Wire Fitting interpolator [26] dedicated to the fast retrieval of the
best action. This system matches almost all our needs but fails on locality and
readability, as all NN systems do.

7

Lazy Learning Lazy Learning methods are also called memory-based methods
because they try to approximate the value function or the Q-function thanks to
a rather simple storage of previous experiences of the agent, called �cases�.

Previous cases below a given distance τs to the current state of the agent are
�activated�, thus used to interpolate the Q-function at that state, using a Locally
Weighted Average (LWA) or a Locally Weighted Regression (LWR) [27].

A new case is stored each time there is no case to be activated below a
distance ∆s. Thus, ∆s controls the density of cases (see �gure 1).

There are two main instances of Lazy Learning methods. The instance-based
learning algorithm Hedger [4] works directly in a joint state and action space
and stores simple (si, ai, qi) triples in each case.

The case-based learning algorithm from [3] is more complex. First, it is based
on a Sarsa algorithm with eligibility traces (noted ei hereafter) rather than on Q-
learning. Second, the structure of each case Ci is noted (si, Qi, ei, (aj , qij , eij)j=1...N),
where the vector (aj)j=1...N discretizes the action space. Third, instead of work-
ing in a joint S × A space, it �rst applies a distance function ds between states
and then a distance function da between action to determine the in�uence of each
previous case in the interpolation. Fourth, the update rule combines an update
of the average Q-value over all actions (with a coe�cient ρ) and an update of
the Q-values qi of the individual actions ai (with a coe�cient (1-ρ)) as follows:

Q(st, at) =
∑

Ci∈NNt

Ks(ds
it)∑

m Ks(ds
mt)

[ρ
∑

aj∈Ci

Ka(da
jt)∑

m Ka(da
mt)

qij + (1− ρ)Qi] (5)

where Ks and Ka are kernel functions determining the in�uence of each
previous experience depending on the distances, ds

it is the distance between the
states st and si and da

jt is the distance between actions aj and at (see �gure 1).
Both Lazy Learning approaches are local and continuous. But they do not

provide a fast retrieval of the best action and their output is not easily readable.

2.3 Discussion

property FRBA Continuity Locality Readability

CMAC X

Learning Classi�er Systems X X

Discrete actions Neural Q-learning X

Continuous actions Neural Q-learning X X

Lazy learning X X
Table 1. Synthesis of our state-of-the-art

From table 1, one can see that several choices are possible. But in [28], Baird
claimed that the Wire Fitting techniques used by [16] could also be used in the

8

context of Lazy Learning methods, which makes this category more attractive
than the others. In the next section, we present our adaptation of the case-based
algorithm from [3] to our context.

3 Our model

Fig. 1. Illustration of the case-based approach in 2D. Points C1 to C6 are previous
cases. Cases C1, C3 and C4 are activated in the computation of the value at the
current state (black dot). The in�uence of each case in this computation is modulated
by the kernel functions Ks and Ka shown on the left-hand side part of the �gure.
Updates are applied to all active cases. For more details, see [3].

Our model is similar to the one from [3], but di�ers on several respects:

� Rather than a Sarsa algorithm with eligibility traces, we use a residual gra-
dient version of Q-learning;

� We set ρ = 1 in equation 5; as a result, the Qi terms disappear of equation 5 ;

� The initialization of Q-values is not clearly speci�ed in [3], thus we initialize
the new case Cnew as (snew, (aj , qnewj)j=1...N), where snew = st is the new

state, and for each action aj , we set qnewj = Rnew
Ka(da

jt)∑
m

Ka(da
mt)

� Rather than a plain Euclidean distance, we use a weighted distance which
takes into account the range of values of all dimensions in order to normalize
their relative in�uence.

As a consequence of the �rst modi�cations, the structure of cases is much
simpli�ed, coming down to (si, (aj , qij)j=1...N). In experiments not described
here, we checked that all the simpli�cations above had no negative impact on
the performance with respect to the system described by [3].

9

4 Experimental study

4.1 The Mountain-Car problem

The Mountain-Car problem is a classical benchmark for continuous state RL
algorithms where a car must reach the top of a hill at the lowest possible speed.
We follow the speci�cation of [4]. The authors indicate that, with a �ne-grained
discretized tabular Q-learning, the average number of steps to the goal converges
slowly to 56 steps from 2500 initial positions (see �gure 2).

