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Abstract—This paper gives a review of existing models used by other authors aiming at modeling
micromanipulation tasks. It introduces the distinction between surface forces, which act even at
distance (van der Waals (VDW), capillary and electrostatic forces) and contact forces, which are
closely related to deformation and adhesion. Moreover, it presents our work on VDW and capillary
forces: compared to existing approximations, these models allow to take more parameters into account
such as, for example, statistical roughness in VDW forces or the volume of liquid in capillary forces.
They could be used, for example, to build up new handling strategies as illustrated in the references
cited in the paper. However, this paper focuses on fundamental models and does not present any
specific microhandling strategy.
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NOMENCLATURE

A Hamaker constant J

Aikj Hamaker constant (media i and j separated by a medium k) J

Bo Bond number (dimensionless)

C van der Waals interaction constant (all contributions) J m6 mol−2

CR Retardation effects constant J m7 mol−2

Ca Capillary number (dimensionless)

Cind Induction interaction constant J m6 mol−2

Corient Orientation interaction constant J m6 mol−2
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Cdisp Dispersion interaction constant J m6 mol−2

C0 Electrical capacity of two conductive solids F
d Separation distance between a molecule and a solid m

e Electron charge (1.602 × 10−19 C) C
E Young modulus GPa

Electric field V m−1

EA, ED Energy level eV
FVDW van der Waals force N
FL Laplace term of the capillary force N
FT Interfacial tension term of the capillary force N

g Earth gravity 9.81 ms−2

h Planck constant (6.626 × 10−34 m2 kg s−1) m2kg s−1

Immersion height m

H Mean curvature of the meniscus surface m−1

HLV Lifshitz–van der Waals constant J
JKR Refers to Johnson-Kendall-Roberts model (dimensionless)

k Boltzmann constant (1.381 × 10−23J K−1) J K−1

L Width of the rectangular box (VDW) m
LC Capillary length m
m Electron mass kg
n refractive index (dimensionless)
nA density of states
n1, n2 density of ions
NE density of traps
pin Pressure in the liquid phase Pa
pout Pressure in the vapor phase Pa
q Electrical charge C
r Distance between two molecules m
r(z) Equation of the meniscus profile in the axially symmetric case m
r1 Radius of the liquid bridge at the component side m
r2 Radius of the liquid bridge at the gripper side m
rk Depth of the kth cut in the discretized roughness profile m
R Sphere radius (VDW) m

Radius of a droplet posed on the substrate m
Radius of spherical grippers m

Molar gas constant (8.314 J K−1 mol−1) J K−1 mol−1

Ra Roughness parameter (arithmetic mean) m
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S Area of the rectangular box section parallel to the half-space m

Lateral area of the meniscus (i.e. area of the L-V interface) m2

Sk Area of the kth cut of the discretized roughness profile m
T Absolute temperature K
�U potential eV

v Molar volume m3 mol−1

V Volume of liquid m3

Electrical potential V
VC Contact potential V
w van der Waals interaction potential between two dipoles

(VDW) J mol−2

W Component weight N
VDW interaction potential between two macroscopic bodies J
Total interfacial energy of the meniscus (S-V, L-V, S-L) J

WLV Partial interfacial energy of the meniscus (L-V) J
WSL Partial interfacial energy of the meniscus (S-L) J
WSV Partial interfacial energy of the meniscus (S-V) J
W(S,HS) VDW interaction pot. between a sphere and an infinite half-space J
W(p,p) VDW interaction potential between two infinite half-spaces J
x Usual coordinate m
z Separation distance between two solids m

Greek

ε Relative permittivity, dielectric constant (dimensionless)
ε(iν) Complex dielectric constant

ε0 Permittivity of free space (8.854 × 10−12 F m−1) F m−1

φ1, φ2 Fermi levels eV
φ1 Slope of the component at the location of the triple line rad

γ Surface tension of a liquid N m−1

Energy of the interface liquid–vapor J m−2

γSL Energy of the interface solid–liquid J m−2

γSV Energy of the interface solid–vapor J m−2

ν Frequency Hz
νe Electronic frequency Hz
ρ Principal curvature radius of the liquid bridge (usually negative) m

Density kg m−3

Molecular density mol m−3
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Volumetric charge density C m−3

ρ1(ρ2) Molecular density of material 1(2) mol m−3

ρ ′ Principal curvature radius of the liquid bridge (usually positive) m

σ Superficial charge density C m−1

θ1 Contact angle at the component side rad
θ2 Contact angle at the gripper side rad
ξ Coordinate of a volume element m

1. INTRODUCTION

This paper is a review of microassembly, which can be defined as the assembly
(i.e., sorting, feeding, picking up, positioning, controlling, releasing and joining) of
microcomponents. Figure 1 indicates the scales and sizes discussed in this paper:
boundaries are defined with information from both models and literature. Compared
to the macroscopic domain, which is assumed to be ruled by gravity effects, the
micrometric domain is limited by an upper boundary (typically a few mm, i.e., the
cut-off length of the capillary effects (namely the capillary length LC = √

γ /ρg;
for water, LC ≈ 2.7 mm)) and a lower boundary at about 1 µm. The part of the
micrometric domain between 0.1 and 1 mm has been defined in Ref. [1] as the
mesoscopic domain (mesodomain). The nanometric domain extends from a few
nm up to the micron and is the ultimate domain of mechanical engineering. The
boundary between the atomic domain and the nanometric domain can be set around
the typical size of a molecule (around 0.2–0.4 nm). The term microcomponent
(microobject) refers to a(n) component (object) ranging from 10 µm to several mm.

In the area of microassembly and micromanipulation, the current academic
researches mainly cover three fields.

The first field concerns the applications as, for example, the assembly of (micro-
electro)mechanical components with a size ranging from 10 µm to several mm, the
handling and assembly of biological objects usually smaller than 1 µm. Despite
the apparently large extent of this field there are hardly any well-established bench-
mark applications for the micromanipulation of small mechanical components. One
of the reasons is the lack of industrial mass products, maybe due to the difficulties
inherent to the scale effects leading to new dominant effects, such as surface and
contact forces (these problematics are addressed in Ref. [2]).

Figure 1. Sizes and scales referred to in this paper.
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The second field covers the emerging technologies which have been extensively
developed in the laboratories for a decade, most of them addressing the problematics
of handling small components (typically small spheres with a diameter ranging
from several µm to a few mm). These studies focused on the handling aspects of
microassembly, i.e., essentially on the picking and releasing tasks. Many physical
principles have been studied and, due to the disturbing effects of surface and contact
forces, a lot of handling strategies have been proposed: these approaches can be
structured in 4 groups according to the way they tackle the surface and contact
forces [3]. These forces can be reduced, overcome or exploited as a gripping
principle. Finally, a fourth strategy consists in avoiding contact by handling without
contact. It is beyond the scope of this paper to review and sort out all these
principles. More information on the subject can be found in Refs [3–7].

The third field of research is the less technological and the most physical one. It
is also the less studied one. It consists of extracting elements data from the physical
and chemical knowledge in order to build models, including the physics of the
microscopic domain to describe the parameters and design rules of technological
micromanipulation tools of the second field. Indeed, the theoretical models of the
latter are quite limited although these approximations can be of the utmost interest
in the case of simple geometries like spheres. They are unfortunately too limited to
ensure the repeatability and reliability of more complex micromanipulation tasks.
Modeling becomes even almost impossible for other tasks of microassembly such
as, for example, joining by pressfit [8].

