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Abstract— A model-based control for fast autonomous

four-wheel mobile robots on soft soils is developed. This

control strategy takes into account slip and skid effects

to extend the mobility over planar granular soils. Each

wheel is independently actuated by an electric motor.

The overall objective is to follow a path roughly at rel-

atively high speed. Some results obtained in dynamic

simulation are presented.
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I. Introduction

Many popular controllers for wheeled mobile robots
assume that wheels roll without slipping [1]. This leads
to a nonholonomic constraint added to the kinematic or
dynamic model. This assumption is quite legitimate for
usual applications such as autonomous cars over hard
terrains or slow indoor exploration. However, it is no
longer adequate for many applications where wheel slip
cannot be neglected [2], especially for traveling over nat-
ural soils at high speed [3]. Therefore, a new control
scheme is required.

In this paper, a model-based control method for fast
autonomous mobile robots on soft soils is developed. On
such a type of terrain (sand for instance), slip and skid
phenomena may be significant. The control strategy
takes into account these effects to extend the mobility
of the vehicles over planar natural soils.

A non-linear model-based control of wheel slippage
is studied, using a semi-empirical wheel-soil interaction
model. A higher-level control is applied to a four wheel
skid-steering vehicle which can travel at relatively high
speed (several meters per second). Each wheel is inde-
pendently actuated by an electric motor.

The control frame is developed for a four-wheel mo-
bile robot. The overall objective is to follow a path at
relatively high speed. This controller implies a low-level
control method that aims to regulate the slip rate of one
wheel, since the traction force generated by the rotation
of the wheel at the contact patch depends on the wheel
slip. We indicate the limits and the sensors required to
apply this strategy.

Finally, some results obtained in dynamic simulation
are presented. We compare different kinematic struc-
tures (pure skid-steering and directional wheels). A
comparison is also carried out with a classical kinematic
control.

II. Wheel-soil contact model

Several modeling frameworks can be used to calculate
the efforts involved in the wheel-soil interaction process.

We use an extended version of the terramechanic model
introduced by Bekker ([4],[5]). We assume a rigid wheel
over a soft soil (Figure 1).
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Fig. 1. Model of a rigid wheel

v is the velocity of the center of the wheel. ω is the
angular velocity of the wheel. In this model, the efforts
depend on the slip rate s, which is defined as:

s =

{
1 − v

ω.R if Rω ≥ v
1 − ω.R

v if Rω < v
(1)

for v > 0 and ω > 0. This definition can be extended
to every (v, ω) ∈ ℜ2, as it is shown on Figure 2.

Fig. 2. slip rate as a function of v and Rω

v is the linear velocity of the center of the wheel. ω
is the angular velocity of the wheel.

According to Bekker theory [4], the normal force de-
pends on the sinkage z through:
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where kc, kφ and n are soil parameters. ww is the
width of the wheel. b = min(ww , l), l being the length
of the contact patch.

The tractive force is related to the slip rate:

Ft(s) = Ftmax

[
1 − K

s.l

(
1 − e−s.l/K

)]
(3)

where:

Ftmax = lwwc+ Fn tanφ (4)

c, φ and K are soil parameters. The shape of Ft is
plotted on Fig. 3 with parameters of Tab. I.
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Fig. 3. Traction force vs slip rate

Additionally, the rolling resistance is assumed to be
mainly caused by soil compaction:

Rr = ww
zn+1

n+ 1

(
kc
b

+ kφ

)
(5)

Hence the net longitudinal force DP (drawbar pull)
is given by:

DP (s) = Ft(s) −Rr (6)

Lateral forces can be implemented, including bulldoz-
ing resistance, as described in [6]. In this study, we use
a simple linearized Coulomb model for lateral forces.
This contact model is being validated by experimental
measurements on a testbed under development.

III. Modeling of a rover

The kinematic and geometric parameters of the vehi-
cle is shown on figure 4.

A. Tractive force distribution

We note F the global vector of forces and torque ap-
plied to the center of mass of the platform, in the lo-
cal frame attached to the chassis. this vector has two
components since the lateral component FY is uncon-
trollable, thus ignored.

