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Strong experimental evidence indicates that protein kinase and phosphatase (KP) cycles are critical to both the
induction and maintenance of activity-dependent modifications in neurons. However, their contribution to information
storage remains controversial, despite impressive modeling efforts. For instance, plasticity models based on KP cycles
do not account for the maintenance of plastic modifications. Moreover, bistable KP cycle models that display memory
fail to capture essential features of information storage: rapid onset, bidirectional control, graded amplitude, and finite
lifetimes. Here, we show in a biophysical model that upstream activation of KP cycles, a ubiquitous mechanism, is
sufficient to provide information storage with realistic induction and maintenance properties: plastic modifications are
rapid, bidirectional, and graded, with finite lifetimes that are compatible with animal and human memory. The
maintenance of plastic modifications relies on negligible reaction rates in basal conditions and thus depends on
enzyme nonlinearity and activation properties of the activity-dependent KP cycle. Moreover, we show that information
coding and memory maintenance are robust to stochastic fluctuations inherent to the molecular nature of activity-
dependent KP cycle operation. This model provides a new principle for information storage where plasticity and
memory emerge from a single dynamic process whose rate is controlled by neuronal activity. This principle strongly
departs from the long-standing view that memory reflects stable steady states in biological systems, and offers a new
perspective on memory in animals and humans.
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Introduction

Neurons continuously modify their synaptic and intrinsic
membrane properties in response to variations in their
environment (e.g., ionic conditions, neuromodulatory influ-
ences, and synaptic input). These adaptive modifications are
set up rapidly, can be memorized from seconds to years, and
subserve essential neuronal functions such as homeostatic
regulation and information storage. Of particular impor-
tance, activity-dependent modifications are generally consid-
ered to provide the cellular basis for behavioral learning and
memory in animals and humans [1]. At the molecular level,
activity-dependent modifications implicate complex net-
works of densely interconnected signaling pathways and
modulation of gene expression [2–4]. A central role has been
attributed to protein kinase and phosphatase (KP) cycles in
these networks because strong experimental evidence in-
dicates that they exert a critical control over the induction
[5–7] and maintenance [8,9] of activity-dependent plastic
modifications. However, the question stands whether KP
cycles constitute the genuine organization that is mechanis-
tically responsible for memory formation, or whether
information storage requires the consideration of larger
interaction networks or gene regulation [2–4]. Models have
largely been used to address this question because they allow
us to simulate pathways of arbitrary complexity [2,10,11] and
to identify which architectures and dynamics are required for
realistic information storage.

Several mathematical models have addressed the potential
contribution of KP cycles to the induction of plastic
modifications in neurons, including models of long-term
potentiation (LTP) and long-term depression (LTD). In these

models, KP cycles control the strength of the excitatory
synapse via the number of phosphorylated amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors [11–
15]. In particular, these models predict that the direction
(increase or decrease) of synaptic modifications depends on
the postsynaptic calcium concentration, in agreement with
experimental observations of activity or spike-timing de-
pendences [16–19]. However, whatever their level of detail,
models that account for the induction of synaptic modifica-
tions fail to provide explanatory mechanisms for the
maintenance of these modifications [11–15].
Another class of KP cycle models has been investigated in

which bistability (i.e., two stable levels of phosphorylated
substrate) accounts for binary storage of information. Here,
bistability arises from autoactivation mechanisms (i.e., pos-
itive feedback [20]), such as autophosphorylation [10,21–23]
or phosphorylation loops within signaling networks [2,24]. In
particular, autoactivation of the Ca2þ/calmodulin-dependent
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protein kinase II (CaMKII) may underlie all-or-none LTP at
individual CA3–CA1 hippocampal synapses (i.e., binary
storage of synaptic information [25]). Albeit in cellular
electrophysiological recordings synaptic plasticity appears
as a graded phenomenon [16–18], it may be interpreted as the
summation of binary plastic modifications at individual
synapses [26]. However, experimental evidence indicates that
plasticity can express in a graded manner at the single synapse
level, such as in CA3–CA3 synapses [27]. Moreover, LTP and
LTD generally involve graded regulation of the number and
functional state of membrane receptors at individual synapses
[28–30] and may implicate KP cycles devoid of autoactivation
[31,32]. Similarly, both the so-called synaptic scaling of
individual synapses [33–37] and the plasticity of intrinsic
membrane properties [38–41] exhibit graded modifications.
Thus, experimental evidence strongly supports the existence
of local graded forms of information storage in neurons that
cannot be explained by bistable models. Moreover, prevailing
biophysical bistable models of synaptic memory involving
CaMKII present slow rising kinetics to the stable high-
phosphorylated (‘‘on’’) steady state (minutes to days)
[21,22,42] that is inconsistent with the rapid induction of
plasticity observed experimentally (e.g., [6,25,30,39,43]). Fur-
thermore, bistability in these models lies in a region of
calcium concentration that overlaps the basal calcium
concentration. As a consequence, LTD can only be induced
by lowering calcium below its basal level, so that these models
do not account for LTD induction at intermediate calcium
levels, a well-established experimental observation [16,17].
The implication of CaMKII itself in the maintenance of
synaptic information is in fact strongly challenged [44–46],
and some forms of plasticity do not implicate CaMKII, such as
in parallel fiber synapses in the cerebellar cortex [47]. Most
probably, information storage in neurons does not, therefore,
rely exclusively on the bistability of autoactivating KP cycles.

Indeed, most KP cycles involved in learning and memory

are devoid of autoactivation, but share the common feature
of being activated by upstream signals that reflect neuronal
activity. Such activity-dependent KP (aKP) cycles are ubiq-
uitous and include most major kinases (e.g., protein kinase A
[PKA], protein kinase C [PKC], and mitogen-activated protein
kinase [MAPK]) and phosphatases (e.g., protein phosphatases
PP1, PP2A, and PP2B). In the present model, we evaluate the
performance of generic aKP cycles in information storage.
Our results show that aKP cycles account for both induction
(plasticity) and maintenance (memory) of synaptic or in-
trinsic modifications in neurons, through a single activity-
dependent process controlled by activity. Consistent with
experimental observations, plasticity induction is rapid,
bidirectional, and graded in our model, as opposed to
bistable models of information storage [10,21]. Mechanisti-
cally, our model predicts that plastic modifications reflect the
instantaneous rate of KP cycles operation rather than their
steady state, in opposition to previous models of plasticity
induction [11–15,48,49]. The storage of information is
reliable—even in spines where stochastic molecular fluctua-
tions are maximal—and robust to the passage of time, with
memory ranging from short to long term, depending on the
biophysical properties of the model. In the presence of
molecular turnover, the duration of aKP memory is limited
by the time constant of turnover. This limit in turn depends
on the substrate, but can increase up to weeks [50]. As an
extension to our model, we have implemented a speculative
mechanism originally proposed by Crick [51] to quantitatively
evaluate its protective action on memory. We show that this
mechanism efficiently restores memory timescales that are
compatible with animal and human memory even in the
presence of molecular turnover. In all cases (whether Crick’s
mechanism is assumed or not), memory arises as a natural
property of aKP cycles because plastic modifications are
maintained long-term after the offset of the stimuli that
induced plasticity.
To our knowledge, the aKP model we propose is the first

one to provide a coherent framework that links the induction
and the maintenance of activity-dependent modifications.
The present model therefore departs from previous models
of plasticity induction that do not support maintenance of
plastic modifications (i.e., that are devoid of memory [11–
15,48,49]). It also differs deeply from infinite memory models
that do not account for critical properties of plasticity
induction [10,21]. Hence, the aKP cycle model we have
studied fills the gap between these previous theories, and we
discuss it as a new principle for the emergence of plasticity
and memory.