This paper is the result of research in this third field. It aims at covering the gap
between existing knowledge in tribology on the one hand and the bad knowledge of
design rules of microgrippers well adapted to the microscopic environment on the
other hand. Therefore, here we focus on models which could be used to best design
a micromanipulation task, without any consideration for the technological aspects.
An extended example of this approach can be found in Ref. [3].

Before introducing the structure of this paper, let us briefly introduce some scaling
law considerations. When downscaled, the volumetric forces (e.g., the gravity)
tend to decrease faster than other kinds of forces, such as the capillary forces or
the viscous force. Altough these forces still exist at the macroscopic scale, they
are often negligible (and neglected) in macroscopic assembly. A reduced system
is consequently brought face to face with the relative increase of these so-called
surface forces. As they decrease slower than the weight, there is always a cut-
off size below which these forces disturb the handling task because they make the
microcomponent stick to the tip of the gripper (the weight can no longer overcome
them and ensure release). A classification of the forces as a function of their range
is given Ref. [9] and presented in Table 1.

We propose to sort out these forces by making out whether there is contact or
not. When there is no physical contact between two solids, the forces in action
are called distance or surface forces (according to the scientific literature in this
domain [4, 10, 11], these latter are electrostatic, van der Waals (VDW) and capillary
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Table 1.
Forces summary

Interaction distance Predominant force

Up to infinite range Gravity
>From a few nm up to 1 mm Capillary forces
> 0.3 nm Coulomb (electrostatic) forces
0.3 nm < separation distance < 100 nm Lifshitz–van der Waals
< 0.3 nm Molecular interactions
0.1–0.2 nm Chemical interactions

forces). When both solids contact each other, there are deformation and adhesion
forces through the surfaces in contact. In this case, we consider contact forces and
adhesion or pull-off forces. Electrostatic or capillary effects can be added, but VDW
forces are not considered any longer, because they are already involved in the pull-
off term.

Of course, it can be thought of additional forces like viscous drag or other effects
related to the liquid environment like the electrostatic double layer effects. These
aspects have been put aside here because we only consider a gaseous surrounding
environment. More information about the forces acting in immersed microsystems
can be found in Ref. [12].

The paper is structured as follows. First the problematics of surface forces
(i.e., the forces which are also in action at a distance, when the component is not
deformed by the contact forces) are presented in Section 2 and it is focused on VDW
forces (Subsection 2.1), electrostatic forces (Subsection 2.2) and capillary forces
(Subsection 2.3). Section 3 deals with contact forces and the related models and
is focused on the interaction energy of two bodies (Subsection 3.2), deformations
(Subsection 3.1) and friction (Subsection 3.4). Finally, the conclusion summarizes
the contributions of this work and proposes tracks for further research.

2. SURFACE FORCES

2.1. Van der Waals forces

2.1.1. Introduction. The van der Waals (VDW) forces are often cited in papers
dealing with micromanipulation and microassembly, probably because the founding
papers of these bibliography reviews [10, 11] present these forces next to the
capillary and the electrostatic forces as being of the utmost importance in the
sticking of microparts. Other authors [13] prefer to neglect these forces because
they are of a smaller order. The reasons for this opposition do not seem to be clear,
all the more so since some authors propose to use adhesion as a suitable gripping
principle [14, 15]. The will to clarify this situation was the first reason to study
VDW forces. The second reason lies in the fact that most forces expressions used in
the literature on microassembly are only approximations of simplified geometries
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(spheres and planes). If these approximations are sufficient for experimental case
studies, the influence of more complex geometries (non-symmetrical geometries),
including roughness profiles, should be studied for microassembly applications. In
this subsection, we summarize some analytical and numerical methods to compute
these forces in non trivial geometries. An overview of the approximations from the
literature is proposed in a conclusion of this subsection. For the reader who would
be unfamiliar with these forces, a good and very didactic introduction to the subject
can be found in Ref. [16].

For two dissimilar polar molecules interacting in the vacuum, the interaction
potential is expressed as [17]:

w(r) = −[Cind + Corient + Cdisp]
r6

, (1)

where r represents the separation distance between the molecules and Cind, Corient

and Cdisp, respectively, represent the contributions of the induction (Debye term),
orientation (Keesom term) and dispersion (London term) phenomena to the interac-
tion potential. This interaction potential between atoms is generally written as:

w(r) = −C

r6
. (2)

The so-called retardation effect occurs when the separation distance increases over a
cut-off length of the order of 5–10 nm. In this case, the decrease with the separation
distance occurs faster and it is assumed that it can be described according to:

w(r) = −CR

r7
. (3)

The fast decrease of the VDW forces explains that they seem to be limited to
the atomic domain. Nevertheless, this decrease occurs more slowly when we
consider the interaction between two macroscopic bodies (that is, a body with a
very large number of molecules, including bodies that have a size in the order of a
few µm and that are consequently considered microcomponents when dealing with
microassembly terminology). Therefore, it is not so obvious to determine whether
these forces have to be dealt with or not.

There are two ways to compute the VDW interaction between two macroscopic
bodies: the first one is known as the microscopic or Hamaker approach and the
second one is called the macroscopic or Lifshitz approach.

From a strictly theoretical point of view, the VDW forces are non-additive,
non-isotropic and retardated. However, in Ref. [18] a straight and powerful way
to establish the potential interaction by assuming a pairwise additivity of the
interactions has been proposed. Moreover, this approach does not consider the
retardation effect. Therefore, the results are limited to separation distances between
the retardation cut-off length (about 5–10 nm) and a lower separation distance
equal to the equilibrium distance (about 0.1–0.2 nm) arising from the Lennard–
Jones potential: for smaller separation distances, very strong repulsive forces occur
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that can no longer be neglected. This lower limit is sometimes called the VDW
radius [16]. We should bear in mind that, even with these restrictions, the results
are not exactly correct for the interaction of solids and liquids because of the
pairwise summation assumption. However, Refs [17] and [19] consider that these
approximations are useful in several applications. We will illustrate this method in
what follows.

The Lifshitz method, also called macroscopic approach, consists of considering
as induces of the two interacting objects as continuous media with a dielectric
response to electromagnetic fields. The dispersion forces are then considered as
inducers of the mutual interaction of dipoles oscillating at a given frequency. When
the separation distance becomes larger than the cut-off length, depending on this
frequency and the speed of light, the attraction tends to decrease because the
propagation time becomes of the same order as the oscillation period of the dipoles,
the field emitted by one dipole interacting with another dipole with a different phase.
This effect has first been pointed out by Casimir and Polder [20] and computed
by Lifhitz using the quantum field theory [21]. Although this approach is of the
greatest complexity, similar results can be obtained by using Hamaker’s results,
on the condition to replace the Hamaker constant by a pseudo-constant involving
more parameters. This method is out of our scope, which is to roughly evaluate the
importance of the VDW forces in microassembly and to investigate the influence
of geometry, roughness and orientation on the manipulation of microcomponents.
We will, therefore, limit ourselves to the Hamaker method, despite its limitations.
The interested reader will find further information about the Lifshitz approach in
Ref. [22], chapter VI, and in Ref. [17]. The energy of interaction between a
molecule and an infinite half-space (i.e., a body limited by a plane surface) will be
the sum of the interactions between all molecules. It is assumed that the interaction
between two molecules is not modified by the presence of neighbours (pairwise
summation assumption).

2.1.2. Analytical model: illustration of the Hamaker approach. The Hamaker
method is illustrated here below in the case of the interaction between a molecule,
a sphere and a infinite half-plane on the one hand and another infinite half-space on
the other hand. Figure 2 illustrates the mode of integration used in these cases.

