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Abstract

sdyna is a general framework designed to ad-
dress large stochastic reinforcement learning
(rl) problems. Unlike previous model-based
methods in Factored mdps (fmdps), it incre-
mentally learns the structure of a rl problem
using supervised learning techniques. spiti is
an instantiation of sdyna that uses decision
trees as factored representations. First, we
show that, in structured rl problem, spiti
learns the structure of fmdps using Chi-
Square tests and performs better than clas-
sical tabular model-based methods. Second,
we study the generalization property of spiti
using a Chi-Square based measure of the ac-
curacy of the model built by spiti.

1 INTRODUCTION

A Markov Decision Process (mdp) is a mathematical
framework providing a semantic model for planning
under uncertainty. Solution methods to solve mdps
based on Dynamic Programming (dp) are known to
work well on small problems but rely on explicit state
space enumeration. Factored mdps (fmdps) are an al-
ternative framework to compactly represent large and
structured mdps (Boutilier et al., 1995). In this frame-
work, Dynamic Bayesian Networks (dbns) (Dean &
Kanazawa, 1989) are used to represent compactly the
transition and the reward functions by exploiting the
dependencies between variables composing a state.

Solution methods adapted from classical techniques
such as dp or Linear Programming (lp) have been
proposed (Hoey et al., 1999; Boutilier et al., 2000;
Guestrin et al., 2003) and successfully tested on large
stochastic planning problems. Moreover, model-based
learning methods (Guestrin et al., 2002) have been
proposed to learn the parameters of the model within

the fmdp framework, assuming that the structure of
the problem is known.

When the transition and reward functions are fully
unknown, learning in fmdps becomes a problem of
learning the structure of dbns from experience only.
Chickering et al. (1997) and Friedman and Goldszmidt
(1998) investigate techniques for learning Bayesian
networks with local structure. From a given set of ob-
servations, these techniques explicitly learn the global
structure of the network and the local structures quan-
tifying this network.

In this paper, we describe Structured dyna (sdyna),
a general framework merging supervised learning algo-
rithms with planning methods within the fmdp frame-
work. sdyna does not require to explicitly build the
global structure of the dbns. More precisely, we focus
on spiti, an instantiation of sdyna, that uses decision
trees as factored representations. spiti directly learns
local structures of dbns based on an incremental deci-
sion tree induction algorithm, namely iti (Utgoff et al.,
1997). These representations are simultaneously ex-
ploited by a modified incremental version of the Struc-
tured Value Iteration (svi) algorithm (Boutilier et al.,
2000) computing a policy executed by the agent.

In the context of incremental decision tree induction,
we use χ2 as a test of independence between two prob-
ability distributions (Quinlan, 1986) to build a model
of the transition and reward functions. The χ2 thresh-
old used to split two distributions directly impact the
size of the model learned and may be critical in find-
ing a good policy. First, we show that, fixing the χ2

threshold to a high value makes spiti able to build a
compact model without impacting the quality of its
policy. Second, we show that, while keeping its model
compact, spiti exploits the generalization property in
its model learning method to perform better than a
stochastic version of dyna-q (Sutton, 1990), a tabular
model-based rl method. Finally, we introduce a new
measure of the accuracy of the transition model based
on χ2 to study the generalization property of spiti.



We show that the accuracy of the model learned by
spiti decreases linearly when the size of the problem
grows exponentially.

The remainder of this paper is organized as follows:
in Section 2, we introduce fmdps. In Section 3, we
describe the sdyna framework. In Section 4, we de-
scribe spiti and explain how we exploit χ2 in model
learning and evaluation. Section 5 describes empirical
results with spiti. We discuss these results in Sec-
tion 6. We conclude and describe some future work
within the sdyna framework in Section 7.