4.2 Experimental results and Discussion

Fig. 2. Comparison of the average number of steps necessary to reach the target posi-
tion from 2500 initial positions, with tabular Q-learning (top), our case-based approach
(bottom) and that of instance-based Hedger (the latter reproduced from [4]). Results
are obtained from a greedy policy. Between each performance measurement, a learning
episode consists in initializing the car randomly and allowing a maximum duration of
200 time steps. Results are shown in steps rather than episodes here to give a more
detailed view.

Figure 2 shows that, without any speci�c optimization, our approach con-
verges much faster and towards a better performance than Hedger.

In [4], the authors propose a series of optimizations that signi�cantly improve
the performance of Hedger at such a point that their system �nally performs
better than ours. In particular, they use a form of prioritized sweeping which
accelerates the learning process, but at the double cost of having to wait for the
end of an episode and storing all data during an episode. In video games, an
episode is virtually in�nite, thus this method cannot be applied as such.

Thus our claim is that our approach is more suited to real-time and highly
non-stationary environments such as video game than Hedger, both because

10

our case-based approach implies much less memory requirements and because
in such contexts it is more important to converge fast towards a reasonably
e�cient policy rather than converging more slowly to a policy that would have
been better if the environment had not changed in between.

In order to further validate this claim, we check with additional experiments
that our algorithm is able to deal e�ciently with two simple forms of non-
stationarities.

The �rst one is a sudden change in the dynamics of the environment, such
that the value function must be completely learned again. In order to test this
situation, we reverse the engine of the car each 5000 episodes, so that break-
ing becomes accelerating and vice versa. The second one is a slow drift of the
dynamics of the environment. Here, the learner must responsively adapt its esti-
mation of the value function while this function is changing. In order to test this
situation, we let the amplitude of the acceleration of the car At evolve according
to the equation At = A0(1 + 0, 5sin(2πt

T)) where A0 is the standard amplitude
and T corresponds to approximately 6000 learning episodes. Results are shown
on �gures 3(a) and 3(b).

(a) (b)

Fig. 3. (a) Performance when breaking and accelerating are reversed each 5000
episodes. (b) Performance when the acceleration amplitude is modi�ed over time. Ex-
perimental conditions are the same as in �gure 2. When the acceleration amplitude is
the smallest, the car can hardly reach the top of the hill.

One can see that, in each context, the system is able to modify the policy
quickly so as to adapt the behavior of the agent to the varying environment.
Nevertheless, in the context of a radical and sudden change, it takes about 100
learning episodes before the policy gets e�cient again. In the context of a slow
drift, the performance gets poorer than in the stationary case when the acceler-
ation is too weak to compensate for gravity, but the general loss of performance
is small. Furthermore, we checked that we can reduce T to approximately 1000
learning episodes without further loss of performance. Thus the main concern
given our target application can be expressed as two questions:

11

� are all the forms of non-stationarities that we will meet in video games
approximated well enough with both forms studied here?

� will these non-stationarities be �nice� enough so that the loss of performance
of the agent that they imply will stay acceptable in terms of observed be-
havior?

It is clear that some forms of non-stationarities due to the presence of other
agents or to changes in the reward function have not been tested in this paper.
But we hope that the ability to converge fast is a general answer to all these
di�erent questions, that would require di�erent treatments if they were to be
dealt with explicitly. This remains to be checked empirically.

5 Conclusion and Future work

In the case of a highly non-stationary and continuous environment such as a
video game, rather than trying to deal explicitly with the non-stationarity with
ad hoc methods, our approach in this paper has been to look for an algorithm
that converges fast enough towards a correct policy so that the behavior can be
adapted at any moment to the varying contexts.

Our experiments have highlighted the plausibility of this approach in the
context of a well-known benchmark problem. The next thing to do now is to test
our approach in the context of a video games to check if our basic assumptions
are veri�ed when confronted to the real di�culty.

In particular, we must check that, in the context of the Mountain-Car prob-
lem, there were only three discrete actions. We will have to check how our model
behaves in the context of continuous actions implied by navigation problems.
On a longer term, the result of this research will have to be integrated with the
previous work of Robert [1] so as to combine the strengths of both contributions.