If ρ is the molecular density of the infinite half-space (HS) and d the separation
distance between the molecule and the surface, the interaction energy between this
molecule and the HS is given by:

w(d) = −2πCρ

∫ ξ=∞

ξ=d

dξ

∫ x=∞

x=0

x dx

(ξ 2 + x2)3
= −πCρ

2

∫ ξ=∞

ξ=d

dξ

ξ 4
= −πCρ

6d3
,

(4)
where (ξ, x) are the coordinates of the volume element. We use several symbols for
the separation distance: r denotes the separation distance between two molecules,
d represents the distance between a molecule or a infinitesimal volume of mole-
cules and a macroscopic body and z states for the separation distance between two
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Figure 2. Integration mode.

macroscopic bodies. The interaction potential W(S,HS) between a sphere and an infi-
nite half-space can thus be calculated by adding the interactions of all the molecules
of the sphere with the HS, assuming that the sphere is made of a material with the
same molecular density ρ. By observing that the sphere can be cut into slices of
radius x = √

R2 − (ξ − R)2 located at a distance z + ξ from the surface, the inter-
action potential W(S,HS) between the HS and a sphere of radius R can be written as:

W(S,HS)(z) = −π2Cρ2

6

∫ ξ=2R

ξ=0

(2R − ξ)ξ

(z + ξ)3
dξ

= −π2Cρ2

6

[
ln

z

2R + z
+ 2R(R + z)

z(2R + z)

]
. (5)

For other surface geometries, the potential can be calculated a similar way. For ex-
ample, the interaction potential by unit area between two parallel plates surfaces is
given by:

W(p,p)(z) = −πCρ2

12z2
. (6)

By deriving the potential W with respect to the separation distance z, the van der
Waals force FVDW is given by:

FVDW(z) = −dW(z)

dz
. (7)

A summary of the most frequent configurations is given in Table 2.

2.1.3. Hamaker constant. The quantity π2Cρ2 is rewritten into A, the Hamaker
constant, which depends on the materials and the experimental conditions. It is
generally obtained in experiments, but can also be calculated. Two theories exist on
this subject.

1. According to Ref. [23] and in the case of dissimilar materials 1 and 2 character-
ized by different molecular densities ρ1 and ρ2, the Hamaker constant is given
by:

A12 = π2Cρ1ρ2. (8)
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Table 2.
Comparison of the approximations from the literature (z, separation distance; R, the sphere radius)

Object 1 Object 2 Expression Reference

Plane Plane// W = − A

12πz2
; F = A

6πz3
[17, 22, 37]

(by surface unit)

Cylinder Cylinder // W = − AL

12
√

2z
3
2

(
R1R2

R1 + R2

)1/2
; F = − 3AL

24
√

2z
5
2

(
R1R2

R1 + R2

)1/2
[17] and

own results

(L, cylinder length; Ri , cylinder radius)

Cylinder Cylinder ⊥ W = −A
√

R1R2

6z
; F = A

√
R1R2

6z2
[17, 22] and
own results

Sphere Plane W = −AR

6z
; F = AR

6z2
[22, 37]

Sphere Sphere W = −AR

12z
; F = AR

12z2
[17, 22, 37]

A usually takes values included in the interval (0.4–4) × 10−19 J (values can be
found in Ref. [9, 17, 22, 24]). This method provides good approximations of the
constant for slightly polar materials, since it only takes the effect of dispersion
into account and is obtained by assuming the additivity of the dispersion forces
(pairwise summation assumption). In the opposite case, it underestimates its
value.

2. Lifshitz [21] developed a more realistic theory which integrates the influence
of the closer neighbouring atoms of considered pair. Therefore, the so-called
retardation effect of the dispersion forces is less perceptible. The estimation of
the Hamaker constant is however more complex. Indeed, it is necessary to know
the variations of the complex dielectric constant (ε) of the materials involved in
the system according to the frequency (ν). The Hamaker constant between two
materials 1 and 2 separated by a medium 3 is given by [17]:

A132 ≈ 3

4
kT

(
ε1 − ε3

ε1 + ε3

)(
ε2 − ε3

ε2 + ε3

)

+ 3h

4π

∫ ∞

ν1

(
ε1(iν) − ε3(iν)

ε1(iν) + ε3(iν)

)(
ε2(iν) − ε3(iν)

ε2(iν) + ε3(iν)

)
dν. (9)

Consequently, the Hamaker constant can be expressed by:

A132 ≈ 3

4
kT

(
ε1 − ε3

ε1 + ε3

)(
ε2 − ε3

ε2 + ε3

)

+ 3hνe

8
√

2

(n2
1 − n2

3)(n
2
2 − n2

3)√
(n2

1 + n2
3)

√
(n2

2 + n2
3)[

√
(n2

1 + n2
3) +

√
(n2

2 + n2
3)]

, (10)
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where k is the Boltzmann constant (1.381 × 10−23 J/K), T the temperature (K),
νe the principal electronic absorption frequency (typically about 3 × 1015 s−1),
εi the dielectric constant and ni the refraction index.

This complex expression can be simplified for more simple interactions (for
example, for interactions 1–3–1, 1–2 or 1–1).

Sometimes it is possible to obtain approximated values of A by using so-called
‘combination laws’, derived from the expression of A introduced by MacLachlan in
1963 [25]: for two materials 1 and 2 interacting through vacuum, A12 is computed
according to the constants Aii of each material:

A12 ≈ √
A11A22.

In the same way, for two materials 1 and 2 interacting through a third one 3, A132 is
approached by:

A132 ≈ (√
A11 − √

A33
)(√

A22 − √
A33

)
. (11)

This combination law gives very good approximations of A, except in the case of
strongly polar (high ε) media like water. In this case, the results of Equation (10)
are closer to the experimental value. Reference [26] gives an expression for the
VDW forces using the so-called Lifshitz–van der Waals constant, noted HLV and
expressed in eV (J). By this method, the VDW force between a sphere of radius R

and an infinite half-space is expressed as [9]:

FVdW = RHLV

8πz2
and A = 3HLV

4π
(J).

2.1.4. Numerical formulation. When geometries become non-obvious, summa-
tion cannot be achieved analytically. This subsection presents an example of nu-
merical integration based on the Gauss integration method applied to the interaction
between a sphere and another object (it could be for example a rectangular box) and
a method based on the Green identity (also called the divergence theorem) used in
order to study the influence of the relative orientation of the objects and that of their
roughness.

2.1.4.1. Gauss integration method. In order to implement the Gauss method
the integration domain must first be meshed with elementary cubes. Then, the
function to integrate is evaluated at the mesh nodes and all these values are summed
according to given weights [27]. The Gauss method guarantees that any defined
integral can be calculated with:

1

8h3

∫ ∫

C

∫
f (x, y, z) dx dy dz = 1

450

(
−496fm + 128

∑
fr + 8

∑
ff

+ 5
∑

fv

)
+ O(h6), (12)
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Figure 3. (left) Elementary cube in the Gauss method and its nodes. (right) Interaction between a
sphere and any other shape.

where
∑

fr = sum of the values of f at the 6 midpoints of the segments linking
the center of the cube to the 6 faces (see Fig. 3, left-hand part);

∑
ff = sum of

the values of f at the center of each face;
∑

fv = sum of the values taken by the
function f at each summit; fm = f (0, 0, 0); h3 is the volume of a mesh cube. Since
the function to integrate f must be evaluated at all nodes, it should preferably be an
analytical expression. For example if it is intended to compute the force between a
sphere S (with a radius R) and an arbitrary volume V separated by a distance z (see
Fig. 3), the interaction potential W(dV,S) between the sphere and a volume element
dV of V should be first computed by integrating equation (2) over the sphere S,
leading to [3]:

f ≡ W(dV,S) = 4

3π

AR3dV

[R2 − (i2 + j 2 + k2)]3
, (13)

where A = Cρ1ρ2π
2 and i, j and k state for the coordinates of the volume element

dV , in the rectangular coordinate frame with its origin located at the center O of
the sphere S (see Fig. 3b). Of course these coordinates depend on the separation
distance z.

