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Abstract

This communication deals with an Oriented-Contour
Point based voting algorithm for multiclass vehicle type
identification (make and model). The system obtains similar
results for equivalent recognition frameworks with different
feature selections [8]. Results also show the method to be
robust to partial occlusion.

1. Introduction

Vision-based license plate recognition is often used to
check incoming (or outcoming) cars in parking or toll road.
To increase robustness of such systems, we propose to com-
bine it with other process dedicated to identify vehicle type
(make and model). The aim of the system described in this
article will be the vehicle type identification from a vehicle
greyscale frontal image.

Many vision-based Intelligent Transport Systems are
dedicated to detect, track or recognize vehicles in image se-
quences. Embedded cameras detect obstacles and compute
distances from the equipped vehicle [11]. Surveillance road
monitoring measures traffic flow [2, 10]. Vehicles are lo-
calized in an image using 2D or 3D bounding box [11, 6]
or geometrical models which classify vehicles in categories
suchs sedans, minivans, SUV! or trucks[4, 3].

One paper deals with a similar problem: Petrovic and
Cootes [8] test various features for vehicle type classifica-
tion. Their decision module is based on a simple Euclidean
measure (with or without PCA pre-stage). Best results are
obtained with gradient-based representations. These results
can be explained because the vehicle rigid structure is stan-
dardized by the manufacturer for each model. The relevant
information contained in contour edge and orientation is in-
dependent of the vehicle colour. Others works [5, 1] had

'SUV or Sport Utility Vehicle is a type of passenger vehicle like 4x4.
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took the edge orientations for the recognition of different
patterns like faces.

In this paper, a vehicle type is a class represented by an
Oriented-Contour Points based model. We have also take
into account occlusions (tollgate) hiding a part of the vehi-
cle and making inadequate simple appearance-based meth-
ods. We shall see that in spite of the presence of tollgate,
our system does not need to change the training set or apply
time-consuming reconstruction process.

Our classifier is based on a voting algorithm and on a
Euclidean edge distance. For an input image, a discriminant
function gives a score to each class in the system’s type list.
The input then is identified as the best match in the type list;
that is simply the class with the highest score.

Next section explains how we define the model. Section
3 employs this model to obtain the discriminant function.
Results are presented in the following section. We finish
with conclusions and prospects.

2. Model Creation

During the initial phase of our algorithm, we produce
an Oriented-Contour Point based model for all the K vehi-
cle type classes composing the system knowledge. We call
Knowledge Base (KnB) the list of classes the system is able
to recognize.

2.1. Images Databases & Confusion Matrix

All ours experiments have been carried out on the Train-
ing Set (TrB) and on the Test Set (TsB). The TrB set is used
to produce the oriented-contour point models of the vehicle
classes. While the TsB sample is used to evaluate the ac-
curacy of the classification system. TrB is composed of
high quality frontal vehicle images captured in different car
parks. On the other hand, TsB includes outdoor frontal ve-
hicle images under different light conditions and at a lower
resolution. In figure 1, the upper row shows samples from



TrB while the bottom row shows the corresponding vehicle
class of the TsB. Our classification system will be applied

Figure 1. Samples from the TrB and the TsB.

to a Confusion Matrix (see table 1). Formally, we select a
finite set IC of K = 20 classes. For the multiclass classifi-
cation problem, each example ¢ € 7 is assigned toa single
class k € K, so that labelled examples are pairs (¢,k). The
system objective is to find a function G : 7 — K which
matches a newly example (¢,k) minimizing the probability
that k& # G(t).
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Table 1. Number of images.

2.2. Prototype image

We create a canonical rear-viewed vehicle image from
the four corner points of the license plate {A,B,C,D} (see
fig. 2). The image templates are called prototypes and in
the present work are 600 * 252 pixels (rows * columns). In
order to correct the orientation of the original image (see
examples in fig. 1), an affine transformation moves original
points {A,B,C,D} to the desired {A’,B’,C’, D’} reference
position, considering the vehicle grille and the license plate
in the same plane. Bigger ROIs, (i.e. with roofs, wind-
shields and wheels), do not respect this assumption, so the
affine transformation produces big mistakes in the recon-
struction. The LPREditor’s license plate recognition system
provides us the corners of the vehicle license plate (see at
http://www.lpreditor.com for details).