References

1. Robert, G.: MHiCS, une architecture de sélection de l'action Motivationnelle et
Hiérarchique à Systèmes de Classeurs pour Personnages Non Joueurs adaptatifs.
PhD thesis, Laboratoire d'Informatique de Paris 6 (2005)

2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimal cost paths. IEEE transactions on SSC 4 (1968) 100�107

3. Santamaria, J.C., Sutton, R., Ram, A.: Experiments with reinforcement learning
in problems with continuous state and action spaces. Adaptive Behavior 6 (1997)
163�218

4. Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous
spaces. In: 17th International Conference on Machine Learning. (2000) 903�910

5. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scienti�c,
Belmont, MA (1995)

6. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, NJ
(1957)

7. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University
Press (1961)

12

8. Puterman, M.L., Shin, M.C.: Modi�ed Policy Iteration Algorithms for Discounted
Markov Decision Problems. Management Science 24 (1978) 1127�1137

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

10. Watkins, C.J.C.H.: Learning with Delayed Rewards. PhD thesis, Psychology De-
partment, University of Cambridge, England (1989)

11. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8 (1992) 279�292
12. Singh, S.P., Jaakkola, T., Littman, M.L., Szepesvari, C.: Convergence Results for

Single-Step On-Policy Reinforcement Learning Algorithms. Machine Learning 38

(2000) 287�308
13. Sutton, R.S.: Learning to Predict by the Method of Temporal Di�erences. Machine

Learning 3 (1988) 9�44
14. Jaakkola, T., Jordan, M.I., Singh, S.P.: On the Convergence of Stochastic Iterative

Dynamic Programming Algorithms. Neural Computation 6 (1994) 1283�1288
15. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning: A Survey.

Journal of Arti�cial Intelligence Research 4 (1996) 237�285
16. Gaskett, C.: Q-Learning for Robot Control. PhD thesis, Australian National

University (2002)
17. Sutton, R.S.: Dyna, an integrated architecture for learning, planning and reacting.

SIGART Bulletin 2 (1991) 160�163
18. Baird, L.: Residual Algorithms: Reinforcement Learning with Function Approxi-

mation. In: Proceedings of the 12th International Conference on Machine Learning,
San Francisco, CA, Morgan Kaufman Publishers (1995) 30�37

19. Albus, J.S.: A New Approach to Manipulator Control: the cerebellar model artic-
ulation controller (cmac). Journal of Dynamic Systems, Measurement and Control
97 (1975) 220�227

20. Wilson, S.W.: Get real! xcs with continuous-valued inputs. In Lanzi, P.L., Stolz-
mann, W., Wilson, S.W., eds.: Learning Classi�er Systems. From Foundations to
Applications. Springer, Berlin (2000) 209�219

21. Wilson, S.W.: Classi�er systems for continuous payo� environments. In: GECCO.
(2004) 824�835

22. Lin, L.J.: Self-Improving Reactive Agents based on Reinforcement Learning, Plan-
ning and Teaching. Machine Learning 8 (1992) 293�321

23. Werbos, P.J.: Approximate Dynamic Programming for Real-Time Control and
Neural Modelling. In White, D., Solge, D., eds.: Handbook of Intelligent Control.
Van Nostrand Reinhold, New York, NY (1992) 493�525

24. Gross, H.M., Stephan, V., Krabbes, M.: A Neural Field Approach to Topologi-
cal Reinforcement Learning in Continuous Action Spaces. In: Proceedings of the
IEEE World Congress on Computational Intelligence, IEEE Computer Society
Press (1998) 1992�1997

25. Touzet, C.: Neural Reinforcement Learning for Behaviour Synthesis. Robotics and
Autonomous Systems: Special Issue on Learning Robots: the New Wave 22 (1997)
251�281

26. Baird, L., Klopf, A.H.: Reinforcement Learning with High-Dimensional Continuous
Actions. Technical Report WL-TR-93-1147, Wright-Patterson Air Force Base Ohio
(1993)

27. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally Weighted Learning. Arti�cial
Intelligence Review 11 (1996) 11�73

28. Baird, L., Moore, A.W.: Gradient Descent for General Reinforcement Learning. In:
Advances in Neural Information Processing Systems 11, MIT Press (1999) 968�974

