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Abstract— This paper presents a generic kinematic modeling
approach for articulated multi-monocycle mobile robots. The
formulation proposed to deduce the input/output velocity
equations for such kinematic structures is an extension of the
reciprocal screw based method of asymmetrical and constrained
parallel mechanisms. The efficiency of this methodology for
setting up the differential kinematic model is illustrated through
a application : the RobuRoc mobile robot. Its complex kinematic
structure is first transformed into a spatial parallel mechanism
which encapsulates the differential driving wheels system. Then,
the analytical form of the reciproqual screw system which
corresponds to the actively controlled wrenches applied on the
controlled body is established. Reciprocally, it describes the way
the wheel velocities are transfered to the output body. It also
provides a geometrical information for an exhaustive singularity
analysis and traction distribution optimization during the
evolution of the system on highly irregular surfaces. From the
differential kinematic model, the concept of traction ellipsoid is
introduced for evaluating quantitatively the obstacle clearance
capabilities when the configuration of the system and the contact
conditions are highly variable.

I. INTRODUCTION

RobuRoc (shown in figure 2) has been designed in a collab-

oration between the RoboSoft Inc [1] and the Laboboratoire

de Robotique de Paris in response to a Research Program

launched in 2004 by the French Defense Agency (DGA -

Délégation Générale l’Armement) called MiniRoc whose

aim is to develop and evaluate experimentally several semi-

autonomous system serving as an extension of the human

soldier. RobuRoc belongs to this class of robot vehicle named

Tactical Mobile Robot (TMR). TMRs are basically high mo-

bility small vehicles supposed to operate in highly uncertain

urban outdoor/indoor environments. TMR development did not

truly begin until the early 1990s. Until then, the military’s

primary focus for ground robotics was on the development

of Unmanned Ground Vehicles (UGVs). Nevertheless, various

families of TMRs have been developed during the last decade.

Their design is more compact and robust than exploration

robotics vehicles and have to satisfy specific operational

requirements (see [2]).

One of the main features of RobuRoc is its ability to operate

in extremely rough terrain and negotiating stairs (circular

stairs) or clear obstacles with height greater than its wheel

radius. Moreover, its concept was designed to offer reconfigu-

ration capabilities for providing either a maximum of ground

adaptation for traction optimization or a high manoeuvrability.

RobuRoc kinematics can be considered as a series of 3 unicy-

cle modules linked together by two orthogonal rotoid passive

joints (a roll and a pitch motion in between the modules).

It has been optimized for stair-climbing as well as several

typical bumps and jumps clearance. The differential kinematic

Fig. 1. The RobuRoc mobile robot climbing a stair

model plays a fundamental role in the robot performance anal-

ysis (mobility, input/output velocity transmission, singularities,

traction transmission, etc ...), odometry and trajectory tracking

control. The method for deriving the input/output velocity

relationship, which is widely employed for wheeled mobile

robots, consists of introducing geometrical transformations

between the moving bodies and their derivative to obtain

equation of motion both by assuming ideal rolling condi-

tions as closed-loop constraints [3]. Systematic formulations

have been developed for various combinations of driving

and steering wheels [4] [5]. Realistic sliding models in the

soil/wheel interaction have also be introduced for developing

more complete models [6] [7] [8]. For eliminating the passive

joint variables in the kinematic equations and obtain the closed

form of the input/output velocity relationship, a particular

procedure which is generally system dependent has to be

found.

The particular contribution of the paper is a generic and

efficient method for obtaining very efficient kinematic model

for complex articulated locomotion systems such as RobuRoc.
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The proposed method is based on the use of reciproqual

screws. Screw-based approaches have been employed as a

general framework for the mobility analysis of various types

of simple planar mobile robots [9]. Here, we consider pas-

sively articulated multi-monocycle mobile robots evolving on

3D surfaces. An equivalent kinematic model which encap-

sulate monocycle sub-system kinematics is defined. Hence,

the articulated multi-monocycle structure is represented as a

constrained asymmetric parallel system. A reciproqual screw-

based approach can be then developed to obtain the in-

put/output instantaneous velocities equations. Moreover, this

approach gives a better geometrical insight into the problem

of singularities and more generally into motion and force

transmission characteristics of the system. The concept of

traction ellipsoid is introduced for evaluating quantitatively the

obstacle clearance capabilities when the configuration of the

system and the contact conditions are constantly changing.