Figure 2. (a) original image, (b) prototype /.

The Sobel operator is used to calculate the magni-
tude and orientation of the I gradient greyscale prototype
(IVg1l, ¢1). We obtain an oriented-contours points matrix
E; after an histogram based threshold process. We consider
each edge point p; of E; as a vector in R3: pi=lz,y,0l’,
where (z, y) is the point position, and o is the gradient ori-
entation of p; [7]. We sample the gradient orientations to
N bins. To manage the cases of vehicles of the same type
but with different colours, we use the modulus 7 instead of
the modulus 27 [1]. For our application N = 4.

2.3. Model Features

Oriented-Contour points features array Each class in
the KnB is represented by n prototypes in the TrB, n varies
from class to class, some classes are represented by a single
prototype.

Superposing the n prototypes of the class k£, we find a
map of the redundant oriented-contour points. This feature
map of Oriented-Contour based points models this class in
the KnB. The algorithm treats the n prototypes of the class
k in the TrB by couples (having C,, > couples at all). Let
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Figure 3. Model creation.

be (E;, E;) a couple of Oriented-Contour Points matrix of
the prototypes 1 and 2 from the k class. We define an
600x252xN accumulator matrix A;; and the vote process
is as follow: a) taking a point p; of E;, we seek in E;
the nearest point p; with the same gradient orientation; b)
the algorithm increments the accumulator A;; in the middle
point of p;p; at the same gradient orientation; c) the pro-
cedure is repeated for all the points p; of E;. Considering
the addition of all A;; we obtain the accumulator array A*:
= Zi,j A;j. The most voted points a,,=[z,y,0] of AF
are selected iteratively. We impose a distance of 5 pixels
between the a,,, in order to obtain a homogeneous distrib-
ution of the model points. We store a,, in a feature array
MPF. So, the map M¥ contains the Oriented-Contour Points
that are rather stable through the n samples of the class k.
When n = 1, the accumulator matrix A* cannot be com-
puted: the feature array M” is determined from the maxi-
mum values of the gradient magnitude |Vg;|.

Weighted Matrix A Rosenfeld transformation [9] is ap-
plied to determine the distance from every picture element



to the given M* set. The figure 4 shows the four R¥ Cham-
fer region matrix (one for each gradient orientation) ob-
tained after thresholding the Chamfer chart matrix D¥ when
the distances are smaller than 7.

Figure 4. Obtaining Chamfer region matrix.

Two weighted regions maps W_’ﬁ and W will be cre-
ated for each class k. W_"f is based on the R* region matrix
where each pixel has a weight related to the discrimination
power of the corresponding oriented-contour points. The
points of k, which are rarely present in the others classes,
obtain the highest weights:

K .
> fo(RF - RY)

i=1Ai#k

where the binary function f,, equals 1 if the argument is 1,
and 0 otherwise. Similarly, W* gives a negative weight to
the points of the other models which are not present in the
matrix R¥ of the model k: W* = L3°0%, ., fu(R
R"), where the binary function f,, equals 1 if the argument
is -1, and O otherwise.

The K classes in the KnB are then modelled by
{Ml, ...,MK}, with My, = {Mk, W_ﬁ, Wf}

3. Classification

This section develops the methods to classify the test
samples using the models Mj;. A new instance ¢
is classified using the winner takes all rule: G(¢) =
ArgMax{gi(t), ..., gi (t)}. Two types of matching scores
compose the gi. The first obtains a score based on three
kind of votes (positive ,negative and class votes) for each
class k. The second score evaluates the distance be-
tween the oriented-contour points of the model MF to the
oriented-contour points of ¢.