Results

To address the contribution of aKP cycles to neuronal
plasticity and memory, we devised a model (Figure 1A) where
enzymes are cooperatively activated by a common molecular
signal of neuronal activity (e.g., intracellular calcium; Figure
1B). Both enzymes determine the phosphorylated fraction f of
a substrate S, whose dynamics are considered to embody the
induction and maintenance of activity-dependent plastic
modifications. f can be viewed as the fraction of synaptic
membrane receptors or ionic channels in synaptic or
intrinsic plasticity, respectively. Alternatively, the influence
of f may be indirect, for instance through the regulation of
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Author Summary

It is now widely recognized that learning and memory rely on
activity-dependent plastic modifications of the synaptic and intrinsic
properties of individual neurons. Experimental studies have
identified numerous molecules that are necessary for the induction
and the maintenance of plastic modifications, including activity-
dependent kinase and phosphatase (aKP) cycles. In contrast, the
mechanisms that govern information storage in neurons remain
obscure. Prevailing theoretical models either account for the rapid
onset (models of plasticity) or for the protracted maintenance
(models of memory) of plastic modifications, but have failed to
embody both properties. We show in a biophysical model that the
ubiquitous upstream activation of aKP cycles by neuronal activity is
sufficient to generate information storage that combines rapid
induction and maintenance with lifetimes compatible with animal
and human memory. Moreover, aKP cycles exhibit essential
information storage properties consistent with experimental data,
including bidirectional plasticity, graded memory, and robustness to
stochastic molecular fluctuations. The aKP model offers a realistic
unified framework in which cellular plasticity and memory can be
interpreted as two modes of a single process where dynamics
depends on neuronal activity. This new principle is dynamic in
essence and challenges the widespread idea that memory reflects
stability in biological systems.

A New Principle for Neuronal Memory



the number of receptors or ionic channels, by determining
trafficking rates in and out of the synaptic or somatic
membrane. However, our goal was not to specifically identify
one of the many plastic processes at work in neurons, but
rather to unravel the principles governing information
storage in relation with aKP operation. Individual molecular
events were simulated to account for random fluctuations
due to small numbers of molecules encountered in sub-
cellular compartments. A deterministic (mean-field) approx-
imation of the stochastic model was also studied (see
Methods).

Plasticity and Memory
In neurons, plastic modifications are rapid events com-

pared with the timescale of their maintenance. Plastic
modifications can be triggered by micromolar calcium
elevations, and within seconds [6,25,30,39,43]. Simulations
of our model show that aKP cycles can account for both the
rapid induction and the protracted maintenance of activity-
dependent modifications. Activation of the enzymes by large
calcium pulses (6 lM) induces rapid increases in f through
step-like variations (Figure 1C, upper traces). Variability in f
values at the end of pulses reflects the stochasticity of enzyme
reactions due to random molecular encounters. When the
number of runs is increased, the average of stochastic
simulations (Figure 1C, thick black trace) converges to the

trace of the deterministic model (Figure 1C, thick gray trace),
unraveling the relaxation of f toward a unique steady-state
value, f‘, during the pulse. As observed experimentally [17],
the direction (increase or decrease) of plastic modifications in
the model is tightly related to the free cytosolic calcium
concentration, Ca: f systematically decreases during smaller
calcium pulses (3 lM; Figure 1C, lower traces). In all cases,
when Ca is switched back to its basal level, Ca0, both enzymes
inactivate almost completely (see Figure 1B), and f appears
constant on the second timescale (Figure 1C). Longer
simulations evidence that f needs several months to relax to
its steady-state value at Ca0, f‘(Ca0) (Figure 1D). Thus, the
model predicts that activity-dependent modifications can be
induced rapidly in either direction and memorized long-term
in aKP cycles.

Information Storage
The core function of plasticity and memory is information

storage. The amount of information that can be stored is thus
critical, and has major computational implications. In
neurons, plastic modifications can be all-or-none [25] or
graded [27–39,41], and we addressed the question whether
aKP cycles can account for these different forms of
information coding. Both stochastic simulations and the
deterministic model show that the steady-state phosphory-
lated fraction, f‘, is an increasing sigmoid function of the
calcium concentration (Figure 2A). Therefore, arbitrary
graded values of the phosphorylated fraction f can in
principle be encoded by the appropriate calcium concen-
trations. However, molecular reactions are stochastic in
nature, and random fluctuations in small systems may blur
the encoding of calcium concentrations into f values. To
quantify this effect, we have computed f variability as a
function of Ca. To this aim, we first evaluated the number of
substrate molecules that may be encountered in neuronal
subcellular compartments of different sizes (see Methods). We
found that the standard deviation of the phosphorylated
fraction, rf, remains minute compared with its steady-state
value f‘ at micromolar calcium concentrations (.2 lM), and
decreases with increasing numbers of substrate molecules (see
error bars in Figure 2A). Accordingly, the coefficient of
variation is low, and information coding is therefore reliable

Figure 1. The aKP Cycle Model

(A) In its macroscopic determinist approximation, the model consists of a
simple reaction scheme. The nonphosphorylated (S) and phosphorylated
(S*) forms are present with fractions 1 � f and f, respectively, and are
interconverted with rates K and P by the kinase and a phosphatase.
Enzymes are activity dependent through calcium, and f is the readout
variable.
(B) Kinase (thick line) and phosphatase (thin line) calcium activation
functions. Dashed line indicates Ca0, the basal Ca (0.1 lM).
(C) Rapid plastic modifications in f in response to Ca pulses from Ca0 to 6
lM (upper traces) and 3 lM (lower traces) in the stochastic (individual
traces: thin black trace; mean trace [n ¼ 20]: thick black trace) and
deterministic (thick gray trace) models.
(D) Relaxation of f at Ca0 from different f values. Inset: enlargement of
three relaxation traces during 24 h illustrates the low evolution rate of f.
doi:10.1371/journal.pcbi.0030124.g001

Figure 2. Information Coding

(A) The steady-state phosphorylated fraction, f‘, is a graded function of
Ca in the deterministic (thick black line) and stochastic models (circles;
number of substrate molecules, NS, is 500 [dark gray] and 50 [light gray]).
Standard deviations were derived from simulations (error bars) or
theoretical probability distributions (gray lines; see Methods, Equations
16–17).
(B) The information about Ca encoded in f versus NS.
doi:10.1371/journal.pcbi.0030124.g002
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in large compartments such as somata and large dendritic
segments, containing more than hundreds of substrate
molecules (cv , 0.08 for 500 substrate molecules; see
Methods). Coding remains reliable even in the limit case of
an individual synaptic spine (cv , 0.23 for 50 substrate
molecules). It is noteworthy that reliability is independent of
the number of enzyme molecules (see Methods, Equation 18).
To quantify information coding capacity, we computed
Shannon’s mutual information in aKP cycles (see Methods,
Equation 19). Mutual information (expressed in bits) repre-
sents the amount of information that f can encode about the
calcium input, given a particular Ca distribution. Hence, it
can be thought of as the number of calcium levels that can be
discriminated into distinct f states. This measure primarily
depends on the number of substrate molecules in the aKP
model. In an individual spine, one to three bits of
information can be encoded (i.e., up to eight distinct calcium
levels can be discriminated; Figure 2B). This encompasses
binary as well as coarse-grained graded coding. In somata and
large dendritic segments, storage capacity is larger (three to
six bits), and graded coding approximates a continuous
function, with a few dozen calcium levels being discriminated
(Figure 2B). This result is consistent with the experimental
observation that plastic modifications of somatic and
dendritic currents allow the storage of dozens of distinct
states in entorhinal pyramidal neurons [52]. Therefore, in the
model, aKP cycles can achieve binary to coarse-grained
coding in individual spines and graded coding in somata or
dendritic compartments.