2 BACKGROUND

A mdp is defined by a tuple 〈S, A,R, P 〉. S is a fi-
nite set of states, A is a finite set of actions, R is the
immediate reward function with R : S × A → IR and
P is the Markovian transition function P (s′|s, a) with
P : S × A × S → [0, 1]. A stationary policy π is a
mapping S → A with π(s) defining the action to be
taken in state s. Considering an infinite horizon, we
evaluate a policy π in state s with the value function
Vπ(s) defined using the discounted reward criterion:
Vπ(s) = Eπ[

∑∞
t=0 γt · rt|s0 = s], with 0 ≤ γ < 1 the

discount factor and rt the reward obtained at time t.
The action-value function Qπ(s, a) is defined as:

Qπ(s, a) =
∑
s′∈S

P (s′|s, a)(R(s′, a) + γVπ(s′)) (1)

A policy π is optimal if for all s ∈ S and all policies π′,
Vπ > Vπ′ . The value function of any optimal policy is
called the optimal value function and is noted V ∗.

The factored mdp framework (Boutilier et al., 1995) is
a representation language exploiting the structure of
the problem to represent compactly large mdps with
factored representations. In a fmdp, states are com-
posed of a set of random variables {X1, . . . , Xn} with
each Xi taking its value in a finite domain Dom(Xi).
A state is defined by a vector of values s = (x1, . . . , xn)
with for all i: xi ∈ Dom(Xi). The state transition
model Ta of an action a is defined by a transition
graph Ga represented as a dbn (Dean & Kanazawa,
1989). Ga is a two-layer directed acyclic graph whose
nodes are {X1, . . . , Xn, X ′

1, . . . , X
′
n} with Xi a vari-

able at time t and X ′
i the same variable at time t + 1.

The parents of X ′
i are noted Parentsa(X ′

i). We
assume that Parentsa(X ′

i) ⊆ X (i.e. there are no
synchronic arcs, that is arcs from X ′

i to X ′
j). A

graph Ga is quantified by a Conditional Probability
Distribution CPDa

Xi
(X ′

i|Parentsa(X ′
i)) associated to

each node X ′
i ∈ Ga. The transition model T of

the fmdp is then defined by a separate dbn model
Ta = 〈Ga, {CPDa

X1
, . . . ,CPDa

Xn
}〉 for each action a.

3 SDYNA

Similarly to the dyna architecture (Sutton, 1990),
sdyna proposes to integrate planning, acting and
learning to solve by trial-and-error stochastic rl prob-
lem with unknown transition and reward functions.
However, sdyna uses fmdps as a representation lan-
guage to be able to address large rl problems. An
overview of sdyna is given in Figure 1.

Input: Acting, Learn, P lan, Fact
Output: Fact(π)

1. Initialization

2. At each time step t, do:

(a) s ← current (non-terminal) state

(b) a ← Acting(s, {Fact(Qπ
t−1(s, a)), a ∈ A})

(c) Execute a; observe s′ and r

(d) Fact(Mt)← Learn(Fact(Mt−1), s, a, s′, r)

(e) {Fact(Vt), {Fact(Qπ
t (s, a)), a ∈ A}} ←

Plan(Fact(Mt), Fact(Vt−1))

with Mt the model of the transition and reward func-
tions at time t.

Figure 1: The sdyna algorithm

Neither the fmdp framework nor sdyna specify which
factored representations should be used. Factored rep-
resentations, noted Fact(F ) in sdyna, can exploit cer-
tain regularities in the represented function F . These
representations include rules, decision trees or alge-
braic decision diagrams. sdyna is decomposed in
three phases: acting (steps 2.a, 2.b and 2.c), learning
(steps 2.d) and planning (steps 2.e). The next section
details these phases in the context of an instantiation
of sdyna named spiti.

4 SPITI

spiti uses decision trees as factored representations.
We note Tree(F ) the tree based representation of func-
tion F . Section 4.1 and Section 4.2 describe, respec-
tively, the acting and planning phases and then the
learning phase in spiti.

4.1 ACTING AND PLANNING

Acting in spiti is similar to acting in other rl algo-
rithms. The planning phase builds set SQ of action-
value functions Tree(Qπ

t−1(s, a)) representing the ex-
pected discounted reward for taking action a in state
s and then following a greedy policy. Thus, the agent
can behave greedily by executing the best action in
all states. spiti uses the ε-greedy exploration policy
which executes the best action most of the time, and,



with a small probability ε, selects uniformly at random
an action, independently of SQ.