F =

[
FX
Mψ

]
(7)

FX is the longitudinal component of the force in the
local frame. Mψ is the global torque along the vertical
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Fig. 4. Model of a four-wheel rover

axis. Each wheel is submitted to tangential lateral and
longitudinal contact forces, gathered in corresponding
vectors:

Ft = [DP1, DP2, DP3, DP4]
T

(8)

Fl = [Fl1, Fl2, Fl3, Fl4]
T

(9)

The position of the robot is the position of the center
of mass of the chassis in the operational space:

X = [x, y, ψ]
T

and θ is the vector of angular positions of the wheels.
For each wheel, we can separate the lateral and lon-

gitudinal forces, which are related to the global force by
a linear equation:

F = (10)

To simplify, consider that only the two front wheels
are directional and set by one angle α. The absence of
the Ackerman kinematic model is also a simplification.

At =

»
1 cosα cosα 1
b b cosα+ a sinα −b cosα+ a sinα −b

–
(11)

and:

Al =

»
0 sinα sinα 0
−a a cosα − b sinα a cosα+ b sinα −a

–
(12)

Therefore, assuming translation and angular veloci-
ties are known, we can deduce the longitudinal forces
to apply. Angular velocities can be easily measured via
optical coders. Ground velocity can be estimated by a
Doppler sensor for instance [7].

We can inverse the linear system (10) by minimiz-
ing the 2-norm of vector Ft (thus minimizing tractive
efforts). Using the pseudo-inverse of At, the optimal
tractive efforts are computed from equation 13, where
hats denote estimated values, and stars denote desired
values:

Ft
∗ = Ât

+ (
F

∗ − ÂlF̂l

)
(13)
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The lateral efforts F̂l are estimated with the contact
model and a measure of the kinematic state of the vehi-
cle. The pseudo-inverse of this matrix At is computable
in a analytical way:

cAt

+
=

1

2(b2 cos4 α+ 2b2 cos2 α+ b2 + a2 sin2 α)
. (14)
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However, these tractive efforts can be unreachable if
we consider the contact model. If the desired tractive
force is non admissible by the soil (Ft > Ftmax), then
the robot will be unable to follow the path precisely and
will skid. A higher control loop is required to maintain
the vehicle on a satisfying path.

B. Control architecture

Figure 5 presents the overall control system. The de-
sired slip rate s∗ is provided by the inversion of the
estimated contact model from the desired traction force
Ft

∗. This force is computed from the global desired
force by the dispatcher At

+, which requires an estima-
tion of lateral forces. The role of the trajectory con-
troller is to generate a proper desired global force.
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Fig. 5. Control block diagram

This architecture is composed of two stages, the trac-
tion control and the trajectory control, which are de-
tailed in the next sections.

IV. Motion control

A. Traction controller

Several slip control methods exist in the literature, in-
cluding nonlinear and gain-scheduled PID, sliding mode
[8], fuzzy logic [9], or Lyapunov synthesis [10].

Simple slip control strategies have been used for sev-
eral mobile robots in rough terrain ([11], [12]). Like
these authors, we implement a simple PI-controller (Fig.
6). A derivative gain is inadequate since the slip rate
is a discontinuous function. Each independent electric
motor is controlled in torque (namely in current).

Numerical simulations have been led in a dynami-
cal multibody modeling software [13] (Fig. 8). An
extension has been developed to implement the ter-
ramechanic contact model. The curve 7 shows the re-
sult of the tracking of a step desired slip value of 0, 8
(Kp = Ki = 100).
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Fig. 6. Control block diagram with PI-controller
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Fig. 8. Control of a one-wheel vehicle

B. Trajectory controller

The trajectory controller is a high-level module that
drives the robot toward the desired path. It provides
a desired global force depending on kinematic and ge-
ometric situation (F∗ = f(X, Ẋ)). A simple strategy
may be defined as the following:

FX
∗ = kpX (v∗ − v) + kiX

∫
(v∗ − v) (15)

where kiX and kpX are gains. This defines a PI-
controller on operational velocity v.

Let d be the distance between the center of mass of
the robot and the desired path.

