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Abstract— The theoretical study presented in this paper aims
at proposing two capillary forces models related to the mi-
cro/nanomanipulation of cylindrical and prismatic components.
The underlying application framework is related to the objectives
of the European NanoRAC project, which are the manipulation
and characterization of nanocomponents such as nanotubes or
nanowires. The analytical equivalence of Laplace and energet-
ical method in the case of prism/plane interaction has been
demonstrated, and then applied numerically to the cylinder/plane
interaction.

I. INTRODUCTION

A lot of work has been reported on capillary forces mod-
elling based on energetic method or a direct force compu-
tation from the meniscus geometry obtained by numerically
solving the so-called Laplace equation or approximated by a
geometrical profile (circle, parabola). More information can
be found in [1]. This paper aims at proving that the capillary
force obtained by derivating the interfacial energy is exactly
equal to the sum of Laplace and tension terms, clarifying
models presented in [2], [3], [4]. This is proven by qualitative
arguments, section II presents analogy and difference between
both study cases : prism and cylinder, an analytical proof is
given, in section III, for the case of the interaction between a
prism and a plane, section IV presents Laplace method applied
to the cylinder, and some numerical results.

II. CYLINDER/PRISM ANALOGY AND DIFFERENCE

This section aims at defining the meniscus shape equation,
and calculating the volume of liquid, for both geometries
interactions : prism and cylinder interacting with a plane.

A. Meniscus shape

Let us describe some notations used in figure 1, θ1 and
θ2 are the contact angles between liquid and, respectively, the
plane and the prism (or the cylinder), z is the distance between
the object and the plane, φ represents the aperture angle for
the prism and the immersion angle for the cylinder (fig. 2), h
is the immersion height, α is the sum of both angles φ and
θ2, x1 and x2 are positions of the contact line with liquid.

Both interaction models presented here below are based on
a simplification of the Laplace equation giving the pressure
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Fig. 1. 2D notations for Prism/Plan interactions

difference across the liquid-vapor interface pin − pout as a
function of the surface tension γ and the meniscus curvature
H [5] :

2γH = pin − pout (1)

which can be rewritten into :

γ(
1

R1
+

1
R2

) = pin − pout (2)

where ( 1
R1

+ 1
R2

) represent the double of the mean curva-
ture H .

Since the prism and the cylinder are defined along the Z
axis perpendicular to IXY , the curvature of the meniscus in
this direction is null and the Laplace equation becomes :

x′′

(1 + x′2)
3
2

=
∆p

γ
(3)

whose left hand side represents the meniscus curvature in
the OXY plane ([ ]′ = d[ ]

dy ). The second term is assumed to
be constant (i.e. the so-called Bond number � 1) and this
equation can be integrated twice with respect to y, to find the
expression of the meniscus profile in the OXY plane.

An easier way to understand the shape of the meniscus is
based on the fact that a curve with a constant curvature is a
circle, whose radius will be noted ρ, center coordinates are
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(x0, y0), and equation is given by :

x = x0 −
√

ρ2 − (y0 − y)2 (4)

It can be deduced from Fig. 1 that :

ρ =
z + h

cos θ1 + cos α
(5)

y0 = ρ cos θ1 (6)
x0 = x2 + (−y0 + z + h) tan α (7)

Note that in equations 5-7, h, θ1, α are given.

x2 =
h

tanφ

where φ is given and h is to be determined from the known
volume of liquid V (see further equation 15) To summarise,
using the circle description, eq. 3 can be simplified as :

1
ρ

=
∆p

γ
(8)

Note that this simplified expression is exact in the pris-
matic chosen case and can be used as an approximation for
sphere/plane interaction when the curvature radius ρ is much
smaller than the neck radius ρ′ = min(x), which is the case
for small gap z.