Planning has been implemented using an incremental
version of the svi algorithm (Boutilier et al., 2000). svi
is adapted from the Value Iteration algorithm but us-
ing decision trees as factored representations instead of
tabular representations. spiti uses an incremental ver-
sion of svi rather than the original svi for two reasons.
First, svi returns a greedy policy, which may not be
adequate for exploration policies other than ε-greedy.
Second, svi computes an evaluation of the value func-
tion until convergence despite an incomplete model of
the transition and reward functions. The modified ver-
sion of svi used in spiti is described in Figure 2.

Input: Tree(M), Tree(Tt), Tree(Vt−1)
Output: Tree(Vt), {Tree(Qt(s, a)), a ∈ A}

1. SQ = {Tree(Qt(s, a)), a ∈ A} with:
Tree(Qt(s, a))← Regress(Tree(M), Tree(Vt−1), a)

2. Tree(Vt)←Merge(SQ) (using maximization over the
value as combination function).

3. Return {Tree(Vt), SQ}

Figure 2: spiti (1): the Plan algorithm based on svi.

At each time step, the Plan algorithm in spiti up-
dates set SQ by producing the action-value func-
tion Tree(QV

a ) with respect to the value function
Tree(Vt−1) using the Regress operator (step 1) de-
fined in Boutilier et al. (2000). Then, action-value
functions Tree(Qt(s, a)) are merged using maximiza-
tion as combination function to compute the value
function Tree(Vt) associated with a greedy policy us-
ing the Merge({T1, . . . , Tn}) operator. This operator
is used to produce a single tree containing all the par-
titions occurring in all trees T1, . . . , Tn to be merged,
and whose leaves are labeled using a combination func-
tion of the labels of the corresponding leaves in the
original trees. Tree(Vt) is reused at time t+1 to update
the set SQ of action-value functions Tree(Qt+1(s, a)).
We refer to Boutilier et al. (2000) for a detailed de-
scription of the Merge and Regress operators.

4.2 LEARNING THE STRUCTURE

Trials of the agent compose a stream of examples that
must be learned incrementally. In spiti, we use in-
cremental decision tree induction algorithms (Utgoff,
1986), noted LearnTree. From a stream of examples
〈A, ς〉, with A a set of attributes νi and ς the class of
the example, LearnTree(Tree(F ),A, ς) builds a deci-
sion tree Tree(F ) representing a factored representa-
tion of the probability F (ς|A).

As shown in Figure 3 (step 3), the reward learning

Input: Tree(Mt), s, a, s, r Output: Tree(Mt+1)

1. Tree(Mt+1)← Tree(Mt)

2. A ← {x1, . . . , xn}

3. Tree(R ∈Mt+1)←
LearnTree(Tree(R ∈Mt),A

S
{a}, r)

4. For all i ∈ |X|:
Tree(CPDa

Xi
∈Mt+1)←

LearnTree(Tree(CPDa
Xi
∈Mt),A, x′i)

5. Return Tree(Mt+1)

Figure 3: spiti (2): the Learn(s, a, s, r) algorithm.

algorithm is straightforward. From an observation
of the agent 〈s, a, r〉 with s = (x1, . . . , xn), we use
LearnTree to learn a factored representation Tree(R)
of the reward function R(s, a) from the example 〈A =
(x1, . . . , xn, a), ς = r〉.

The transition model T is composed of a dbn Ga for
each action a. Ga is quantified with the set of local
structures in the conditional probability distributions
CPDa = (CPDa

X1
, . . . ,CPDa

Xn
)1. Assuming no syn-

chronic arc in Ga (we have X ′
i |= X ′

j | X1, . . . , Xn),
spiti uses LearnTree to learn separately a decision
tree representation of each CPDa

Xi
from the obser-

vation of the agent 〈s, a, s′〉 with s = (x1, . . . , xn)
and s′ = (x′1, . . . , x

′
n), as shown in Figure 3 (step 4).

Consequently, the explicit representation of the global
structure of dbns representing the transition functions
is not built.