Temporal Properties
In neurons, the characteristic time for plasticity induction

ranges from a fraction of a second to dozens of seconds
([6,19,25,28,30,32,39–41,43,53–56]; see Discussion). In con-
trast, storage lasts from seconds to months or more, depend-
ing on the neuronal type and function considered
([8,29,54,55,57–62]; see Discussion). Our model shows that
aKP cycles account for these temporal properties. Dynamics
of the aKP cycle (i.e., the evolution rate of the phosphorylated
fraction f) is directly governed by calcium concentration
(Figure 3A). f dynamics is set by a single time constant, sf,
which covers a wide range that spans six orders of magnitude
(Figure 3A). Using micromolar calcium signals that are known
to induce plasticity experimentally, sf is on the order of a
second with standard parameter values (Figure 3A), and thus

plastic modifications are rapid (see Figure 1C), consistent
with experimental observation. Below 1 lM, sf increases stiffly
and aKP dynamics are much slower. This results in memory
lifetimes that culminate at ;1 mo at resting calcium Ca0 (see
also Figure 1D). We assessed the influence of molecular
characteristics on these temporal properties. The kinetics of
plasticity and memory proved independent of the number of
substrate molecules in our model (not shown; see Equations 6,
10–11, and 15). Conversely, they strongly depend on enzymes
characteristics. Decreasing the number of enzyme molecules
globally lengthens aKP dynamics: both plasticity time
constant and storage lifetime increase. For instance, the
timescale of plasticity increases from a fraction of a second to
dozens of seconds, whereas memory lifetime increases from
days to years (Figure 3B). Conversely, the nonlinearity of
enzyme activation has opposite effects on plasticity and
memory dynamics. Increasing the Hill number for calcium
activation dramatically extends memory lifetime, up to
several decades (Figure 3C). Interestingly, even with a Hill
coefficient of 1, our model predicts that memory is still a
natural property of aKP cycles, with a time constant of ;1
min. By contrast, varying the Hill coefficient in a large range
leaves plasticity dynamics virtually unchanged, with a time
constant of ;1 s (Figure 3C). Enzyme activation may
therefore be of particular importance to mnemonic processes
by setting storage lifetime, given a fixed timescale for
plasticity induction. Remarkably, these dynamics are ob-
tained using realistic ranges of these enzymatic parameters,
and cover the timescales observed in neurons for plasticity
induction and short- and long-term memory ([6,8,19,25,28–
30,32,39–41,43,53–62]; see Discussion). Moreover, these re-
sults indicate that tissue-specific heterogeneity of aKP cycle
characteristics may account for the diversity of temporal
properties of cellular mnemonic processes among nervous
structures.

Robustness to Molecular Turnover
Molecular turnover is susceptible to deteriorating infor-

mation storage in any molecular implementation of memory
states. In principle, this is the case in aKP cycles, since
turnover would be assumed to remove both S* and S
molecules and incorporate new S molecules, producing a
permanent net decrease of the phosphorylated fraction f.
Turnover should therefore affect information coding (the
value of f) as well as memory duration (the rate of f decrease),

Figure 3. Temporal Properties

(A) The time constant of f, sf, as a function of Ca in the deterministic (line) and stochastic models (circles, n ¼ 20). Dashed line: Ca0.
(B) Time constants for plasticity and memory (see Methods) versus the number of enzyme molecules, NE.
(C) Time constants versus the Hill number for Ca activation nH..
In (B) and (C), all other parameters are kept at their standard value in the deterministic model (see Methods).
doi:10.1371/journal.pcbi.0030124.g003
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and we quantitatively evaluated its impact on aKP cycles. In a
straightforward extension of the aKP model, we represent
turnover as a combination of first-order degradation of S*
and S molecules (with rate constant D) and incorporation of
new S molecules (with rate N, Figure 4A; note that assuming
incorporation of S* molecules instead does not change the
conclusions below). This scheme is formally equivalent to a
supplementary dephosphorylation reaction with rate con-
stant D that adds to the phosphatase activity. The memory
time constant then reads sMD ¼ 1 / (K (Ca0) þ P (Ca0) þ D)
(Figure 4A; see Methods, Equation 27). Typically, turnover
time constants range from minutes to weeks for proteins [50].
Our model shows that when the turnover time constant (sTO
¼1 / D) is smaller than the memory time constant in the
absence of turnover (sM¼ 1 / (K (Ca0)þ P (Ca0)); see Methods,
Equation 15), memory duration is limited by the time
constant of turnover: sMD ; sTO (Figure 4C; sMD follows the
minor diagonal). By opposition, turnover has no impact on
memory when sTO is larger than sM (Figure 4C). Thus, the
turnover time constant sTO sets the upper limit of memory
duration in aKP cycles. Without further assumptions, our
model therefore predicts that aKP cycles can at best maintain
information up to several weeks—the upper bound for
neuronal protein degradation time constant [50]—whatever
the Hill number and number of enzyme molecules considered
(see Figure 3B and 3C). This value of several weeks
encompasses a large range of memory processes, from very
short-term to long-term forms of cellular memory [54,63].

Crick [51] has proposed a general protective mechanism
against the ravages of turnover. We emphasize that this
mechanism is speculative and has not been justified exper-

imentally yet. However, it is effective for multimeric
substrates and major molecular targets of KP cycles, such as
transmitter-gated synaptic receptors or membrane ion
channels, which are multimers. We therefore quantitatively
assessed whether the mechanism proposed by Crick indeed
protected memory from molecular turnover in aKP cycles.
Here, we study the dimeric case, but similar reasoning can be
applied to the general multimeric case [51]. In the dimeric
case, the aKP cycle interconverts SS and S*S* while turnover
is assumed to replace one monomer at a time, transforming
S*S* into SS* and SS* into SS. Cricks’ proposal further
assumes a reaction step that specifically converts SS* to S*S*
with rate C (Figure 4B). This step might, for instance, be
catalyzed by a constitutively active kinase that would
specifically recognize SS* and convert it to S*S* (Figure
4B). Alternatively, it might simply represent a spontaneous
conformational transition from an energetically unstable SS*
state to a more stable S*S* state. This extended version of our
model admits a single steady state. The SS* fraction remains
extremely small so that its impact on the phosphorylated
fraction is negligible (see Methods, Equation 36). Memory is
dominated by a single time constant sMC (see Methods,
Equation 37), and simulations show that the memory time
constant is unaffected when the turnover time constant sTO is
larger than 1 h (Figure 4C; nH ¼ 4). At lower turnover time
constants, sMC remains much larger than sTO, and increases
rapidly with sTO; for example, sMC is ;1 h with sTO ¼ 1 min,
;1 d with sTO¼ 5 min, and more than 2 wk with sTO¼ 30 min
(Figure 4C).
We confirmed that the robustness to turnover provided by

the protective mechanism was effective over a large range of
memory durations by varying the Hill number, nH, which has
a strong impact on the memory time constant (see Figure 3C).
As can be seen on Figure 4D, for all nH, memory degrades
with low turnover time constants, but the limit imposed by
turnover on the time constant for memory, sMC, is rapidly
relieved with increasing values of sTO: 1 h with sTO ¼ 1 min,
more than 2 wk with sTO¼ 30 min, and more than 6 mo with
sTO ¼ 1 h (Figure 4D). For turnover time constant values
superior to 1 d, turnover has a virtually null impact on
memory (for nH up to 6; Figure 4D). Therefore, our
simulations show that the protective mechanism proposed
by Crick [51] can provide an effective mean to generate short-
to very long-term memory in the presence of turnover, with
time constants compatible with experimental observations.