II. KINEMATIC MODELING AND ANALYSIS

A. Kinematic description

The RobuRoc is an articulated wheeled robot vehicle de-

signed for use in urban environments (open spaces such as

city streets and building interiors). It must have the ability to

overcome obstacles such as rubble piles, pipes, railroad tracks,

etc . . . and to climb up straight and circular stairs. RobuRoc

is composed of a multi-monocycle whose kinematic structure

as depicted in figure 4. It consists of a central pod1 and two

identical pods. Each pod is steered and driven by two actuated

conventional wheels on which a lateral slippage may occur.

The rear and the front pods are symmetrically arranged about

the central pod. They are attached to this later one by two

orthogonal passive rotoid joints providing a roll/pitch relative

motion for keeping the wheels on the ground to maintain

traction of the pod while traversing irregular surfaces. This

kinematic design permits to transform RobuRoc in a 4-wheel

configuration as shown in figure 2.

Fig. 2. MiniRoc in a 4-wheel and 6-wheel configurations and details of its
articulations

1term introduced to define a monocycle element

B. Kinematic modeling

Kinematics plays a fundamental role in design, dynamic

modeling, and control. In this section, we illustrate a

methodology for modeling and analysis of articulated

multi-monocycle mobile robots. The relationship between

the central pod velocity in a reference frame and wheel

velocity vector can be greatly simplified by extending

the methodology used for parallel mechanisms [10] to

asymmetric constrained mechanisms. A parallel manipulator

typically consists of several limbs, made up of an open

loop mechanism, connecting a moving platform to the

ground. Here, the body S0 of central module can be seen

as the moving platform. It is connected to the ground by

a differential steering system as well as by the rear and

the front modules via two passive revolute joints which

can be seen as 2 others ”limbs” connecting S0 to the

ground. Hence, the whole mechanism is assimilable to an

asymmetric constrained mechanism with a mobility equal to 4.

Jacobian of a module: Each individual module j (j = 0 for

the central, j = 1, 2 for the others) can be modeled as an

equivalent serial open-chain mechanism (see figure 3).

Fig. 3. The differential driving wheels mechanism (left) and its equivalent
open-chain mechanism (right)

The jth differential driving wheels mechanism kinematics

can be represented by a set of four unit instantaneous twists

$̂j
i = (sj

i , s
∗
0
j
i = rj

i × sj
i + μj

is
j
i )

t i = 1, 4 where sj
i is a

unit vector along the direction of the screw axis, rj
i is the

position vector of any point of the screw axis with respect

to a reference point 0 and μi is the pitch of the screw. The

normalized Plucker coordinates of these screws written at the

axle middle point of the central axle Cj and in the basis of

the Rj local frame form the Jacobian of a monocycle Jj
m is

as follows :

Jj
m =

{
$̂j
1, $̂

j
2, $̂

j
3, $̂

j
4

}
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 aj 0 1
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)
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The reciprocal complement W j in se(3) of the system Jj
m has

a dimension 2. It represents the natural constraints acting on

the system due to the wheel/soil constraints :

W j =

⎛
⎜⎜⎜⎜⎜⎝

0 0
0 0
0 1
1 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎠

For the module j, the amplitude ωzj and vxj of the screws $̂j
3

and $̂j
4 are related to left and right differentially driven wheel

velocities (θ̇j1, θ̇j2) by the relationship:(
ωzj

vzj

)
= 1/2

(
R/d −R/d
R R

) (
θ̇1j

θ̇2j

)
(2)

or in a compact matrix form:

q̇j = Jj
a θ̇j (3)

where R is the radius of the wheels and d is the half length

of the width of unicycle module. Jj
a is the Jacobian matrix of

the active part of the pod mechanism.