The LearnTree algorithm has been implemented us-
ing iti (Utgoff et al., 1997) with χ2 as an information-
theoric metric, as described in the next section. We
refer to Utgoff et al. (1997) for a detailed de-
scription of iti. Ga is quantified by Tree(CPDa

Xi
)

associated to each node X ′
i. LearnTree com-

putes an approximation of the conditional probability
CPDa

Xi
(X ′

i|Parentsa(X ′
i)) from the training examples

present at each leaf of Tree(CPDa
Xi

) built by iti. The
model Tree(M) learned is then used in planning (Fig-
ure 2) to compute set SQ of action-value functions.

4.3 USING CHI-SQUARE TO DETECT
THE DEPENDENCIES

spiti uses χ2 as an information-theoric metric to de-
termine the best test Tνi on a binary attribute νi to
install at a decision node. Once Tνi has been selected,

1Instead of having a different Tree(CPDa
Xi

) for each
action and for each variable, one may maintain only one
Tree(CPDXi) for each variable by adding the action a to
the set of attributes A. We did not consider this case in
this paper.



we use χ2 as a test of independence between two prob-
ability distributions to avoid training data overfitting
(Quinlan, 1986). Thus, Tνi is installed only if the χ2

value computed for both probabilities F (ς|νi = true)
and F (ς|νi = false) is above a threshold, noted τχ2 ,
determining whether or not the node must be split into
two different leaves.

Neither planning nor acting in spiti require to build an
explicit representation of the global structure of dbns
Ga. However, as shown in Figure 4, it is straight-
forward to build such a representation by assigning
to Parentsa(X ′

i) the set of variables Xi correspond-
ing to the attributes νj used in the tests in each
Tree(CPDa

Xi
).

Time t Time t + 1

X0

X1

X2

X′
0

X′
1

X′
2

Tree(CPDX0 ): Tree(CPDX1 ): Tree(CPDX2 ):

0.8 1.0 1.00.8

X1 X2

X1

0.8

FalseTrue

0.3

Figure 4: Structure of a dbn G from a set of decision
trees {Tree(CPDXi)}. In Tree(CPDX2), the leaf la-
beled 0.3 means that the probability for X ′

2 to be true
is P (X ′

2|X1 = False,X2 = False) = 0.3.

spiti is initialized with a set of empty Tree(CPDa
Xi

),
assuming when it starts that the variables X ′

i are all
independent. When an attribute νj is installed at a
decision node, a new dependency of X ′

i to the variable
Xj associated with νj is defined.

4.4 EVALUATING SPITI

We show in Section 5 that spiti performs better than a
stochastic version of dyna-q (Sutton, 1990) in terms
of discounted reward and size of the model built in
structured rl problems defined in Boutilier et al.
(2000). The reward and transition functions and the
optimal value function are known for these problems.
Based on that knowledge, we can use additional crite-
ria, namely the relative error (Section 4.4.1) and the
accuracy of the model (Section 4.4.2) to evaluate spiti
in such rl problems. These criteria respectively mea-
sure how good a policy is compared to an optimal
policy, and how accurate is the model of transitions
learned by spiti.

4.4.1 Relative Error

The optimal value function V ∗, computed off-line us-
ing svi, may be used as a reference to evaluate a pol-
icy. We define the relative error, noted ξπ, between
V ∗ and Vπ as the average of the relative value error
∆V = (V ∗ − Vπ)/V ∗. We compute ξπ with operators
using tree representations. Given a policy Tree(π) to
evaluate, we use the Structured Successive Approxi-
mation (ssa) algorithm (Boutilier et al., 2000) based
on the exact transitions and reward functions to com-
pute its associated value function Tree(Vπ). Then,
from set S∆V = {Tree(V ∗),Tree(Vπ)}, we first com-
pute Tree(∆Vπ) using the Merge(S∆V ) operator and
using as combination function ∆V , the relative value
error. Then, ξπ is computed according to:

ξπ =

∑
l∈Tree(∆Vπ) ∆Vl · Sl∏

i∈|X| |Dom(Xi)|
(2)

with ∆Vl the label of the leaf l and Sl the size of the
state space represented by l.