The interaction potential W(V,S)(z) between a sphere S and a volume V separated
by a distance z is consequently (numerically) given by:

W(V,S)(z) =
∫

V

W(dV,S)(z) dV. (14)

The force can then be deduced from the energy by applying:

Fη = −∂W

∂η
= ∂W

∂r

∂r

∂η
, (15)

where r = √
i2 + j 2 + k2 and η = i, j, k. This approach has already been applied

by Feddema [28], in order to compute the interaction between a sphere and a
rectangular box, in order to propose a handling strategy based on VDW forces.
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Figure 4. Geometry of the rectangular block.

2.1.4.2. Green identity (divergence theorem)-based integration method. The
VDW force can also be computed by replacing the volume integral by a surface
integral using the Green identity [29], as illustrated below with the interaction
between an infinite half-space and a rectangular box separated by a distance z (see
Fig. 4b). This problem has an analytical solution that can be used to validate the
method. First the interaction potential W(HS,dV ) between an infinite half-space and
a volume element dV located at a distance d (Fig. 4a) is calculated (both molecular
density are equal). Since W(HS,dV )(d) = −AdV /(6πd3) (see equation (4)), the
force F between the half plane and the rectangular box V can be calculated by: (1)
integrating W(HS,dV )(d) over the volume V , located at a distance z from the HS and
(2) derivating this result with respect to z (F(z) = −dW(z)/dz), leading to:

F = − A

2π

∫

V

1

ξ 4
dV, (16)

where ξ is the position coordinate of the volume element. This integral can be
developed as follows:

F = −AS

2π

z+L∫

z

1

ξ 4
dξ = AS

6π

(
1

(z + L)3
− 1

z3

)
. (17)

As F depends on A, S (the section of the rectangular box parallel to the plane, see
Fig. 4b), L (the thickness) and z (the separation distance between the infinite half-
space and the rectangular block), F is actually written F(A, S, L, z). Equation (17)
will now be used in combination with the Green identity∫ ∫

�

∫
divū d� =

∮

∂�

ū.n̄ d(∂�).

Let us assume a vector field given by ū = −1/(3ξ 3)1̄z. Its divergence is given by
divū = 1/ξ 4. Consequently, equation (16) can now be rewritten as:

F(z) = A

2π

∮

∂V1

nz

3ξ 3
dS. (18)
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Figure 5. (a) Parameters of the rectangular rough block, (b) corresponding Abbott diagram, showing
an example of the section ratio as a function of the cut depth and (c) discretized roughness profile.

Then, by meshing the surface of the considered object (see Fig. 4c) into N

surface elements, the ith element, being characterized by a normal vector with a
z-component nzi , the integral in equation (18) is replaced by a discrete sum:

F(z) = A

6π

N∑
i=1

nzi

ξ 3
i

�Si. (19)

2.1.5. Applications: roughness and relative orientation. Let us now assume a
rough block placed in front of an infinite half space (see Fig. 5a). The nearest
roughness peak is at a distance z from the plane, and the highest peak is Ra high.
Roughness has been modeled by several authors: Arai [30] only considers the
highest roughness peak and assumes that the roughness profile is equivalent to a
smooth one, located at a separation distance z + (1/2)Ra (Fig. 6a). The force given
by equation (17) can, thus, be rewritten into:

FArai(z) = AS

6π

(
1

(
z + Ra

2
+ L

)3
− 1

(
z + Ra

2

)3

)
. (20)

Vögeli [31] assumes that the roughness can be modeled by a profile made of several
spheres with a diameter Ra (see Fig. 6b) leading to the following equation:

FVögeli(z) = −AS

6π

1

(z + Ra)3
− AS

6πz2Ra
. (21)

Lambert [32] takes whatever roughness profile into account by considering the
Abbott diagram (Fig. 5b) related to the surface, discretizes the roughness profiles
into M cuts (Fig. 5a and 5c) and applies equation (17) to the M discretized elements:

F(z) = F(A, S, L, z + Ra) +
M∑

k=1

F(A, Sk, Lk, z + rk), (22)

where rk is the depth of the kth cut, Sk its area and Lk its thickness (Lk = rk − rk−1,
see Fig. 5a).



Surface and contact forces models within the framework of microassembly 137

(a)

(b)

(c)

Figure 6. (a) Roughness modeled according to Arai [30]; (b) Roughness modeled according to Vögeli
[31]; (c) Force (N) as a function of the separation distance (m), with Ra = 100 nm and M = 1000:
continuous line [30]; dashed line [31]; dotted line [32].

The comparison of these models is presented in Fig. 6c for a rectangular
block characterized by a section S = 20 µm × 20 µm, a height L = 10 µm
and a Hamaker constant Ablock = 6.5 × 10−20 J. The substrate is characterized
by Asubstrate = 30 × 10−20 J. The separating medium is assumed to be dry air
(Aair = 4.5 × 10−20 J). From these three Hamaker constants, A is computed by
using the combination law (equation (11)).
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(a)

(b)

Figure 7. (a) Influence of the relative orientation of a smooth rectangular box interacting with an
infinite half-space. (b) Force (N) as a function of the separation distance: influence of the tilt angle
(◦) on the VDW force at a separation distance of 1 nm.

The case of a tilted box next to an infinite half-space (Fig. 7a) has been treated
with the previously presented Green method. It can be seen in Fig. 7b that the force
dramatically decreases as soon as the tilt angle becomes different from zero. A
handling strategy should consequently aim at modifying the relative angle of only a
few degrees between the gripper and the micropart (to release) or between the object
and the substrate (to pick up). It is not necessary to tilt the gripper with a 45◦ angle
as suggested in Ref. [15], although it is totally exact that the minimum of the force
occurs for a 45◦ tilt angle.

2.1.6. Summary of the approximations and conclusions. Many expressions of
the VDW forces can be found in the scientific literature, corresponding to classical
configurations. They are summarized in Table 2: additional references exist about
the interaction between a sphere and a cylindric pore [33], between a sphere and a
spherical cavity [34], between two rough planes [35, 36].

It can be concluded that there are several kinds of models: (1) without roughness
nor orientation [17, 22]; (2) with roughness but without orientation [30–32]; (3)
without roughness but with orientation [15, 32]. Note that we have not found any
description of a configuration including both roughness and orientation.
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2.2. Electrostatic forces

In the previous paragraph, VDW forces were presented. These forces rely mainly
on the presence of dipoles which tend to align. This alignment generates a force that
is always attractive. Another problem is that the particles tend to be electrostatically
charged and the effect of such a charge is significant for a microobject.

2.2.1. Various interactions. The electrostatic forces are conventional Coulomb
forces. Even if the involved systems are not charged, the triboelectrification involves
the creation of surface charge densities [38]. This phenomenon is included in
Ref. [39]; thus, different cases can appear.