Fig. 4. The differential driving wheels mechanism (left) and its equivalent
open-chain mechanism (right) (front/rear module)

Reciprocal Screws of the 3 limbs
Using the notation introduced in figure 4, the instantaneous

twist $P of the central body (S0) with respect to the ground

can be expressed as a linear combination of the n actuated

and non-actuated joints screws of each j sub-chain:

$P =
n∑

i=1

q̇j
i $̂

j
i for j = 0, 1, 2

Fig. 5. Definition of αi, βi and γi angles.

where q̇j
i and $̂j

i denote the intensity and the unit screw

associated with the ith joint of the jth limb. By considering

alternatively the j = 0, 1, 2 (which denotes respectively the

labels for the central, front and rear pods), we obtain:

$P = q̇0
1 $̂0

1 + q̇0
2 $̂0

2 + ω0
z0

$̂0
3 + v0

x0
$̂0
4 (4)

$P = q̇1
1 $̂1

1 + q̇1
2 $̂1

2 + ω1
z1

$̂1
3 + v1

x1
$̂1
4 + q̇1

5 $̂1
5 + q̇1

6 $̂1
6 (5)

$P = q̇2
1 $̂2

1 + q̇2
2 $̂2

2 + ω2
z2

$̂2
3 + v2

x2
$̂2
4 + q̇2

5 $̂1
5 + q̇1

6 $̂1
6 (6)

Equations (4) (5) (6) contain many unactuated joint rates

(2 × 3 + 4) that must be eliminated to obtain a relationship

between the instantaneous screw which defines the absolute

motion $P of the central body and the wheel’s velocities vector

θ̇. This can be done very efficiently by using a set of reciprocal

screws $rj
i which is by definition reciproqual to all screws

of the jth limb except the actuated joint of order i in the

equivalent open chain. Two screws $̂1 and $̂2 are considered

to be reciprocal if they satisfy the condition:

s1.s
∗
02 + s2.s

∗
01 = 0

This reciprocity condition can be stated if the virtual work

between a wrench and a twist is equal to zero. A detailed

description of screw systems can be found in [11].

The Jacobian of the j = 1, 2 equivalent open chain formed

by a monocycle and the two passive revolute joints expressed
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at the point C0 and in the local Rj (see figure 5) are (2):

Jj =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 Cγj SβjSγj

0 1 0 0 0 Cβj

0 0 1 0 Sγj −SβjCγj

0 aj 0 1 bSβjSγj 0
1 0 hj 0 bCβj 0
0 −hj 0 0 −bSβjCγj 0

⎞
⎟⎟⎟⎟⎟⎟⎠

These screws form a 6-system provided fixed so that they

are linearly independent. Hence, $̂rj

3 and $̂rj

4 that are recip-

rocal to all screws except for respectively $̂rj

3 and $̂rj

4 for

j = 1, 2 are unique. Their normalized Pluker coordinates

(uj
i , v

j
i , w

j
i , l

∗j
i ,m∗j

i , n∗j
i )t are respectively :

$̂rj

3 =
[
0, 0, 1, l∗j

3 , hj , n
∗j
3

]t

for j=1,2 (7)

with :

l∗j
3 = bC2γjSβj − hjT

−1βjSγj

n∗j
3 = Cγj

(
bSγjSβj + hjT

−1βj

)
$̂rj

3 is a non-null pitch reciproqual screw. The pitch μj
3 = n∗j

3

which turns to infinity when βj = 0.

$̂rj

4 =
[
uj

4, 0, wj
4, l

∗j
4 ,m∗j

4 , 0
]t

for j=1,2 (8)

with :

uj
4 = U j

4

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

wj
4 = W j

4

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

l∗j
4 = bCβjSβj(ajCγj − hjSγj)

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

m∗j
4 = −bS2βjSγj(ajCγj − hjSγj)

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

and

U j
4 = hjCβjCγj + bS2βjSγjCγj

W j
4 = ajCβjCγj + bS2βjS

2γj

$̂rj

4 is a force located in the plane (xj ,zj) passing through the

point C0 when βj = γj = 0.