4.4.2 Accuracy of the Model

We introduce the measure Qχ2 to qualify the accuracy
of the model learned by spiti. The accuracy of the
model is complementary to the relative error because
it evaluates the model learned in spiti independently
of the reward function. Qχ2 is defined as:

Qχ2 =

∑
a∈A

∑
i∈|X| σa,i

|A| ∗
∏

i∈|X| |Dom(Xi)|
(3)

with σa,i defined in Figure 5.

Input: a, i ∈ |X| Output: σa,i

1. σa,i = 0

2. Merge({Treedef (CPDa
Xi

), T reet(CPDa
Xi

)}) using as
a combination function:

σa,i = σa,i + Q(χ2
(X′

i,a,s′)) · Sl

with Sl the size of the state space represented by lt and
Q(χ2

(X′
i,a,s′)) the probability associated with the value

χ2
(X′

i,a,s′) computed from the probability Pdef (Xi) la-

beling the leaf in Treedef (CPDa
Xi

) and Pt(X
′
i|s, a) la-

beling the leaf lt

3. Return σa,i

Figure 5: Computation of σa,i used in the evaluation
of the model learned by spiti.

The values χ2
(X′

i,a,s′) and Q(χ2
(X′

i,a,s′)) are computed
using implementations proposed in Press et al. (1992)
with 1 degree of freedom. The probability Q(χ2

(X′
i,a,s′))



is computed for each leaf and weighted with the size
of the state space represented by the leaf, penalizing
errors in the model that covers a large part of the
state space. The average is computed by dividing the
weighted sum by the number of state/action pairs.

5 RESULTS

We present three different analyses based on empirical
evaluations of spiti. The first analysis studies the re-
lation between the value of the threshold τχ2 and the
size of the model built by spiti on one hand, and be-
tween τχ2 and the relative error of the value function
of the induced greedy policy on the other hand. The
second analysis compares spiti to dyna-q in terms
of discounted reward and model size. The last anal-
ysis studies the generalization property of the model
learning process in spiti.
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Figure 6: Number of nodes of the model learned in
spiti on the Coffee Robot and Process Planning prob-
lems. A high value of τχ2 decreases significantly the
size of the model learned.

These analyses are run on a set of stochastic problems
defined in Boutilier et al. (2000). A set of initial states
and a set of terminal states are added to the problem
definitions to let the agent perform multiple trials dur-
ing an experiment. When an agent is in a terminal
state, its new state is randomly initialized in one of
the initial states. The set of initial states is composed
of all the non-terminal states from which there is at
least one policy reaching a terminal state. We run 20
experiments for each analysis. When required, we use
svi to compute off-line optimal policy using the span
semi-norm as a termination criterion and ssa with the
supremum norm as a termination criterion. We use
γ = 0.9 for both algorithms.

5.1 CHI-SQUARE THRESHOLD

In order to study the influence of τχ2 on the quality
of the policy, we use the following protocol: first, a
random trajectory J is executed for T = 4000 time
steps. Second, the value of τχ2 is fixed and a transition
and reward model MJ ,τ is built from the trajectory
by spiti as described in Section 4.2. Third, a policy
πJ ,τ based on MJ ,τ is computed off-line using svi.
Finally, we compute the relative error ξπ as described
in Section 4.4.1.
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Figure 7: Relative error of the value function of the
policy induced from the model learned in spiti on
the Coffee Robot and Process Planning problems. The
value of τχ2 has a limited impact on the policy gener-
ated by spiti.

The first empirical study is done on Coffee Robot
and Process Planning . Both problems are defined in
Boutilier et al. (2000) and the complete definition of
their reward and transition functions is available on
the spudd website2. Coffee Robot is a stochastic prob-
lem composed of 4 actions and 6 boolean variables. It
represents a robot that must go to a café and buy some
coffee to deliver it to its owner. The robot reaches a
terminal state when its owner has a coffee. Process
Planning is a stochastic problem composed of 14 ac-
tions and 17 binary variables (1, 835, 008 state/action
pairs). A factory must achieve manufactured compo-
nents by producing, depending on the demand, high
quality components (using actions such as hand-paint
or drill) or low quality components (using actions such
as spray-paint or glue).