2.2.1.1. Interaction charged particle/charged surface and charged particle/
charged particle. In the case of a charged particle q interacting with a charged
surface, the force of interaction is expressed by the law of Coulomb: surface cre-
ates a field E = σ/(2εε0) (with σ density of charge, ε relative permittivity of the
medium and ε0 permittivity of the air). The force is, thus, expressed by:

F = qE independently of the distance from separation. (23)

For interactions between charged particles, the Coulomb force is expressed by:

F = q1q2

4πε0εr2
, (24)

where r is the separation distance between the particles.

2.2.1.2. Interaction charged particle/insulating surface. When a concentrated
charge q approaches an isolated surface, the force of interaction is expressed by:

F = q2

16πεε0z2
, (25)

where z is the distance separating the electrostatic charge and surface, and ε is the
relative permittivity of the medium in which the interaction occurs. For insulating
materials characterized by dielectric constants ε1 and ε2, the force is expressed by:

F = q2

16πε1ε0z2

(ε2 − ε1)

(ε2 + ε1)
with ε2 > ε1. (26)

2.2.1.3. Interaction between two conductive surfaces. In the case of two con-
ductive half-spaces separated by a distance z, the electric field E is given by:

E = σ

εε0
, (27)

and the electrostatic force per unit area is:

P = σE

2
= σ 2

2εε0
, (28)
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This latter expression shows that the electrostatic force (or electrostatic pressure)
between plane surfaces does not depend on the separation distance. It only plays a
role if the charges distribution is not uniform.

It is very difficult to know the charges distribution (and the resulting electric field)
at a microscopic scale. Indeed, the charge distribution on insulating components
with a size smaller than 500 µm is not known in advance due to triboelectrification
mechanisms.

2.2.2. Various contacts.

2.2.2.1. Conductor–conductor contact. When two dissimilar materials contact
each other, a electron transfer occurs if the separation distance is small (� 1 nm).
This transfer brings materials in a thermodynamic balance which tends to equalize
their electrochemical potentials. The potential difference between surfaces of the
materials 1 and 2, called contact potential difference, is written in the form [40]:

Vc = (φ1 − φ2)

e
, (29)

where φ1 and φ2 are the contact potentials of materials 1 and 2. The charge acquired
by each material is determined by the condition that to balance, the levels of Fermi
of both materials coincide. Therefore, after separation of two materials, the charge
Q of each material can be estimated by [38, 41]:

Q = C0Vc, (30)

with C0 the capacity at the distance z0. The charge Q is generally about Q ≈
10−13 C. This capacity is equal to:

C0 = ε0Area

z0
, (31)

where Area is the contact area and z0 represents the cut-off separation distance above
which no electrons transfer can occur anymore. Consequently, the acquired charge
after separation is the one corresponding to a thermodynamic balance at the distance
z0. For very regular surfaces, z0 is between 0.2 nm and 0.4 nm [42].

The experiments undertaken by Lowell and Harper [41, 43] prove that this value
maximizes the charge acquired by metals. A value closer to reality is obtained by
taking for z0 the average of roughnesses of two surfaces. As it is not quite obvious
to determine, an average value of z0 is used [43]:

z0 = 100 nm.

This value of z0 can be used in various models.

2.2.2.2. Conductor–insulator contact. The charge transferred from a conductor
to an insulator depends on the work function. This charge is supposed to be given
when the levels of Fermi come in coincidence. The calculation of the acquired
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charge differs from the previous case and the charge excess within the insulator is
not concentrated on surface but in a zone known as the accumulation area, which is
generally about the size of the atoms [44].

This charge actually depends on the contact duration, but this one is assumed to be
rather long so that thermodynamic balance is reached [45]. The charge density (or
the total charge) in an insulator can be calculated starting from the knowledge of the
number of electrons occupying the different energy levels of the material [9]. The
number NE of electrons occupying the energy level EA can be determined by the
following expression, where m is the mass of the electron and h the Planck constant
(6.626 10−34 m2 kg s−1):

NE = π

4

(
8m

h2

)3/2

E
1/2
A , (32)

the charge density in the insulator ρ must satisfy the Poisson equation:

�V = − ρ

εrε0
, (33)

where ρ is the charge density, V the electrostatic potential, εr the dielectric constant
of the insulator and ε0 the dielectric constant of the air.

A solution to this equation is given by [38, 46]:

σ ≈ −{2εrε0nAkT exp(−EA/kT )}1/2 exp(eVc/2kT ), (34)

where nA is the density of state, calculated starting from the number of electrons
occupying the energy level EA (equation (32)) brought back to the volume of
material.

This solution assumes that the insulating material only involves densities of states
acceptor or donor. Nevertheless, in order to be able to explain the experimental
results, it is necessary to assume that the material has densities of states acceptor
and donor at the same time. In this case, the surface density of charges is expressed
by:

σ = −{2εrε0nAEAVc}1/2 Vc � 0
σ = +{2εrε0(nD − nA)EAVc}1/2 Vc � 0

}
, (35)

with nA and nD are density of state, and Vc = ((φconductor − φinsulator)/e) |σ |
generally lies between 10−5 C m−2 and 10−3 C m−2.

The calculation of nA and nD is related to the value of energies EA and ED. EA

is called energy of ionization and ED electronic affinity. Both are physical data of
materials.

2.2.2.3. Insulator–insulator contact. There are many experiments to suggest that
the contact insulator-insulator is caused by the same mechanism as the preceding
contact. Nevertheless, the main phenomenon for this contact is a mechanism of
transfer of ions and not of electrons [38].
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The potential energy of an ion varies with its position between two very close sur-
faces. This potential includes the densities of surface charge previously deposited.
With balance, the ions concentrate close to the minimum of adjacent potential on
these surfaces. The relationship between the density of ions n1 and n2 each surface
is given by:

n1

n2
= exp

(−�U

kT

)
with �U = U2 − U1, (36)

the densities of ions are generally physical data of material. Therefore, equation
(36) is used to determine �U . If the potentials U1 and U2 are significant compared
to kT , and by considering the electric field equal to δU/z, the density of electrostatic
charge σ is expressed by:

σ = ε0�U

ez
σ ∈ [10−5 C m−2–10−3 C m−2], (37)

with �U very near to 1 eV. If the two insulators are identical, the transfer of charges
exists but is weak (about 10−5 C m−2).

2.3. Capillary forces

2.3.1. Origin of the capillary forces. Basically, the capillary forces arise in
two ways: either a liquid drop is put between two solids (e.g., a gripper and a
component) and turns itself towards a meniscus (= a liquid bridge), or a capillary
bridge appears by condensation of the ambient humidity in the small cracks and
pores made by two roughness profiles brought in contact (e.g., in a surface force
apparatus [47, 48] or during MEMS working or manufacturing [49]).

In both cases, the situation can be described (see Fig. 8a) by a liquid bridge
characterized by a volume V , a surface tension γ and wettability properties defined
by the contact angles θ1 and θ2. According to the Young–Dupré equation [22], the
contact angle θi is given by:

cos θi = γSVi − γSLi

γ
, (38)

where γSLi (γSVi) states for the interfacial energy between the solid i and the liquid
(vapor). The force exerted by the meniscus on a solid has two contributions:
according to Ref. [47], the term ‘capillary force’ refers to the force due to the
pressure difference �p (� is not the Laplacian operator in this case) across the
curved liquid–fluid interface. Depending on the sign of �p, it can be attractive or
repulsive, as shown by the Laplace equation [22]:

�p = pin − pout = 2γH, (39)

where H is the mean curvature of the liquid–vapor (LV) interface, defined as:

H = 1

2

(
1

ρ ′ − 1

ρ

)
, (40)



Surface and contact forces models within the framework of microassembly 143

Figure 8. (a) Curved solid (gripper, AFM tip) linked to a flat solid (component, substrate) by a liquid
bridge. (b) Origin of the ‘capillary force’ (attractive case).