Robustness to Basal Calcium Variability
The dynamics time constant is a steep function of calcium

at low concentrations (see Figure 3A). Consequently, memory
duration may be altered by random fluctuations of basal
calcium due to spontaneous calcium channel openings or
sparks originating from calcium-induced calcium release
mechanisms. Little is known about the statistical features of
basal calcium fluctuations in vivo. We therefore evaluated
memory robustness in the aKP cycle model by computing the
average memory time constant using calcium fluctuations
that ranged from very peaked to broadly shaped distributions
(i.e., with coefficient of variation, cvCa, ranging from 0.01 to 1;
Figure 5A). We iterated this computation for different values
of the Hill number to assess memory robustness to basal
calcium fluctuations over a large range of memory timescales.
Our results show that memory duration decreases as cvCa

Figure 4. Robustness to Molecular Turnover

(A) Reaction scheme of a simple extension of the aKP model
incorporating molecular turnover of substrate molecules with degrada-
tion rate D (see Methods).
(B) Reaction scheme of the aKP model incorporating molecular turnover
and the protective mechanism proposed by Crick [51] (see Methods).
(C) Memory time constant as a function of the time constant of turnover
(sTO ¼ 1/D) in the absence of turnover (sM, labeled thin line), in the
presence of turnover with no protective mechanism (sMD, thin curve),
and in the presence of turnover and the protective mechanism (sMC,
thick curve). nH ¼ 4.
(D) Memory time constant in the absence of turnover (thin lines) and in
the presence of turnover and the protective mechanism (thick curves) for
different values of nH.
doi:10.1371/journal.pcbi.0030124.g004
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increases (Figure 5B). This degradation is most prominent for
large memory durations (high Hill numbers), but is limited to
an order of magnitude or less for mild levels of dispersion of
the basal calcium distribution, even at high Hill numbers
(Figure 5B; cvCa , 0.5). This limited effect is explained by the
fact that calcium excursions above Ca0 that decrease the
mean memory time constant (see Figure 3A) are counter-
balanced by fluctuations below Ca0, which increase memory
duration. Finally, even very noisy basal calcium distributions
cannot abolish memory in aKP cycles: memory duration still
ranges from less than an hour to more than a month with cvCa
¼ 1 (Figure 5B).

Plasticity Rules
If the operation of aKP cycles constitutes a core step in the

generation of plastic modifications, as suggested by above
results, then aKP cycles should ultimately be able to
reproduce the plasticity rules observed experimentally after
conditioning protocols. In our model, the phosphorylation
rate, df/dt, reflects the sign and amplitude of plastic
modifications in the neuronal property controlled by f (e.g.,
a synaptic weight or an intrinsic conductance). Experimen-
tally, these modifications are commonly monitored as a
percentage change in plasticity experiments (see [16]). We
find that plastic modifications in our model display a biphasic
pattern as a function of calcium concentration, whatever the f
value considered (Figure 6A): the f rate is negative at low Ca,
whereas higher Ca yields positive f rates. In the context of
long-term synaptic plasticity, these two domains would, for
example, correspond to LTD and LTP, respectively. This
pattern accounts for activity-dependent modifications of
hippocampal and cortical synaptic weights (Bienenstock,
Cooper, and Munro’s theoretical ‘‘BCM’’ rule) [16,17,64], or
of intrinsic properties [39,40].

In Figure 6A, we have separated the two Ca domains of
plasticity by a ‘‘modification threshold,’’ h, that characterizes
bidirectional plasticity. We find that h increases with f (Figure
6A inset). The f value, in turn, results from previous activity
(i.e., history). Therefore, plasticity in aKP cycles in the model
accounts for history-dependent sliding of the modification
threshold that has been observed experimentally in synaptic
and intrinsic plasticity [16,40,53]. In the model, repetitive

high calcium signals become less and less capable of
increasing f further, because a right-shift in h occurs, which
decreases the domain of positive f rates. The exactly opposite
mechanism applies to repetitive low calcium signals. Hence, f
is confined within a limited range of values (see Figure 2A and
Methods, Equations 13 and 14). Thus, plasticity is saturable in
the aKP cycle model, as demonstrated experimentally for
synaptic plasticity [56]. Finally, we observe that the two
domains of plasticity are inverted when the phosphatase
activates at higher calcium concentration than the kinase
(Figure 6A, dashed line). Thus, plasticity rules that operate
‘‘inversely’’ to the BCM rule can also be accounted for by aKP
cycles. Such rules have also been described experimentally in
homeostatic forms of neuronal plasticity or at specific
synapses [65,66]. Together, these results show that the
operation of aKP cycles embodies a large range of the
plasticity rules that are observed in neurons [16,17,39,40,65].

Discussion

Numerous molecules have been implicated in the induc-
tion and maintenance of activity-dependent modifications in
neurons, but the mechanisms underlying these processes
remain obscure [67]. The idea dominates, though, that
maintenance of memory states in neurons reflects the
stability of steady states in underlying biophysical or
biochemical systems. A common property of autoactivating
systems, bistability [2,10,20,21,24], has been pointed out as the
possible basis for maintenance of binary plastic modifications
[25,26]. Similarly, it has been proposed that graded persistent
firing that characterizes short-term memory reflects multi-
stability of neuronal activity [68,69]. However, two essential
aspects of information storage in neurons are inconsistent
with the idea that stability underpins memory states. First,
graded storage, which is found in a large set of neuronal
plastic rules [27–39,41], cannot be achieved by bistable
mechanisms. Multistable systems can store information in a
pseudograded manner, but they rely on distributed compu-
tations within complex neural networks or cellular architec-
tures that do not fit the subcellular scale of neuronal

Figure 5. Robustness to Basal Calcium Variability

(A) Calcium fluctuations modeled as gamma distributions with mean Ca0

¼ 0.1 lM and standard deviations corresponding to coefficient of
variation, cvCa, in the range 0.01–1.
(B) Memory time constant in the absence (thin lines) and presence (thick
lines) of calcium fluctuations with gamma distribution, as a function of
the coefficient of variation of calcium fluctuations, cvCa, for different
values of nH.
doi:10.1371/journal.pcbi.0030124.g005

Figure 6. Plasticity and Memory as a Single Dynamic Process

(A) f rate versus Ca in the deterministic model with standard parameters
(solid lines) and KP ¼ 6 lM, KK ¼ 3 lM (dashed line). Inset: modification
threshold h versus f with standard parameters.
(B) In the aKP cycle model, a saturating Ca pulse shifts the single steady
state from f‘(Ca0) (black circle) to f‘(Ca) (gray circle). f converges toward
f‘(Ca) at a high rate (gray solid trajectory) along the f rate function (gray
dashed line). After the pulse, the new f value is memorized because f
relaxes back toward f‘(Ca0) at a low rate (black solid trajectory) on the f
rate function (black dashed line). The rate function at Ca0 was multiplied
by 106 for clarity as it otherwise nearly merges with the f-axis (thin line).
doi:10.1371/journal.pcbi.0030124.g006
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plasticity [68,69]. Second, the maintenance of plastic mod-
ifications as memory states displays finite lifetimes in neurons
(from seconds to months) that are simply not compatible with
indefinitely stable steady states ([54,63]; but see [22]). A
proper description of neuronal information storage there-
fore requires alternative—or additional—principles to ac-
count for memory states with realistic temporal and coding
properties.