The reciprocal screws $̂r0

3 and $̂r0

4 have to be determined by

considering the n=4-system
{

$̂0
1, $̂

0
2, $̂

0
3, $̂

0
4

}
of feasible mo-

tions. To treat constrained mechanisms (n < 6), as mentioned

in [12] the screw-based approach have to be adapted. An

”actively” applicable wrench basis for the constrained system

can be first determined by using a projection of any reciproqual

screw coordinate vector (the screw of the wrench) onto the

2C ≡ cos, S ≡ sin and T ≡ tan

orthogonal complement (W j)⊥ of the natural constraints 2-

system (W j):

(W j)⊥ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Then, the reciproqual screws will always have two of its

components equal to zero :

(fx, fy, 0, 0,my,mz)t = (W j)⊥(fx, fy, fz,mx,my,mz)t

In this reduced wrench space, the reciproqual screws $̂r0

3

and $̂r0

4 are unique since the columns of J0
m are linearly

independent. In C0, h0 = 0 and their expression reduced to :

$̂r
0

3 = [0, 0, 0, 0, 0, 1]t

$̂r
0

4 = [1, 0, 0, 0, a0, 0]t

The coordinates of these reciprocal screws can be directly

computed by multiplying (7) and (8) in the R0 frame by using

the block matrix:

E0j =
(

Rt
j0 03×3

03×3 Rt
j0

)
(9)

with :

Rj0 =

(
CαjCγj − SαjCβjSγj SβjSγj −SαjCγj − CαjCβjSγj

SαjSβj Cβj CαjSβj

CαjSγj + SαjCβjCγj −SβjCγj −SαjSγj + CαjCβjCγj

)

Input/Output velocity equation
By multiplying (via the reciprocal screw product) each side of

the equations (4) (5) (6) with the associated reciprocal screws,

it produces a set of equations which can be written in a matrix

form as follows:

Bq̇a = DẊ

with q̇a =
(
ω1

z1
, v1

x1
, ω0

z0
, v0

x0
, ω2

z2
, v2

x2

)t
, ωj

zj
and vj

xj
denoting

respectively the linear and angular velocities produced by the

differential steering system of the pod j along xj and about

zj , Ẋ = (w̄x0, w̄y0, w̄z0, v̄x0, v̄y0, v̄z0)
t

B, the (6 × 6) matrix

which multiply the active joint rates is a diagonal matrix whose

components are:

B = diag
(
$̂r1
3 .$̂1

3, $̂
r1
4 .$̂1

4, $̂
r0
3 .$̂0

3, $̂
r0
4 .$̂0

4, $̂
r2
3 .$̂2

3, $̂
r2
4 .$̂2

4

)
B = diag

(
n1

3, u
1
4, n

0
3, u

0
4, n

2
3, u

2
4

)
and D is a (6×6) matrix whose lines are the reciprocal screws

coordinates in the frame R0:

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0 0 1 l∗13 h1 n∗1
3 )Et

01

(u1
4 0 w1

4 l∗14 m∗1
4 0)Et

01

(0 0 0 0 0 1)
(1 0 0 0 a0 0)
(0 0 1 l∗23 h2 n∗2

3 )Et
02

(u2
4 0 w2

4 l∗24 m∗2
4 0)Et

02

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)
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By observation of matrix D it can be deduced that the lateral

velocity of the system is not controlled kinematically.

By introducing the block matrix Ja (3):

Ja =

⎛
⎝ Ja1 0 0

0 Ja0 0
0 0 Ja2

⎞
⎠

we obtain the kinematic control model of the vehicle :

Jaθ̇ = DẊ

where

θ̇ =
(
θ̇11, θ̇12, θ̇01, θ̇02, θ̇21, θ̇22

)t

III. OBSTACLE CLEARANCE CAPACITIES

For simplicity, we will restrict the analysis to the two

dimensional case of the obstacle clearance : βj = 0. The

reciprocal screws become :

$̂j
3 =

[
0 0 0 0 0 1

]t

$̂j
4 =

[
Cλj 0 Sλj 0 0 0

]t

with :

Cλj = hj

/√
a2

j + h2
j

Sλj = aj

/√
a2

j + h2
j

B = diag (1, Cλ1, 1, 1, 1, Cλ2)

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
Cϕ1 0 Sϕ1 0 0 0

0 0 0 0 0 1
1 0 0 0 a0 0
0 0 0 0 0 1

Cϕ2 0 Sϕ2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

with ϕj = αj + λj + γj .