Figure 9. Origin of the ‘interfacial tension force’: the force directly exerted by the liquid interface
on the solid surface must be projected on the vertical direction, the radial components balancing each
other.

where ρ is the main curvature radius of the interface in the plane containing the
symmetry axis z and ρ ′ is the main curvature radius in the plane perpendicular to
this symmetry axis. Note that in Fig. 8a, ρ ′ is positive while ρ is negative.

As �p acts over an area πr2
1 , the capillary force FL is given by:

FL = 2γHπr2
1 . (41)

The term ‘interfacial tension force’ implies the force directly exerted by the liquid
interface on the solid surface. As illustrated in Fig. 9, the surface tension γ acting
along the contact circle must be projected on the vertical direction, leading to:

FT = 2πr1γ sin(θ1 + φ1). (42)

Therefore, the total capillary forces exerted on the solid are given by:

FC = FL + FT = 2γHπr2
1 + 2πr1γ sin (θ1 + φ1). (43)
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Figure 10. Example of the ‘potential’ method: case of two parallel plates.

Note that several authors only consider the ‘capillary’ term [47, 50], while others
only consider the ‘interfacial tension’ term [51]. According to Refs [52–54], we
will take both parts into account.

2.3.2. State of the art of the approximations. Most often the capillary forces are
approximated by several formulations that all include the following assumptions:
(1) axial symmetry of the liquid bridge, (2) gravity effects on the meniscus shape
are neglected (in other words, a vanishing Bond number BO = (ρgL2)/γ (L is the
meniscus height) is assumed, which means a meniscus with a size smaller than the
capillary length LC = √

γ /(ρg), where g is the gravity acceleration, γ the surface
tension of the liquid–vapor interface and ρ is the liquid density; actually it should
be written �ρ = ρliquid − ρvapor, but the density of air can be neglected compared to
that of water).

The main approaches are [3]:

1. To compute the force by derivating a potential W with respect to the gap z

between the two objects at apex (see Fig. 8a for z):

F = −dW

dz
. (44)

This approach is illustrated by the case of two parallel plates linked by a
meniscus, as represented in Fig. 10a. The system has three phases, three
interfaces leading to a total energy equal to:

W = WSL + WSV + WLV = γSLSSL + γSVSSV + γ SLV, (45)

where WSL = γSL1πr2
1 + γSL2πr2

2 , WSV = γSV1(πr2
0 − πr2

1 ) + γSV2(πr2
0 − πr2

2 )

and WLV = γ S. In these equations, r0 is an arbitrary constant radius, larger
that the maximum between r1 and r2: it only helps to express the solid–vapor
interface area and vanishes when deriving W in the next equation. S is the area
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of the liquid–vapor interface (the lateral area of the meniscus).

F = −dW

dz
= −γSL12πr1

dr1

dz

− γSL22πr2
dr2

dz
+ γSV12πr1

dr1

dz
+ γSV22πr2

dr2

dz
− γ

dS

dz
. (46)

In order to calculate all the derivatives involved in this expression, additional
assumptions must be stated: (1) the volume of the meniscus remains constant,
(2) the separation distance z is small compared to the radius r1 and r2: hence-
forth, we neglect the term depending on the lateral area S, (3) the liquid volume
can be approximated by V ≈ πr2

1z, leading to dr1/dz = −r1/2z, (4) in the same
way, dr2/dz = −r2/2z.

With these assumptions, equation (46) can now be rewritten as:

F = −πγ

z
(r2

1 cos θ1 + r2
2 cos θ2), (47)

or, in the case of two plates made of the same material F = −(2πγ /z)r2 cos θ .
If the liquid–vapor area is assumed to be approximatively equal to S ≈ 2πrz,
then it can be shown that:

F = −2πγ

z
r2 cos θ − πrγ, (48)

or, by replacing the radius by r = √
V/πz:

F = −V γ cos θ

z2
− γ

√
πV

z
. (49)

The sign ‘−’ indicates that the energy increases (dA/dz > 0) when the plates
are pulled away from each other. Consequently, the force is attractive.

2. To assume that the meniscus shape can be approximated by:

(a) A circle [47, 48]: (r − r0)
2 + (z − z0)

2 = ρ2 (ρ stands for the circle radius,
r0 and z0 for the coordinates of its center);

(b) A parabola [54]: r = az2 + bz + c.

These profiles allow to feed equation (43) with the required geometrical data.
In Ref. [54] it is concluded that the circle approximation (also called ‘toroidal’
approximation) ‘is the more difficult to use since the radius ρ passes through
infinity as the bridge changes from a convex to concave geometry’.

3. To numerically compute the shape r = r(z) of the meniscus by writing
the differential formulation of the curvature H of an axially symmetrical
surface [52, 55]:

H = r ′′

(1 + r ′2) 3
2

− 1

r(1 + r ′2) 1
2

= pin − pout

2γ
, (50)

where ()′ = d()/dz.
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2.3.3. Boundary conditions. Except in the case of the energetic method
(method 1), the geometrical methods (circle and parabola) and the differential for-
mulation (method 3) require boundary conditions to be used. For example, in the
circle approximation, three parameters must be determined: the coordinates of the
center r0 and z0 and the radius ρ (the parameters a, b, c in the case of the parabola).
The corresponding conditions that are imposed are that the meniscus shape must
respect the contact angles on both solids (two conditions) and the third condition is
provided either by the volume of liquid in the case of a given droplet put between
two solids or by the curvature H in the case of a capillary condensation problem,
this curvature being given by the so-called Kelvin equation [22]:

(2H)−1 = rk = γ v

RT log p0
p

, (51)

where v is the molar volume of the liquid, R is the perfect gas constant, T is the
absolute temperature, p0/p is the relative vapor pressure (= relative humidity for
water). Israelachvili [17] gives γ v/(RT ) = 0.54 nm for water at 20◦. This method
has been used by Stifter et al. [48].

When solving equation (50), the radius of the contact circle of the meniscus along
the upper solid (gripper) is guessed (and referred to as ‘starting point’ in Fig. 11)
and the corresponding contact angle is immediately satisfied. There are still two
conditions to impose (the second contact angle and either �p or the volume of
liquid). As equation (50) can only be solved if �p and the ‘starting point’ are
known, an iterative scheme should be achieved: (1) in the capillary condensation
problem, �p is given by the Laplace equation (�p = 2Hγ ) in which the curvature
is determined by the Kelvin equation (equation (51)) and the starting point of the
meniscus along the first solid is adjusted in an iterative way so that the contact
angle on the second solid is satisfied; (2) in the case of a given volume of liquid, �p

can be adjusted so that the contact angle is respected [52] and the starting point is
adjusted to fit the volume of liquid [55]. This double iterative scheme is graphically
illustrated in Fig. 11. More details on the results obtained by this method can be
found in Ref. [3].

2.3.4. Conclusions. As a conclusion to this subsection, let us remind that we
presented analytical and numerical algorithms to compute capillary forces. The
originality of the numerical exposed method lies in the fact that the volume of liquid
is considered an input parameter.