Based on the aKP cycle model we have investigated, a
principle of dynamic storage emerges that departs from the
stability paradigm that has dominated hitherto. Central to
this new principle is the idea that plasticity and memory (i.e.,
the induction of activity-dependent modifications and their
maintenance as memory states) are two complementary
aspects of a single dynamic storage process whose rate is
governed by neuronal activity. In the model, the phosphory-
lated substrate fraction displays a single stable steady state
determined by intracellular calcium concentration, which in
turn reflects ongoing neuronal activity. During significant
neuronal activity, calcium signals activate enzymes and
induce substantial reaction rates. In this case, the system
state is plastic: it rapidly converges to the new steady-state
value dictated by activity (Figure 6B, gray trajectory). In the
opposite case, at basal calcium concentration, reactions are
nearly frozen due to the virtual lack of enzyme activation, and
the system converges extremely slowly to the rest steady state
(Figure 6B, black trajectory). Therefore, the stored state is
retained over large timescales, and the system behaves as a
‘‘leaky’’ memory device.

We have conducted a brief meta-analysis of previous results
to obtain a summarized view of the time constants for the
induction and maintenance of plastic modification in
neurons (Table S1). Although this table is not exhaustive,
our goal here was to derive an estimate of the physiological
magnitude of these values for comparison with those
obtained in our model. The kinetics of plasticity and memory
depend on the animal species and age, the neuronal type, the
preparation (in vivo, slice, or cultured neurons), and the
experimental procedure used [70]. We have therefore
included these parameters in Table S1.

Experimentally, plastic modifications are induced by
stimulations that extend over a large range of durations
depending on the type of plasticity studied and the protocol
used (Table S1). Often, electrical stimulations of a few seconds
are sufficient to induce plasticity [6,19,25,28,30,32,39–
41,43,53–56]. In many cases, however, in particular for
synaptic plasticity, stimulation protocols extend over much
larger periods, from minutes to days, because stimulations
must be repeated and/or spaced to be efficient. However,
independently of their temporal extent and the type of
stimulation they use, plasticity protocols commonly consist of
a few hundred elementary stimulating pulses or trains (Table
S1). The effective duration of the stimulation activating
downstream signaling pathways can be estimated by summing
the duration of the postsynaptic potentials triggered by
individual stimulations. Postsynaptic depolarizations typically
last ;10 ms upon elementary stimulations, so that the
effective duration of the stimulation of plasticity protocols
ranges from a fraction of a second to dozens of seconds (Table
S1; for synaptic plasticity, this timescale is coherent with the
fact that direct calcium stimulation for 2 s is sufficient to
trigger LTP [43]). Remarkably, this range appears to be

consistent across animal species and ages, nervous structures
(hippocampus, cortex, cerebellum, amygdala), plasticity types
(intrinsic, synaptic), and experimental preparations (in vivo,
culture, slices) and conditions. Based on the estimate of the
effective time of stimulation of neurons, no particular
nervous structure emerges as a ‘‘fast’’ or ‘‘slow’’ learner from
the data we have summarized. However, these data are not
exhaustive, and differences in experimental protocols may
hide fine differences in learning rates. In our model, this
range arises as a natural property of aKP cycles and is
quantitatively accounted for by the number and nonlinearity
of aKPs present in neuronal compartments. Synaptic scaling,
a form of plasticity that requires dozens of hours to be
recruited [33], stands as a notable exception and may rely on
different regulatory processes. Finally, the experimental
requirement for spacing stimuli over time is not explained
by aKP cycle dynamics (plastic modifications in our model
solely depend on the cumulative duration of stimuli). This
temporal constraint on inputs might alternatively represent a
limitation of our model, or reflect the presence of additional
gating mechanisms specifying the neural activity patterns
eligible for plasticity, which could be situated upstream or
downstream of aKP cycle operation.
Obtaining an overview of the physiological time constants

for cellular memory is difficult because monitoring the
maintenance of plastic modifications over long periods of
time is challenging. Hence, most experiments are conducted
for less than 1 h, and only a few studies last long enough to
reveal the decay of plastic modifications (see Table S1; data
with a s symbol in the maintenance column). Some forms of
short-term presynaptic plasticity at Schaffer collateral–CA1
synapses have been demonstrated to have a time constant of
20 s [54] or 20 min [55]. This difference of time course may
reflect genuine distinct plastic processes at the same synapse
or may arise from differences in experimental procedures
(i.e., ages of rats, type of preparation, incubation temperature
and duration, recording temperature). With regard to long-
term plasticity, several experimental factors can potentially
affect the stability and reliability of memory kinetics.
Sakijumar et al. [70] have summarized essential criteria that
must be respected in vitro to avoid these problems:
incubation delays of more than 2–3 h to recover metabolic
homeostasis (i.e. second messengers, enzymatic activity,
metabolites, and protein phosphorylation levels; [71,72])
and incubation and recording temperatures larger than 32
8C (i.e., for mammals; [73]). None of the in vitro data
presented in Table S1 completely fulfill these criteria, and
we shall therefore only consider in vivo data. Most of the
corresponding studies have been carried out in the hippo-
campus and display cellular memory time constants that
range from hours [29,57] to days [8,57,58] and up to weeks
and months [58]. In one case, a form of LTP that was stable
for a year has also been described [60]. Finally, a form of LTP
with a time constant of weeks has also been found in the
cerebral cortex [61]. Similarly, homosynaptic and hetero-
synaptic forms of LTD present time constants of several days
to weeks, respectively [59,62]. Together, these data show that
different cellular forms of memory span a very large range of
time constants, from seconds to more than a year. According
to our model, this range could reflect physiological variability
in the biophysical parameters of aKP cycles in different
nervous cells or tissues.
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Two essential features of memory arise as natural corre-
lates of the principle of dynamic storage in the aKP model.
First, information storage is graded, so that several bits of
information can be stored. Precisely, storage capacity
increases with the number of substrate molecules, from
binary and coarse-grained coding at synapses to smoother
coding (i.e., dozens of memory states) in large compartments
such as somata or large dendritic segments, consistent with
experimental observation [52]. Thus, aKP cycles possibly
underlie binary LTP observed at CA3–CA1 synapses [25,26] as
well as graded plastic modifications of synaptic and intrinsic
properties that are not accounted for by prevailing bistable
models [27–41]. Note that graded memory may alternatively
rely on other molecular mechanisms. For instance, a finely
tuned population of bistable elements can theoretically store
graded information (see [74] for the principle, although its
biophysical implementation is challenging). As a second
correlate, the aKP model exhibits finite memory. The present
model therefore departs from previous models of plasticity
induction that do not account for the maintenance of plastic
modifications (i.e., memory [11,12,14,15,48,49]). In such
models, plastic modifications vanish very rapidly because
the time constant for memory is limited, not exceeding that
of plasticity by a factor of ten (e.g., [49]). As a consequence, a
constant level of calcium input is required to maintain plastic
modifications, violating the first criteria for memory: plastic
modifications should last after the offset of the stimulus that
induced them [12,49]. Our model also departs from models
where an artificial time constant is arbitrarily introduced to
obtain desirable memory properties [13]: the time constant
for memory in our model is solely determined by exper-
imentally constrained biophysical parameters (see Methods).
In particular, we have shown that memory lifetime decreases
with increasing numbers of enzyme molecules. Miller et al.
[22] recently proposed a CaMKII model in which memory
degrades due to stochastic resets of the switch. In this model,
memory lifetime increases with the number of enzyme
molecules, in striking opposition to our prediction. This
dependence constitutes a possible criterion to decide
between mechanisms underpinning synaptic plasticity and
could be tested experimentally.