B. Liquid volume

As already stated, the liquid volume V will be used to find
(i) the immersion height h in the case of the prism and (ii)
the immersion angle φ in the case of cylinder. In both cases,
V is written as :

V = 2L

∫ z+h

0

x(y) dy − vi (9)

where x(y) is given by eq. 4, L is the object’s length and vi

is the prism volume vpr or cylinder volume vcyl to remove
(1) :

vpr = Lx2h (10)
vcyl = LR2(φ− cs φ) (11)

Eq. 9 can be rewritten as eq. 12 and implies evaluation of the
integral noted I in eq. 13 :

V = 2L

∫ z+h

0

[
x0 −

√
ρ2 − (y0 − y)2

]
dy − vi

= 2Lx0(z + h)− vi − 2L

∫ z+h

0

√
ρ2 − (y − y0)2 dy

(12)

using the substitution u ≡ y − y0,

I =
∫ −y0+z+h

−y0

√
ρ2 − u2 du

=
[
ρ2

2
asin

u

ρ
+

u

2

√
ρ2 − u2

]−y0+z+h

−y0

(13)

1cs x ≡ cos(x) sin(x) is used as notation in the whole document

Using eq. 5-6, eq. 13 can be rewritten as :

I =
ρ2

2
(π − α− θ1 + cs α + cs θ1) (14)

and, consequently,

V = 2Lx0(z + h)− vi

−Lρ2(π − α− θ1 + cs α + cs θ1) (15)

Using expression of x0 in eq. 7 and the appropriate volume
vi , the expression of liquid volume (eq.10-11) can now be
deduced from eq. 15.

III. STUDY CASE: PRISM/PLAN INTERACTION

This section aims at applying the Laplace based and ener-
getic force model, using the geometrical results of section II.

A. Laplace approach

Using eq. 15 and prism parameters, the expression of
volume V becomes:

V = 2Lz
h

tanφ
+ L

h2

tanφ
+ L(z + h)2µ (16)

with µ =
cs α + 2 sinα cos θ1 − π + α + θ1 − cs θ1

(cos θ1 + cos α)2

The previous equation can be rewritten into a second degree
equation in h whose positive solution gives the immersion
height :

h2 + 2hz +
z2µ− V

L
1

tan φ + µ
= 0 (17)

h = −z +

√√√√z2 −
z2µ− V

L
1

tan φ + µ
(18)

The capillary force can be written as the sum of a term
depending on the Laplace pressure difference ∆p and the so-
called tension term :

F = 2x1L∆p + 2Lγ sin θ1 (19)

= 2 (x0 − y0 tan θ1) L
γ

ρ
+ 2Lγ sin θ1

= 2
(

h

tanφ
+ ρ sinα− ρ sin θ1

)
L

γ

ρ
+ 2Lγ sin θ1

= 2Lγ

(
h

ρ tanφ
+ sinα− sin θ1

)
+ 2Lγ sin θ1

= 2Lγ

(
h

ρ tanφ
+ sinα

)
F = 2Lγ

(
h

h + z

(
cos θ1 + cos α

tanφ

)
+ sinα

)
(20)



B. Energetical approach

The energetical method is based on the derivation of the
total interfacial energy W given by :

W = γΣ +
∑
pr,pl

Ai
SV γi

SV +
∑
pr,pl

Ai
SLγi

SL + C (21)

where γ is the surface tension, Σ is the liquid-vapor area,
Ai

SV (Ai
SL) is the solid-vapor (solid-liquid) area on solid i,

γi
SV (γi

SL) is the solid-vapor (solid-liquid) interfacial energy
and C is an arbitrary constant, which will be discarded by
derivation at the next step.

For the prism/plane interaction, the different surfaces are
given by :

Σ = 2ρ(π − α− θ1)L (22)

Apr
SL = 2L

h

sin φ
(23)

Apl
SL = 2x1L (24)

Apr
SV = 2L

K − h

sin φ
(25)

Apl
SV = 2(r − x1)L (26)

K and r in eq.25-26 represent arbitrary distance to calculate
interaction surfaces.

Using the Young-Dupré equation, interfacial energies can be
replaced by contact angles (see Fig. 1) and surface tension :

γi
SV − γi

SL = γ cos θi (27)

The expression of the total interfacial energy (eq. 21) can
be rewritten as follows :

W = 2L

(
h

sin φ
(γpr

SL − γpr
SV ) + x1(γ

pl
SL − γpl

SV )

+ρ(π − α− θ1)γ
)

+
[
2L

H

sin φ
γpr

SV + 2rLγpl
SV

]
︸ ︷︷ ︸

C

(28)

This equation can be rewritten, using eq. 27, into :

W = 2Lγ

(
− h

sin φ
cos θ2 − x1 cos θ1

+ρ(π − α− θ1)
)

+ C (29)

using x1 = x0 − y0 tan θ1 (30)