Figure 6 shows the size of the transition model built by
spiti on the Coffee Robot and Process Planning prob-
lems for different values of τχ2 . It illustrates the impact
of τχ2 on the number of nodes created in the trees and,

2
http://www.cs.ubc.ca/spider/jhoey/spudd/spudd.html



consequently, on the number of dependencies between
the variables of the fmdp. On both problems, the size
of the model is at least divided by 2 for high values of
τχ2 as compared to low values.

Whereas the value of τχ2 has a significant impact on
the size of the model, it has a much more limited im-
pact on the generated policy πJ ,τ , as shown in Fig-
ure 7. Despite decreasing model sizes, the relative er-
ror EJ ,τ computed for πJ ,τ increases only slightly on
both Coffee Robot and Process Planning problems.
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Figure 8: Number of nodes of the model learned in
spiti on the Noisy problems with two different levels
of noise. A high value of τχ2 decreases significantly the
size of the model learned.

To examine the consequences of the threshold τχ2 on
a very stochastic problem, we define a problem named
Noisy . Boutilier et al. (2000) define two problems,
namely Linear and Expon, to illustrate respectively
the best and worst case scenario for spi. The transition
and reward functions of Noisy are defined according to
the definition of the Linear problem with a constant
level of noise on all existing transitions. We present
additional results about spiti in the Linear , Expon
and Noisy problems in Section 5.3.

Figure 8 shows that for a very stochastic problem,
namely Noisy with two levels of noise, 20% and 40%,
with a fixed size of 8 binary variables and actions,
the impact of the threshold τχ2 is more important
than in the previous problems Coffee Robot and Pro-
cess Planning which contain some deterministic tran-
sitions. spiti builds a model from more than 9000
nodes to less than 300 nodes for an identical trajec-
tory. Figure 9 shows that on the Noisy problem, a
more compact transition model generates a more effi-
cient policy than a larger transition model, even if this
model has been learned from the same trajectory.
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Figure 9: Relative error of the value function of the
policy induced from the model and number of nodes
of this model learned in spiti on the Noisy problem
with two different levels of noise.

5.2 DISCOUNTED REWARD

In this study, we compare spiti to a stochastic imple-
mentation of dyna-q (Sutton, 1990) on Coffee Robot
and Process Planning . We use γ = 0.9 and a ε-greedy
exploration policy with a fixed ε = 0.1 for both dyna-
q and spiti. In dyna-q, we used α = 1.0, the number
of planning steps is set to twice the size of the model,
and Q(s, a) is initialized optimistically. In spiti, the
results of the previous section show that a high value
for the threshold τχ2 is appropriate. Thus, we set
τχ2 = 7, 88 (corresponding to a probability of inde-
pendence of 0.995).
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Figure 10: Discounted reward obtained on the Coffee
Robot problem. dyna-q and spiti execute quickly a
near optimal policy on this small problem.

We also use as reference two agents noted random
and optimal, executing respectively a random action



and the best action at each time step. The discounted
reward is defined as Rdisc

t = rt + γ′Rdisc
t−1 with rt the

reward received by the agent and γ′ = 0.993.

Figure 10 shows the discounted reward Rdisc obtained
by the agents on the Coffee Robot problem. On this
small problem, both dyna-q and spiti quickly execute
a near optimal policy. However, the model learned by
spiti is composed of approximately 90 nodes whereas
dyna-q builds a model of 128 nodes, that is the num-
ber of transitions in the problem4.
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Figure 11: Discounted reward obtained on the Pro-
cess Planning problem. spiti executes quickly a near
optimal policy in a large structured problem, unlike
dyna-q.

Figure 11 shows the discounted reward Rdisc obtained
by the agents on the Process Planning problem. spiti
is able to execute a near optimal policy in approxi-
mately 2000 time steps, whereas dyna-q only starts
to improve its policy after 4000 time steps. Compar-
ing the size of the transition model learned, dyna-q
builds a representation of approximately 2500 nodes
which would keep growing if the experiment was con-
tinued whereas spiti builds a structured representa-
tion stabilized to less than 700 nodes.