A mechanism has been developed recently that could
account for graded intrinsic plasticity [52]. However, grada-
tion—and infinite stability—of memory are tautologically
ensured in this model by the assumption that plastic
modifications are exactly zero (dX/dt ¼ 0) in an intermediate
range of calcium concentration. Testing whether this
hypothesis is biophysically grounded or purely phenomeno-
logical remains to be done. In parallel, receptor clustering
was recently proposed as an alternative mechanism yielding
finite duration memory and graded plasticity [75]. However,
it has yet to be determined whether biophysical processes can
underlie this mechanism [75]. Moreover, memory lifetime
grows exponentially with cluster size (i.e., with synaptic
strength): strong synapses last orders of magnitude longer
than weak ones, which may induce detrimental biases in
memory representations. In addition, this model predicts that
the amplitude of plastic modifications increases with synaptic
strength, in disagreement with experimental observations
[18,56,76].

To ensure that memories are maintained over the long
term, information storage in neurons should be robust to

different sources of degradation, including the passage of
time, turnover, stochastic fluctuations of molecular processes,
and memory corruption through the storage of irrelevant
ongoing activity. The present model shows that aKP cycles
can underlie memory in the presence of turnover, with
durations ranging up to the turnover maximal time constants
(i.e., weeks [50]). Moreover, we have shown that the
speculative mechanism proposed by Crick [51] restores
memory timescales that are compatible with animal and
human memory even in the presence of molecular turnover.
This mechanism has not yet received physiological justifica-
tion, but its potential importance is considerable. Indeed, it
offers an alternative to molecular switches for long-term
maintenance of plastic modifications for a large class of
multimeric aKP substrates that represent paramount targets
of plastic processes (e.g., transmitter-gated synaptic receptors
and membrane ion channels). Alternatively, network reac-
tivation during conscious experiences or sleep could activate
consolidation mechanisms and stabilize memory states in the
long term [77].
Our simulations show that information coding by aKP

cycles is reliable even in individual spines, where stochastic
fluctuations are maximal. Moreover, in the presence of basal
calcium fluctuations, memory degrades to a limited extent for
mild variability and can persist up to a month in the presence
of very noisy basal calcium distributions. The present model
behaves as an integrator (i.e., the storage of new inputs
progressively diminishes the influence of previous ones). This
can be seen as a drawback of aKP cycles, because the lifetime
of a stored input—its effective memory time constant—is
decreased by newly stored information. However, all models
of memory face this dilemma, and aKP cycles clearly
outperform bistable mechanisms in which every transition
switch is a reset that totally erases previously stored
information. Additional mechanisms may improve protec-
tion from memory erasure in aKP cycles. For instance, the
modulation of enzyme activation by a second messenger that
transduces neuromodulatory or contextual influences could
constitute a possible way to gate activity-dependent plastic
modifications and to avoid memory corruption by irrelevant
activity. Alternatively, several aKP cycles may operate in
concert to provide a biophysical implementation of the
metaplastic processes that allow memory protection in a
recent cascade model of plasticity and memory [78].
Our simulations show that aKP cycles account for critical

features of neuronal plasticity. In the present model, the
calcium dependence of plasticity is bidirectional, a ubiqui-
tous property of synaptic and intrinsic plasticity [16–
18,29,31,39,40]. This property is shared by other KP models
[11–15,48,49]. However, the calcium dependence of plasticity
in these models corresponds to the steady state of the plastic
variable (i.e., w‘(Ca) for a synaptic weight w). On the contrary,
our model predicts that this calcium dependence reflects the
derivative of the plastic variable (i.e., dw/dt(Ca)). This
prediction makes sense because plastic modifications re-
vealed by experimental protocols correspond to variations of
the weight from its value before plasticity induction.
Mathematically, such variations can be interpreted as the
differential of w, dw, which is proportional to the derivative
(dw ¼ dw / dt (Ca) 3 dt, where dt represents the duration of
plasticity induction). These variations have no a priori reason
to be linear with the steady-state w‘(Ca) (our model is one
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example of this case). To our knowledge, this prediction is
new and distinguishes the aKP model from previous models
of plasticity induction [12–15,48,49]. Because plasticity is
bidirectional in the aKP model, a model coupling an aKP
pathway to action potential and N-methyl-D-aspartate
receptor descriptions would naturally yield spike-timing
dependent plasticity [18,19] in a way similar to previous
models [14,15]. Moreover, the present model accounts for
activity and history dependence of plasticity in neurons
[16,17,40,53]. None of these properties are accounted for by
current biophysical bistable models [21,22], whereas they
stem from ubiquitous features of KP cycles in the present
model (namely the absence of kinase autoactivation, and the
dependence of both kinase and phosphatase activation on
activity). In addition, plastic modifications display time
constants ranging from fraction of a second to dozens of
seconds in the aKP model and are consistent with exper-
imental observations, contrary to that in bistable models,
which exhibit much longer timescales for plasticity, from
dozens of minutes to hours at best [21,22].

To our knowledge, the aKP model is the first to provide a
coherent framework that links the induction and mainte-
nance of activity-dependent plastic modifications and ac-
counts for their quintessential features. The model relies on
ubiquitous properties of phosphorylation cycles: feed-for-
ward signaling and cooperative activation of enzymes. No
specific molecular mechanisms are hypothesized (e.g., au-
toactivation) and the model behavior proves extremely robust
to parameter variations, suggesting that aKP cycles are
mechanically responsible for the emergence of neuronal
mnemonic properties. Other important enzymatic cycles
share similar properties (e.g., S-nitrosylation, alcylation;
[79,80]), and we believe that the principle we propose may
be widespread in mnemonic processes. In our mind, however,
the principles of stability and dynamic control are not
mutually exclusive. Pathways with binary and graded proper-
ties may regulate distinct plastic processes, or alternatively
cooperate, to respectively trigger and determine the extent of
a common process, for example. Finally, our results con-
stitute an additional example where a simple signaling
pathway suffices for local storage of information at the
subcellular scale [10–12,21,22,75], supporting the view that
local posttranslational protein modifications represent cru-
cial instructive mechanisms underlying neuronal plasticity
and memory [4].

Materials and Methods

General principles. To evaluate the implication of aKP cycles in
plasticity and memory, we developed both a stochastic and a
deterministic (Figure 1A) model of an aKP cycle operating in a
subcellular compartment. In these models, the kinase and the
phosphatase determine the phosphorylated fraction f of a molecular
substrate S by controlling the phosphorylation (S!S*) and dephos-
phorylation (S*!S) reaction rates. f must be regarded as a molecular
determinant whose dynamics embody neuronal plastic and mne-
monic processes. For instance, f may represent the fraction of
functional membrane receptors in synaptic plasticity or the fraction
of functional ionic channels in intrinsic plasticity. Our aim is to assess
the potential role of a generic pathway equipped with simple
ubiquitous features that are shared by a large class of kinases and
phosphases implied in plasticity and memory.

Both enzymes are activated by molecular signals of neuronal
activity. Depending on KP enzymes, the activating signal could be a
diffusible second messenger or an intermediate signaling protein or
enzyme. Here, the kinase we consider is intended to be generic of a

large class of kinases that are directly or indirectly activated by
calcium and regulate plastic and mnemonic processes in many
neurons. This class includes PKA, PKC, and MAPK. Activation of
these kinases by calcium—either directly or indirectly through
successive steps within their respective pathways—is cooperative,
with a large range of effective Hill coefficients. The Hill coefficient
for PKCc activation is usually 1, but values up to 4 can be found in the
literature [81,82]. MAPKs present effective Hill coefficients in the
range of 2.5–9 due to nonlinearity integration through the MAPK
cascade [83]. In the PKA pathway, calcium induces the production of
cAMP, which activates PKA with Hill coefficients ranging from 2 to
more than 10 [84,85]. In the present model, we use a conservative
effective Hill coefficient of 4 as the standard value. Similarly, we take
a Hill coefficient of 4 for the phosphatase, in agreement with values
found experimentally for calcineurin [86,87].