W =
(

z + h

cos θ1 + cos α
(π − α− θ1 − sinα cos θ1 + cs θ1)

− h

(
cos θ1

tanφ
+

cos θ2

sin φ

) )
2Lγ (31)

W = 2Lγ

(
(z + h)β − h

(
cos θ1

tanφ
+

cos θ2

sinφ

) )
(32)

with β =
π − α− θ1 − sinα cos θ1 + cs θ1

cos θ1 + cos α

To obtain the capillary force, expression 32 will be derived
according to z, since the term noted C is constant, it can be
left. Variation of h with respect to z can be deduced assuming
dV
dz = 0 from eq. 18 :

dh

dz
= −1 +

z

z + h

1
1 + µ tanφ

(33)

The expression of derivate of W according to z using
derivate of h (see eq. 33) :

dW

dz
= 2Lγ

[
cos θ1

tanφ
+

cos θ2

sinφ

+
z

z + h

(
β − cos θ1

tanφ
− cos θ2

sinφ

)
1

1 + µ tanφ

]
(34)

And finally, the expression of capillary force F is given by :

F = −dW

dz
(35)

C. Equivalence of both methods

In order to show equivalence between both methods, equa-
tions 20 and 35 need to be equal. In eq. 34 (energetical
method), the term factor of z

z+h can be expressed as:(
β − cos θ1

tanφ
− cos θ2

sinφ

)
1

1 + µ tanφ
= −cos θ1 + cos α

tanφ
(36)

Eq. 34 can be rewritten into

1
2Lγ

dW

dz
=

cos θ1

tanφ
+

cos θ2

sinφ
− z

z + h

cos θ1 + cos α

tanφ
(37)

By substracting and adding sinαto the latter equation, the
expression of force can be found :

1
2Lγ

dW

dz
=

h

h + z

(
cos θ1 + cos α

tanφ

)
+ sinα

For the prism/plan interaction, both methods are identical,
it can also be shown numerically for the interaction between
cylinder and plan.

IV. REAL CASE: CYLINDER/PLAN INTERACTION

A. Laplace approach

Using eq. 15 and cylinder parameters (see figure 2), a
mathematical relation similar to eq. 16 can be found between
V and h.

Unfortunately, h cannot be found analytically2 and a nu-
merical algorithm has to be implemented whose details are
beyond the scope of this paper.

The conclusion of it is howewer to proove the equivalence
of both force model once again. Since the Laplace approach
is easier, it will be used in what follows, leading to :

F = 2Lγ

(
R

cos θ1 + cos α

z + R(1− cos φ)
sin φ + sinα

)
(38)

2that is the reason why this relation has been studied, because it has an
analytical solution in the case of prism/plane interaction.
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Fig. 2. 2D notations for Cylinder/Plan interactions

B. Results

In figure 3, the normalised capillary force F = F/2Lγ is
expressed using adimensionnal numbers : θ1, θ2, V/L3, z/L
and R/L, then it is plotted versus the ratio z/L.

Fig. 3(a) shows variations of force F with the ratio V/L3.
The capillary force F seems to increase when the volume V
and the separation distance z decrease. For higher values of
ratio z/L and ratio V/L3, the force F converges towards 1.

Fig. 3(b) shows variations of force F with the contact angles
θ1=θ2(≡ θs). For a ratio z/L larger than 1 the force F seems to
remain constant for all values of θs, towards F ≈ 1. For small
values of θs, the force increases slowly when z/L decreases.
When values of θs increase and the ratio z/L decreases, the
force F decreases rapidly until the ratio z/L = 1, and slowly
after this ratio.

Fig. 3(c) shows variations of force F with the ratio R/L.
There is also a different behaviour near the ratio z/L=1,
towards z/L=1 (superior values), the capillary force increases
to pass through a maximum, after this peak, the force decreases
to remain constant when the separation distance z decreases.
The value of the peak increases when the ratio R/L decreases.

V. CONCLUSION

As a conclusion, it has been demonstrated that using the
simple prism/plan interaction, Laplace approach and energet-
ical approach are equivalent in order to evaluate the capillary
force. This result has been used to show numerically the same
equivalence in the case of the cylinder/plan interaction, which
can describe, for example, nanowires/plane interactions with
a liquid layer. Experiments need to be undertaken to proove
or refute this numerical results.
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