This model clearly shows that the degree of mobility of the

system in this particular case is equal to 4. The lateral velocity

of the system is not controlled kinematically as well as the

rotation about the x0 axis. It also describes how a vertical

motion (v̄z0) of the central pod can be achieved to transform

the system in a 4-wheel configuration. We obtain the kinematic

control model of the vehicle :

Jaθ̇ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
1 tgϕ1 0 0
0 0 0 1
1 0 a0 0
0 0 0 1
1 tgϕ2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

v̄x0

v̄z0

ω̄x0

ω̄z0

⎞
⎟⎟⎠ = DẊ (11)

On the other hand, force-moment transmission on the

central body is reflected by the D matrix. Its lines rep-

resent the elementary actions (here in the reduced wrench

space (fx0 , fz0 ,my0 ,mz0)) developed by the driving torques

(τ11, τ12, τ01, τ02, τ21, τ22)
t

on the central body. Similarly as

when multiple robots exert forces or carry an object in

cooperative way, D is equivalent to Gt, G representing the

grasp matrix that contains the contact distribution and the

way the active forces are transmitted throughout the central

body. G can be partitioned into 2 blocks G = (Gf Gm)t
, Gf

and Gm representing the force and the moment transmission

respectively. It is interesting to be able to compare the traction

capabilities for different contact conditions. Hence, the set of

forces and moments realizable by τ such ‖τ‖ ≤ 1 form an

ellipsoid. A representative measure σ of the traction derived

from the image of this unit ball of active joint torques:

σ =
[
det(Gt

fGf )
]1/2

(12)

When βj = 0 (j = 1, 2), the traction index σ is:

σ =
[
(Sϕ1Cϕ2 − Cϕ1Sϕ2)2 + Sϕ2

1 + Sϕ2
2

]1/2

This index is equal to zero when Gf is singular. Then the

force transmission in the vertical direction becomes null, this

happens in configurations where γj = 0 (j = 1, 2).
To show the evolution of the manipulability index σ, we

have studied the case of a step clearance for Roburoc. Figure

6 illustrates the evolution of the system during a step clearance

while figure 7 shows the correlation between the geometry of

the system and the manipulability index. The two singular

values σ1 and σ2 correspond, in figure 7,to the traction along

the two principal axes of the manipulability ellipsoid. The

singular value σ1 represents the traction along the axis x0

and σ2 the traction along the axis z0 in the R′ local frame.

The curve is composed of three parts where each one contains

a peak. Each part represents the evolution of the central pod :

• the front and the rise of the step;

• on the step;

• the decrease and the rear of the step.

In all the simulation, the traction σ1 is most important than

σ2. Indeed, a velocity setting along the x0 axis is imposed. It

is interesting to observe the evolution of the traction σ2 during

the simulation of a step clearance on figure 7.

During the planar evolution of Roburoc ([0s; 4s]), the partici-

pation of σ2 is bare.

The time interval [4s; 8s] corresponds to the climbing of the

step (figure 6). In the first part of this period, the central pod is

pulled by the front one and pushed by the rear one (increase of

σ2). In the second part of the interval, the participation of the

front pod during the climbing decreases while σ1 increases.

The time interval [8s; 12s] corresponds to the configuration in

which the central pod is on the step (figure 6). In the same

time, the central pod is pushed by the rear one and pulled

by the front pod to produce an horizontal movement. These

actions produce, first, an increase of σ2 (the front pod is on

the step) and then its decrease (the rear pod is on the step).

Its maximum value represents a configuration in which the

central pod is on the top of the step and the two other pods

are located on each side of it.

The last time interval [12s; 14s] represents the descent of the

step. σ2 is very strong during the descent of the central pod

(figure 6). Then, when it is on the ground, σ2 slowly decreases

(figure 7), which means that the rear pod is in the phase of

descent (figure 6). σ1 takes again its maximum value after the

obstacle clearance.
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Fig. 6. Step clearance for RobuRoc

Fig. 7. Singular values σ1 and σ2 for step clearance

IV. CONCLUSION

This paper presents a general framework for evaluating

wheeled modular vehicles composed of monocycles. We show

that by using an equivalent kinematic model of a monocycle

and the reciprocal screws theory, we derive easily the inverse

velocity model that could be used for control and trajectory

tracking. The force transmission in these systems is also in-

vestigated by making analogy to parallel manipulators and the

concept of the manipulability ellipsoid. This theoretical study

should be generalized to other vehicle kinematics including

those with wheels, legs or both. Future works should be

focused on minimization of torques and energy consumption

during manoeuvring or steering along curved trajectory.
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