In the present work, memory relies on the negligible activation of
the kinase and phosphatase at basal calcium concentration. Exper-
imental evidence shows that PKC presents low to virtually null
activation at basal calcium concentration in the absence of
exogenous DAG, the exact level of activation being dependent,
among other factors, on the particular PKC isoenzyme and the
substrate molecule considered [81,82,88–90]. In a similar manner,
PKA and MAPK [83–85], as well as calcineurin [86,87], display
negligible activity at basal activation. As for any memory model that
relies on the specific activation of phosphorylation cycles, cross-
reactivity could also increase nonspecific phosphorylation and
dephosphorylation at basal calcium, thus impinging on memory.
However, several biochemical mechanisms might be at work in vivo to
control these effects, including compartmentalization, specific
inhibition, or allosteric regulation of nonspecific kinases/phospha-
tases by other effectors. In particular, the confinement of kinases and
phosphatases by scaffolding proteins [91,92] may constitute an
effective mechanism to prevent cross–reactivity, as proposed for
example by Lisman and Zhabotinsky [42] in the case of the CaMKII
switch model [21]. Modeling such interactions remains extremely
difficult in practice because precise data are lacking to explicitly
design such models and quantify the exact impact of compartmen-
talization on cross-reactivity. Modeling these interactions is therefore
largely out of the scope of the present study.

Many substrates are regulated by the aKPs considered in the
present model, among which are many ligand-gated membrane
receptors (e.g., GABA-A [93] and amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA) receptors [94,95]) and voltage-gated
ionic channels (e.g., sodium [96] and potassium channels [97]).

Figure 1B displays the effective calcium activation functions of the
kinase and phosphatase in the model, using standard parameters.
Varying the parameters over wide ranges to evaluate the impact of
experimental variability and to account for aKP cycles with different
parameters, yielded simulations with qualitatively similar results (i.e.,
the model behavior was very robust to parameter variations).

Stochastic model. Because plastic and mnemonic processes take
place in subcellular compartments where very small numbers of
molecules can be encountered, fluctuations of the reaction kinetics
are expected to be significant [98]. To evaluate their influence, we
simulate the aKP cycle using the exact stochastic simulation
algorithm (SSA) from Gillespie that describes the stochastic occur-
rence of individual phosphorylation and dephosphorylation reaction
events [99]. This allows us to analyze the incidence of stochastic
fluctuations of the phosphorylated substrate fraction f on the
capacity of aKP cycles to encode and memorize the information
contained in upstream signals. The reaction scheme we study
comprises the phosphorylation reaction (S!S*) with propensity

pK ¼ pKmaxCanH=ðKnH
K þ CanHÞ ð1Þ

and the dephosphorylation reaction (S*!S) with propensity

pP ¼ pPmaxCanH=ðKnH
P þ CanHÞ ð2Þ

where Ca is the intracellular free calcium concentration, nH the Hill
coefficient, pKmax and pPmax denote the maximal reaction propensities
(at infinite Ca), and KK and KP denote the half-activation calcium
concentrations for the phosphorylation and dephosphorylation
reactions. To estimate the pmax of enzymes, let us consider a single
enzyme molecule (i.e., a kinase or a phosphatase molecule) and a
single substrate molecule (i.e., an S or an S* molecule, respectively) in
a subcellular compartment. One has

pmax ; preaction fencounter; ð3Þ

where preaction is the reaction probability upon each enzyme/substrate
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encounter and fencounter the average frequency of enzyme/substrate
encounters. fencounter can be estimated

fencounter ; 1=sencounter; ð4Þ

where sencounter is the average time for the single enzyme molecule to
encounter the single substrate molecule. Considering the compart-
ment and the substrate as 3-D spheres of radius rC and rS, respectively,
one has [100]

sencounter ¼ r3C=3DCrS; ð5Þ

where DC is the coefficient of diffusion of the enzymes in the
subcellular compartment.

Now, for NE enzymes in the compartment, sencounter is divided by NE
so that

pmax ¼ 3DCpreactionNErS=r3C : ð6Þ

The literature allows us to estimate the parameters values of DC,
preaction, NE, rS, and rC to derive a common value of pmax for kinases and
phosphatases so that we set pKmax¼pPmax¼pmax, assuming that NK¼NP
in the considered compartment. The phosphorylated fraction f is
computed as f ¼ k / NS, where k is the number of phosphorylated
molecules.

Deterministic model. We derived a deterministic mean-field
approximation of the stochastic described model above to obtain a
tractable analytical representation of the aKP cycle operation, using
mass-action law modeling of the macroscopic reaction scheme
(Figure 1A). In this scheme, the dephosphorylated substrate (concen-
tration S) is phosphorylated by the kinase with rate K while the
phosphorylated substrate (concentration S*) is dephosphorylated by
the phosphatase with rate P. The system thus writes

dS=dt ¼ �KSþ PS � ð7Þ

dS�=dt ¼ KS� PS �: ð8Þ

Rewriting this system as a function of T ¼ S þ S*, the total
concentration, and f ¼ S* / T, the phosphorylated fraction, leads to
dT / dt ¼ 0 (T is constant), so that the system eventually consists of a
single ordinary differential equation

df =dt ¼ Kð1� f Þ � Pf : ð9Þ

K and P represent macroscopic reaction rates that are calculated as

K ¼ KmaxCanH=ðKnH
K þ CanHÞ ð10Þ

and

P ¼ PmaxCanH=ðKnH
P þ CanHÞ: ð11Þ

Kmax and Pmax denote the maximal macroscopic reaction rates that are
equal in our case to the propensities pKmax and pPmax.

The model admits a single stable steady state that depends on Ca

f‘ðCaÞ ¼ K=ðK þ PÞ ð12Þ

that is bounded between

f‘ðCa! 0Þ ¼ ð1þ ðPmax=KmaxÞðKK=KPÞnHÞ�1 ð13Þ

and

f‘ðCa! ‘Þ ¼ ð1þ Pmax=KmaxÞ�1: ð14Þ

f converges exponentially towards f‘ (Ca) with a calcium-dependent
time constant

sf ðCaÞ ¼ 1=ðK þ PÞ: ð15Þ

Fluctuations and information coding. We use the mesoscopic
approach of Berg and colleagues [101] to analytically describe the
fluctuations of f due to the finite number of enzyme molecules and
substrates. At steady state, the probability p (kjCa) that k substrates are
phosphorylated for a given Ca value obeys the master equation

pðkjCaÞ ¼ ðNS!=ðk!ðNS � kÞ!ÞÞðK=PÞkð1þ K=PÞ�Ns : ð16Þ

This distribution is used to compute the mean f value and its variance

r2
f ðCaÞ ¼

X
k

k2pðkjcaÞ � ð
X
k

kpðkjcaÞÞ2
" #

=N2
S : ð17Þ

The corresponding coefficient of variation, cv, is calculated as the
average of rf /f‘ over the Ca range 2–10 lM. Note that, provided NK¼
NP,

K=P ¼ ð1þ ðKP=CaÞnHÞ=ð1þ ðKK=CaÞnHÞ; ð18Þ

so that p(kjCa) and f random fluctuations do neither depend on NK
nor on NP in this case. We use information theory to compute the
mutual information I[k;Ca] that represents the amount of informa-
tion that f (or k) encodes about Ca

I½k;Ca� ¼
X
k

Z
½0;‘�pðkjCaÞpðCaÞlog2ðpðkjCaÞ=pðkÞÞdCa

� �
ð19Þ

where

pðkÞ ¼
Z
½0;‘�

pðkjCaÞpðCaÞdCa: ð20Þ

The calcium distribution p(Ca) is assumed Gaussian with mean (KP
þ KK) / 2 and standard deviation (KP þ KK) / 3 to mimic average
conditions of activity encountered during periods of plasticity.