5.3 GENERALIZATION IN MODEL
LEARNING IN SPITI

In this third study, we use Qχ2 to qualify the loss of
accuracy of the model built by the Learn algorithm
(Figure 3) when the size of a problem grows whereas
the experience of the agent does not. We use the fol-
lowing protocol: first, a random trajectory J is ex-
ecuted in the environment for T = 4000 time steps.
Then, we compute QJ

χ2 with the transition model MT
J

3We use γ 6= γ′ to make the results illustrating Rdisc

more readable.
4A terminal state does not have transitions.

built from the trajectory J by spiti (as described in
Section 4.2) and the actual definition of the problem.
Finally, we restart using the same problem with one
more action and one more binary variable. We use
a random trajectory in this experiment to avoid any
dependency to the reward function learning process.
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Figure 12: Accuracy of the model learned by spiti af-
ter T = 4000 time steps on problems with variable size.
The accuracy decreases linearly whereas the size of the
problem grows exponentially (from 64 to 20, 971, 520
state/action pairs).

The experiment is run on the three following problems:
Linear, Expon and Noisy, using a level of noise of 20%.
We used τχ2 = 7, 88 to build the model MT

J . The size
of the problem grows from 24 · 4 = 64 to 220 · 20 =
20, 971, 520 state/action pairs. Figure 12 shows that
the accuracy Qχ2 of the model built by spiti decreases
linearly with the size of the problems.

6 DISCUSSION

sdyna is an architecture designed to integrate plan-
ning, learning and acting in fmdps. In this paper, we
have focused on spiti, an instantiation of sdyna, that
uses decision trees as factored representation. spiti si-
multaneously learns a structured model of the reward
and transition functions and uses an incremental ver-
sion of svi to compute its policy.

spiti learns the structure of a rl problem using χ2 as a
test of independence between two probability distribu-
tions. We have first shown that the threshold used to
determine whether or not new dependencies should be
added to the transition model has a significant impact
on the size of the model learned and a more limited
impact on the quality of the policy generated by spiti
(Section 5.1). Thus, spiti is able to build a compact
representation of the transition and reward functions



of the problem without degrading its policy.

Second, we have shown that spiti is able to learn the
structure of rl problems with more than one million
state/action pairs and performs better than dyna-q.
Unlike tabular learning algorithms, decision tree in-
duction algorithms build factored representations that
endow the agent with a generalization property. The
decision trees used to represent the transition and re-
ward functions in spiti propose a default class dis-
tribution for examples that have not been presented.
Consequently, an agent may be able to choose ade-
quate actions in states not visited yet. As we have
shown in Section 5.2, the generalization property in
spiti accelerates the resolution of large rl problems.

Third, we have used an accuracy measure to study
the generalization property of the transition model
learning in spiti. We have shown that for a con-
stant number of time steps, the accuracy of the model
built by spiti decreases linearly when the number of
state/action pairs in the problem grows exponentially.
This result indicates that spiti is able to scale well in
larger structured rl problems.

spiti has been evaluated using three different crite-
ria: the relative error ξπ, the discounted reward Rdisc

and the accuracy measure Qχ2 . Two of these criteria
cannot be applied in real world rl problems: the rela-
tive error requires to know the optimal value function
whereas the accuracy measure requires to know the
exact transition function of the problem. Thus, only
the discounted reward may be used to evaluate spiti
on such problems.

7 CONCLUSION AND FUTURE
WORK

We have described in this paper a general approach
to model-based rl in the context of fmdps, assum-
ing that the structure of a problem is unknown. We
have presented an instantiation of this approach called
spiti. Our results show empirically that spiti per-
forms better than a tabular model-based rl algorithm
by learning a compact representation of the problem
from which it can derive a good policy, exploiting the
generalization property of its learning method, partic-
ularly when the problem gets larger.

However, spiti is currently limited by its exploration
policy, ε-greedy, and its planning method, adapted
from svi. We are currently working on integrating
other model-based learning (Guestrin et al., 2002) and
planning (Hoey et al., 1999; Guestrin et al., 2003)
methods in fmdps to address larger problems than
those addressed in this paper.
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