The desired global torque is computed by:

Mψ
∗ = kpψ

“
ψ̃ − ψ

”
+ kiψ

Z “
ψ̃ − ψ

”
+ kdψ

“
˙̃
ψ − ψ̇

”
(16)
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This is a PID-control of the heading angle ψ. The de-
sired value ψ̃ = ψ∗−γ (effective desired heading) is the
sum of the reference heading angle ψ∗ and a correction
depending on d and a gain kf , computed by:

γ = atan(kfd)

This allows the vehicle to go back to the desired path
by adapting the desired heading.

V. Simulation results

To simulate the behavior of the robot, a simple de-
sired trajectory has been chosen, which is a right bend
after an acceleration phase at constant rate. The mini-
mal radius of curvature is 54 cm. Kinematic, dynamical
and contact parameters are given in the table I. Soil pa-
rameters correspond to a dry sandy soil [5]. Dynamic
and geometrical parameters are taken from an existing
robot.

TABLE I
Simulation parameters

mr 1 kg wheel mass
mc 14 kg chassis mass
J 1.03.10−2 kg.m2 wheel inertia
R 10 cm wheel radius
ww 6 cm wheel width
a 35 cm half wheelbase
b 23 cm half track width
n 0.705 soil exponent

kc 6940N.m−(n+1) cohesive modulus
kφ 505800N.m−(n+2) friction modulus
φ 31.5 deg friction angle
c 1150Pa cohesion
K 1.15 cm soil modulus
Kp 300 proportional gain
Ki 1000 integral gain

A passive revolute joint has been introduced between
both sides of the platform to guarantee an isostatic con-
tact.

A. Non-directional wheels

We consider in this section a pure skid-steering rover
(α = 0). The matrix 11 and 12 are now:

At =

[
1 1 1 1
b b −b −b

]
(17)

Al =

[
0 0 0 0
−a a a −a

]
(18)

The heading of the robot can only be achieved by the
difference between tractive forces of both sides of the
chassis. We obtain the sequence of the figure 9.

d    =1.2mmax

Fig. 9. Right bend (skid-steering)
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Fig. 10. Rover direction and desired heading (skid-
steering)
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Fig. 11. Rover velocity (skid-steering)

B. Directional front wheels

A simple law is implemented for the steering:

α = ψ∗ − ψ (19)

As shows the sequence of Fig. 12, the desired path is
followed with a higher precision.
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d    =0.9m
max

Fig. 12. Right bend (directional wheels)
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tional wheels)

C. Classical kinematic control

This control method consists in assuming the per-
fect rolling in the longitudinal direction ([1] for exam-
ple). The platform longitudinal velocity and the rota-
tion along the vertical axis are supposed to be deter-
mined by the angular velocities of the wheels.

Therefore:

ω1
∗ = ω2

∗ =
(
v∗ + b

˙̃
ψ

)
/R

ω3
∗ = ω4

∗ =
(
v∗ − b ˙̃ψ

)
/R

(20)

with:
v∗ = v +Kk (p∗ − p) (21)

where p is the curvilinear absciss. Kk is a gain.
Wheels angular velocities are controlled by a PI-

controller. Fig. 16 shows measured angular velocities.
The impact of slippage is clearly highlighted on the

sequence 15. In this particular case, the robot slips
laterally and fails to accomplish its path, although the
tracking of the wheel velocities is fine. The system is
unstable.
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Fig. 14. Rover velocity (directional wheels)

Fig. 15. Right bend (kinematic control)
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Fig. 16. Wheels angular velocities (kinematic control)

These results show that the trajectory tracking is bet-
ter for the model-based control under such conditions.
The presence of directional wheels allows a better ori-
entation of the tractive efforts, so that the mobility of
the system is improved on sliding soils.

We can conclude that the model-based control frame
developed in section III has better performances than
the pure kinematic control.
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Fig. 18. Slip rates (kinematic control)

VI. Conclusion and perspectives

The controller presented in this paper may be use-
ful to achieve better performances on challenging ter-
rains such as planetary surfaces, but require a larger
instrumentation. Obstacle avoidance at high speed is a
possible application.

Further works are being made to implement this con-
trol strategy in a fast mobile robotic platform, which is
under development (Fig. 19). Absolute ground velocity
will be measured with a Doppler sensor. Robustness
and sensitivity to soil parameters have to be evaluated.
Moreover, an off-line nonlinear procedure will be imple-
mented to estimate the soil parameters.

Fig. 19. Skid-steering demonstrator
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