Table 3 summarizes several classical approximations found in the literature and
gives the corresponding references and assumptions (see Fig. 8a):

1. parallel plates;

2. spherical tip (radius R) near a plate;

3. arc approximation of the interface (where ρ = constant is the radius);

4. potential formulation;
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Figure 11. Graphical illustration of the double iterative scheme for a spherical gripper (R = 0.1 mm),
water, θ1 = θ2 = 30◦, V = 4.5 nl, z = 0. Meniscus ij is obtained with the ith starting point and the
j th pressure difference.

Table 3.
Summary of the capillary forces

Ref. Force Assumptions

[47] F = 4πRγ cos θ 2, 5, 6, 7, 8, 9

[47] F = 4πRγ cos θ 1
2

(
(r1/R)2

z/R+1−(1−(r1/R)2)1/2 − r1/R
4 cos θ

)
2, 3, 6, 7, 16

Equation (47) F = πγ
z

(r2
1 cos θ1 + r2

2 cos θ2) 1, 4, 7, 8, 10, 11

Equation (48) F = 2πγ
z

R2 cos θ + πRγ 1, 4, 7, 8, 11, 12

[17] F = 4πRγ cos θ
1+(z/h)

2, 4, 7, 13, 14

[48] F = πγρ′2
(

1
ρ

− 1
ρ′

)
2, 3, 15

[56] F = 2πγρ′ + γ
ρ
πρ′2 1, 3, 8, 9

[57] F = 2πγρ′ + γ
ρ
π z

2 sin θ
1, 3, 7, 9

[52] F = 2πr1γ sin(θ2 + θs) + πr2
1 γ

(
1
ρ

− 1
r1

)
2, 3

5. the radii r1 and r2 of the two circular contact lines are very small compared
to R;

6. r1 = r2 = r (‘symmetric case’);

7. the contact angles are equal θ1 = θ2 = θ ;

8. the gap z is very small compared to the radius r of the contact line;

9. the curvature of the interface in the horizontal plane is negligible | 1
ρ′ | 
 | 1

ρ
|;

10. contribution of the interfacial energy liquid–vapor is neglected;

11. constant volume V ≈ πr2
1z;

12. interfacial area liquid–vapor S ≈ 2πr1z;
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13. constant volume V = Vcylindre − Vsphere ≈ πR2zθ2
s + π

4 R3θ4
s (θs ≈ 0);

14. immersion height h is small (θs ≈ 0);

15. interfacial tension force is neglected.

Capillary forces are very important in miniaturized systems because of the
scaling laws: this kind of force is linear with the size of the system, i.e., their
relative importance compared to the weight becomes 100-times larger for a 10-
times reduced system. Note that these forces are particularly important in bubble
microfluidic systems, i.e., when there are liquid–vapor interfaces (they are less
important in flows occurring inside microchannels).

3. CONTACT FORCES

When contacting, two surfaces are subject to deformation and adhesion, the latter
being characterized by the so-called pull-off force, required to separate these two
surfaces. In the same way, the microscopic friction will play a dominating role for
the strategies of microhandling. Therefore, it is necessary to understand the main
properties of the surfaces in contact.

3.1. Deformations

The adhesion forces deal with the interfaces between surfaces in contact. No solid
being completely rigid, the action of these forces consequently increases the contact
area due to the deformation of the solids. In order to quantify the role of these forces
in a system, it is essential to describe the deformations taking place, which depend
on the elastic and viscoelastic properties of materials, their roughness, the surface
forces and the external applied load.

From the point of view of micromanipulation, the deformations of the objects play
two roles: (i) they increase surfaces of interaction and consequently the module
of adhesion forces and (ii) they introduce a new force known as ‘pull-off’ (or
separation) which is necessary to separate two solids initially in contact.

Several models describe the deformations. The first one (proposed in 1895 by
Hertz) considers a set of two perfectly elastic spheres in contact by assuming an
interaction without any attraction nor adhesion and a repulsion between two surfaces
[58–60]. For spheres with radii R1 and R2, Young moduli E1 and E2 and Poisson’s
ratios ν1 and ν2, this theory leads to the radius of the contact area a, given by:

a3 = RFext

K
, (52)

where

1

K
= 3

4

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
and

1

R
= 1

R1
+ 1

R2
.
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The deformation then leads to an indentation δ (i.e., the centers of the spheres are
separated from R1 + R2 − δ) calculated by the following expression:

δ = a2

R
= Fext

Ka
. (53)

This model, however, is not adapted to the description of the deformations on a
microscopic scale since it does not integrate any effect of adhesion. Nevertheless, it
was used as a basis for the development of the following models.

In 1971 Johnson, Kendall and Roberts (JKR) [61], noted that for low-weight
spheres, the contact area is clearly underestimated by the Hertz model and that
strong adhesion forces keep surfaces in contact when they are clean and dry. The
Hertz model remains valid for larger spheres, when the adhesion forces become
negligible compared with the weight.

These authors then proposed a theory derived from Hertz’s, on the basis of two
spheres which adhere when they come into contact. The JKR model describes the
contact area by:

a3 = R

K

{
Fext + 3πRW12 +

√
6πRW12Fext + (3πW12R)2

}
, (54)

and the indentation δ by:

δ = a2

R
−

√
8πW12a

3K
. (55)

These two formulas take into account the effects of adhesion between the bodies 1
and 2. When W12 is null, the contact area is identical to the one described by the
Hertz model. If the external load vanishes the radius a0 of the contact area is:

a3
0 = 6πW12R

2

K
.

This contact area generates adhesion forces which have to be overcome in order to
separate two objects initially in contact. Still according to this theory, it is therefore
necessary to apply for this purpose a negative load P called ‘pull-off’ or separation
force expressed by:

P = −3

2
πRW12. (56)

From a theoretical point of view, this model presents an anomaly. Indeed it
considers an infinite tension at the edge of the contact area. In 1975 Derjaguin,
Muller and Toporov (DMT) [62] proposed a theory between the two previous ones
in order to avoid this infinite tension by considering a Hertzian deformation of the
contact area and an adhesion. According to this latter theory the force required to
separate the solids is expressed by:

P = −2πRW12. (57)
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The determination of the deformations and the contact area has been widely
studied to validate either theory. The transition between the DMT and JKR models
has been studied by Mangis [63], who introduced the parameter λ called elasticity
parameter. This parameter can be expressed by

λ = 2σ0

(
R

πWK2

)1/3

, (58)

where σ0 = W/h and h ≈ 1 (λ → 0: DMT, λ → ∞: JKR).
Contact parameters, a and δ, are obtained by the simultaneous resolution of the

system of three equations with three unknowns:

1 = λa2

2

(
K

πWR2

)2/3(
(m2 − 2) arctan

√
m2 − 1 +

√
m2 − 1

)

+ 4λ2a

3

(
K

πWR2

)1/3(√
m2 − 1 arctan

√
m2 − 1 − m + 1

)
, (59)

F = Ka3

R
− λa2

(
K

πWR2

)1/3(√
m2 − 1 + m2 arctan

√
m2 − 1

)
, (60)

δ = a2

R
− 4λa

3

(
πW

KR

)1/3√
m2 − 1. (61)

The pull-off force is then expressed by:

P = −2σ0a
2
(
m2 arctan

√
m2 − 1 +

√
m2 − 1

)
. (62)

This system seems rather complex to solve [64]. A generalized and simplified
formulation of these equations was given in Ref. [65], writing the pull-off force by:

P = −1

4

(
7 − 4.04λ

1
4 − 1

4.04λ
1
4 + 1

)
πWR, (63)

and the contact radius by

a

a0
=

(
α + √

1 + F/Fadh(α)

1 + α

)2/3

, (64)

with

a0 =
(

1.54 + 0.279
2.28λ

1
3 − 1

2.28λ
1
3 + 1

)(
πWR2

K

)1/3

et λ = −0.924 ln(1 − 1.02α).