An Oriented-Contour Points matrix E; (section 2.2) is
calculated for each example . We randomly select 7" points
from E;. These points are regrouped in an 600x252x N ma-
trix P;. The value of 7" is a compromise between the com-
puting time and a good rate of correct classifications.
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Figure 5. Obtaining the discriminant function.
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Positive votes The methodology consists in accumulating
votes for the class k, whenever a point of P, falls in a neigh-
bourhood of a M* point. We define the neighbourhood of
the point M* as a circle of radius r around the point of inter-
est. This neighbourhood representation is modelled in the
Chamfer regions Rf. Moreover, each point of P; votes for
the class k with a different weight depending on its value in
the matrix W_’,f

The nonzero points of the dot product of P; and Wf cor-
respond to the points of P, that belong to a neighbourhood
of the M*’s points. Thereafter, we calculate the amount of
positive votes in equation (1) where [e] is the dot product.

=33 P e wt (1)
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Negative votes The negative votes take into account the
points of P, that did not fall into the neighbourhood of the
M, points. We punish the class k£ by accumulating these
points weighted by the matrix W, The amount of negative
votes is defined as: v* =" Doyl e

Votes to test We calculate the votes from the models to
the sample test. In short, the method is the same as the one
detailed in the preceding section. We first build the chart of
Chamfer Distances for E;. We keep the regions around the
oriented-contour points of E; which are at a distance lower
than r pixels in the matrix R'. Then, randomly selecting T’
points from the array M, we obtain a representation of this
set in an array P*. Each point of the matrix P* is weighted
by the matrix Wf Total votes from the class k to the sample
test ¢ are calculated as follows: v!, = 37 >3 > R'eP; e

wh

Distance Error The last score is the error measure of
matching the P; points with their nearest point in M. Cal-
culating the average of all the minimal distances, we obtain
the error distance d*. Furthermore, values in the error vec-
tor have to be processed by a decreasing function consider-
ing that in the vote vectors we search for the maximum and
for the error vector we search for the minimum.



Discriminant Function The four matching scores
{v*,v* o' d*} are combined in a discriminant func-
tion g¢x(t) matching the sample test ¢ to the class k.
A pseudo-Mahalanobis distance normalizes the scores:
v = (v — u)/o, where (u, o) are the mean and the standard

deviation of v. The matching function is defined as:
gr(t) = a1 ﬁi +ag 0* + a3 @i +ay d*

The «; are coefficients which weight each classifier. In our
system, we give the same value for all «;.

Finally, given the test sample ¢, its label % is determined
from:

k= G(t) = ArgMaz{g:(t), ..gx (1)}

4. Results
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Figure 7. Matching

Figure 6. Confu-
scores results.

sion Matrix results.

Successive tests on the Confusion Matrix shown that the
Oriented-Contour Voting Algorithm correctly identifies in
average 92.4% samples from the Confusion Matrix. A stan-
dard deviation of +1.1% in the average result is the conse-
quence of the randomised selection of the Oriented-Contour
Points from the E;.

Position | Mean
Success

Deviation

1 2 I 931% | £09

; 2 922% | +1.1

3 909% | +0.7

3 4 4 885% | +14
(a) (b)

Figure 8. (a) the four positions of a virtual toll-
gate, (b) results for the virtual tollgate.

Results in figure 7 show that the fusion rule obtains better
results than each individual match score. Additional exper-
iment, where the Knowledge Base is composed by only one
prototype for every class, results in an average recognition
rate of 85.6%. This result can be explained as follows: the
presence of multiple prototypes allows to filter edge noise.

Another experiment simulates the presence of the tollgate
at four different locations, hiding 15% of the pattern I (see
fig. 8.a). The average results and the standard deviations for
each tollgate location are showed in the table of figure 8.

5. Conclusions

We present in this paper a voting algorithm for a mul-
ticlass vehicle type recognition system based on Oriented-
Contour Points. Similar results as [8] are obtained utiliz-
ing a different feature selection and classification method
for a smaller number of classes. Results show that the
method is robust to partial occlusions. Furthermore, this al-
gorithm can be implemented in real time application due to
the fast matrix operations of image libraries like OpenCV.
Future works will be oriented to improve the selection of
the Oriented-Countour Points of the sample test in the clas-
sification phase instead of random selection. A confidence
criterion for the discriminant function could be developed to
evaluate the results. This criterion is necessary in order to
combine our system with a license plate recognition system
and for rejection purpose.
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