These empirical equations form a more practical solution than the Maugis
solution with less than 1% of error. These equations could, thus, be used in



Surface and contact forces models within the framework of microassembly 151

micromanipulation models. Model selection can then be summarized in the
following way according to λ coefficient:

λ < 0.1 DMT model

0.1 < λ < 5 Dugdale model using Carpick interpolation

λ > 5 JKR model.

These formulas use the surface energy whose definition and principal properties are
proposed in what follows.

3.2. Interaction energy of two bodies

3.2.1. Adhesion and cohesion works. These works represent the energy required
per unit area to separate two media from contact to infinity (in vacuum). This energy
is called the work of adhesion (W12) for two different media and work of cohesion
(W11) for two identical media.

3.2.2. Surface energy and tension force. The surface energy γ represents the
energy needed to increase the free surface of one unit area. Since it consists in
separating two surfaces initially in contact, it is equal to half the cohesion work:

γ1 = 1

2
W11.

For solids, it is noted γs and is regarded as an energy per unit of area, usually
mJ m−2. For liquids it is noted γl or γ and is given like a tension force per unit
length, usually mN m−1. This energy of surface often depends on the boiling point.
Consequently, substances like metals which have a high boiling point (T > 2000◦C)
have significant surface energies(γ > 1000 mJ m−2).

3.2.3. Interfacial energy. When two media are in contact, the energy of their
interface (by unit area) is noted interfacial energy or interfacial tension γ12, and
given by:

γ12 = 1

2
W11 + 1

2
W22 − W12 = γ1 + γ2 − W12.

This equation is called Dupré equation (see also equation (38)). The relation of the
combination beween γ12 and γ1,γ2 is obtained by starting from a thermodynamic
approach explained in Ref. [17]:

γ12 = γ1 + γ2 − 2
√

γ1 γ2.

3.2.4. Work of adhesion in a third medium. From the previous formulas the
energy W132 required to separate two media 1 and 2 immersed in a medium 3 is
given by:

W132 = W12 + W33 − W13 − W23 = γ13 + γ23 − γ12.
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3.3. Transition between surface forces and contact forces

The interaction potential (= interaction energy) of van der Waals between two
parallel planes being given by eqution (6), the energy required to increase the
separation distance from z = z0 to z = ∞ can be expressed as follows:

�W = W(p,p)(z = ∞) − W(p,p)(z0) = A

12πz2
0

. (65)

As the surface energy is half the energy required to separate two media from contact
to infinity, the work �W can also be deduced from:

�W = −W(p,p)(z0) = 2γ ⇒ γ = A

24πz2
0

per unit area. (66)

This equation provides the link between the surface energy and the Hamaker
constant. Note that the value of z0 is still to be determined: at first sight, the
average distance between atoms (0.4 nm) could be judiciously used. Nevertheless,
the experiments showed that this choice largely underestimates γ [17]. The main
reason therefore lies in the fact that the expression of W(p,p)(z) is obtained by a
continuous medium approach, while a quantum approach is more suitable since
the contact distance is of the same order of magnitude as molecular dimensions.
Nevertheless, this can be corrected empirically by dividing z0 by a correction factor,
equal to 2.5, leading to replace z0 by 0.165 nm. The choice of this value allows the
good correlation between the theoretical and experimental values of γ and A [17].

γ = A

24π(0.165)2
A = 2.1 × 10−21γ. (67)

A corrected expression Wc
(p,p) of W(p,p) is then given by:

Wc
(p,p)(D0) = − A

12π(z0/2.5)2
. (68)

It should be noted that this approximation provides correct results for most
materials, but that it largely underestimates the value of γ in the case of strongly
polar materials or metals for which it is preferable to use experimental values. If
the calculation of the VDW forces were based on the constants of Hamaker and
not on the experimental expressions of the energy of surface, it would become
necessary to integrate this correction in the expression of W(p,p)(z). A significant
discontinuity would then appear in the estimation of this potential. A second point
is that a discontinuity appears in models between surface forces and contact forces.

3.4. Friction

Friction also seems to be a significant physical phenomenon for micromanipulation.
From a macroscopic point of view, friction leads to a (friction) force which is
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opposed to the motion direction. Its expression, according to the classical Coulomb
model, is then:

Ffric = µFext,

where µ is the friction coefficient.
At the microscopic scale, it is necessary to consider friction phenomena between

surfaces in static and slipping contact (in presence or not of lubricant). Tabor [66]
draws up a state of the art of the processes of friction on a considered scale, in
absence of lubrication. He points out three things:

(i) the contact area: it depends on the topography of surfaces and the characteris-
tics of materials in contact. Although good ideal models exist, this determina-
tion is limited by the lack of reliable experimental methods taking into account
the slipping contact and some other surfaces phenomena (oxidation, state of
the microasperities, etc.);

(ii) the action of the interfacial connections, like the van der Waals forces or the
metal connections (by exchanges of electrons): they increase the coefficient of
friction µ up to high values (several times the unit). However, this effect is
compensated by the phenomena of oxidation which lead to surface films and,
hence, to a considerable decrease of the friction coefficient (µ ≈ 0.1);

(iii) the problems of deformations during sliding: they create a ‘tilling’ surface,
increasing the friction coefficient.

Consequently, it clearly turns out that the action of the adhesion forces and the
presence or absence of lubricant are dominating factors for the quantification of the
friction forces.

Many measurements carried out with the AFM are related to the frictional
properties of various materials. These studies lead to the characterization of these
properties by measuring either the shear stress τ or the coefficient of friction µ.
The low dimension of surfaces leads to a mono-asperity contact, which means the
force of friction f is proportional to the contact area a. Thus, the force of friction
is written [31]:

F = τπa2. (69)

The contact area can be estimated from the previous theories, JKR, Dugdale or
DMT. An estimation of the force of friction can, thus, be made.

There is another approach which establishes that the macroscopic approach can
be applied to these forces of adhesion to determine the force of friction. The
macroscopic approach can be applied to these adhesion forces to algebraically
determine the force of friction. Indeed, they can be regarded as external forces
since pull-off forces characterize the influence of a surface on the other one. Within
this framework, this friction force is expressed by Ando and Ino [67]:
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Ffric = µ(Fadh + Fext), (70)

where µ is the coefficient of friction. This expression is also true for Fext < 0 [68].

4. CONCLUSIONS

In this study several models have been summarized, from surface forces to contact
forces. By applying these models to our case studies, we conclude as follows:
(1) due to the roughness of small manufactured parts, it turns out from this study
that van der Waals forces can be neglected compared to other forces like capillary
forces. Moreover, the influence of these forces can be reduced if needed by tilting
the gripper. (2) A study of the capillary forces for use as a gripping principle has
proved the suitability of this principle to pick up components (several mN near
contact) and pointed out several release strategies: evaporation of the liquid bridge,
control of adhesion by electrowetting. (3) Due to its importance, pick-up strategies
have also been proposed to take benefit from the pull-off force [69]. In this latter
case, release is ensured by applying an important acceleration to the gripper [70].

As future works, the handling strategies based on the pull-off and capillary forces
should be improved and actual gripper prototypes should replace the experimental
set ups that have been designed to validate the principles.
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