Molecular turnover. We first modeled substrate turnover as the
combination of first-order degradation of S and S* molecules with
rate D and incorporation of new S molecules as a zero-order process
with rate N (Figure 4A). The system then writes

dS=dt ¼ �ðK þ DÞSþ PS � þ N ð21Þ

dS �=dt ¼ �ðP þ DÞS � þ KS: ð22Þ

Rewriting this system as a function of T¼ Sþ S*, the total number of
substrate molecules, and f¼ S* / T, the phosphorylated fraction, leads
to

dT=dt ¼ N � DT ð23Þ

df =dt ¼ Kð1� f Þ � ðP þ N=TÞf : ð24Þ

As can be noted, T evolves independently of f. Once T has reached
its steady state, T‘ ¼ N / D, f follows

df =dt ¼ Kð1� f Þ � ðP þ DÞf ; ð25Þ

and the system is formally equivalent to modeling turnover as a net
dephosphorylation process with rate D. The model admits a single
stable steady state

f‘ ¼ K=ðK þ P þ DÞ ð26Þ

and converges exponentially towards it, with time constant

sf ¼ 1=ðK þ P þ DÞ: ð27Þ

The protective mechanism proposed by Crick [51] was described
by the reaction scheme depicted in Figure 4B. In this case,
degradation transforms S*S* into SS* dimers and SS* into SS dimers
and T, the total number of substrate molecules, is constant. The
system can thus be written in terms of fractions

dfSS=dt ¼ �KfSS þ PfS�S� þ DfSS� ð28Þ

dfS�S�=dt ¼ KfSS � ðP þ DÞfS�S� þ CfSS� ð29Þ

dfSS�=dt ¼ DfSS � ðC þ DÞfSS� ð30Þ

where C denotes the rate constant of the protective mechanism. The
system can be reduced to

dfSS�=dt ¼ �ðK þ DÞfSS þ ðP � DÞfS�S� þ D ð31Þ

dfS�S�=dt ¼ ðK � CÞfSS � ðP þ Dþ CÞfS�S� þ C ð32Þ

fSS� ¼ 1� ðfSS þ fS�S� Þ: ð33Þ

We considered the steady state and time constants of this system at
Ca¼Ca0 to assess the impact of turnover. The system was monostable,
and the single steady state expresses itself as

fSS‘ ¼ ðPðT þ KCÞ þ T2Þ=ððP þ KÞðT þ KCÞ þ TðK þ TÞÞ ð34Þ

fS�S�‘ ¼ KððT þ KCÞÞ=ððP þ KÞðT þ KCÞ þ TðK þ TÞÞ ð35Þ

fSS�‘ ¼ KT=ððP þ KÞðT þ KCÞ þ TðK þ TÞÞ: ð36Þ

Numerically, fSS*‘ remained minute (10�5), so that the presence of
SS* had a negligible impact on the phosphorylated fraction fS*S*.
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The system dynamics evolved exponentially with two time
constants, but the larger one by far dominated the dynamics and
read as

sMC ¼ 2=ððK þ P þ KC þ 2TÞ
þ ðK2

C � 2ðKCðP þ KÞ þ 2TðK � KCÞÞÞ�1=2Þ: ð37Þ

In our simulations, we considered that the protective mechanism
converts SS* into S*S* with a rate constant of the order of the
phosphatase and kinase of the aKP cycle, as could be expected if this
reaction was catalyzed by a constitutive kinase.

Basal calcium fluctuations. The memory time constant of the aKP
cycle model was computed in the presence of fluctuations in basal
calcium concentration as

sMN ¼ 1=
Z
½0;‘�

pðCaÞrðCaÞdCa ð38Þ

where r is the f rate (s�1) and p the probability density function
describing calcium fluctuations around the mean basal calcium
value Ca0. sMN was calculated for calcium standard deviations of
the distribution, giving coefficients of variations in the range 0.01–
1. We checked that the computed time constants matched those
obtained from fitting f decrease during simulations of the aKP
cycle model in the presence of basal calcium fluctuations with
similar calcium distributions. Using truncated Gaussian distribu-
tions (Ca . 0) or gamma distributions with mean basal calcium
concentration Ca0 and identical standard deviations provided
similar results.

Model parameters. nH¼ 4, KP¼ 3 lM, and KK¼ 6 lM [81–87]; Ca0¼
0.1 lM. The coefficient of diffusion of CaMKII was recently estimated
to be 2 3 10�14 m2s�1 in the spines of neurons by fluorescence
recovery after photobleaching [102]. The molecular weight of aKP
enzymes lies in the range of ;50–100 kDa (i.e., an order of magnitude
below that of CaMKII [;630 kDa]). Assuming proportionality
between the molecular weight and the volume of individual enzymes,
we estimated DC¼ (101/3) 2 3 10�14 ’ 4 3 10�14 m2s�1 in a spine. The
coefficient of diffusion in the soma was estimated DC¼10�12 m2s�1, as
for nonneuronal cell bodies [102]. We estimate preaction ; 0.04 from
[103], in which the mean time for dephosphorylation of a single
potassium channel by a single phosphatase in membrane patches is 24
times that expected in the case of a diffusion-limited reaction (preaction
¼ 1). In the simplest case where neurotransmitter receptors or ionic
channels represent the direct substrate of aKP cycles, we estimate the
substrate radius rS¼ 5 nm; NS, the number of substrate molecules, are
estimated to range from less than ten to hundreds in an individual
spine and from hundreds to hundreds of thousands in a soma, as are
NE, the number of enzyme (i.e., kinase or phosphatase) molecules
[104]. rC, the radius of the subcellular compartment, is estimated to
range from 0.1–0.5 lm for an individual spine and 1–5 lm for a soma;
we deliberately underestimate this last range to account for the fact
that aPK cycles operate within subcellular compartments of the soma
(e.g., submembrane volumes). Using Equation 6 with these ranges of
parameters, we find that pmax ranges 0.03–411 s�1 for a spine and

0.001–164 s�1 for a soma. Considering conservative, representative
parameters for a spine (rC¼ 0.25 lm; NE ¼ 102) and a soma (rC ¼ 2.5
lm; NE¼ 104), we obtain pmax¼ 0.31 s�1 for a spine and pmax¼ 0.77 s�1

for a soma. The time constants for plasticity and memory are
arbitrarily defined as the values of sf (Ca) computed at Ca ¼ 10 lM
(virtually maximal enzyme activity) and at basal calcium concen-
tration Ca0¼ 0.1 lM, respectively. With the parameters we used, the
time constant of plasticity is ;1.63 s for a spine and ;0.65 s for a
somatic compartment, consistent with experimental observation that
plastic modifications are triggered at the second timescale
[6,25,30,39,43]. Unless mentioned, the results illustrated are obtained
for a spine, with NS¼ 102. The constitutive kinase rate is taken on the
same order as that of the other enzymes at maximal activation, C¼ 1
s�1 [103]. The degradation rate D is set in the range minutes to weeks,
as found experimentally [50].

Supporting Information

Table S1. Experimental Parameters and Properties for the Induction
and Maintenance of Plastic Modifications

Inc. Delay: incubation delay. Inc. T, Rec T: incubation and recording
temperatures in Celsius degrees. Ext. Pre., Freq. Pre., N Pre., Eff. Dur.
Pre.: temporal extension, frequency (Hz), number, and effective
duration of presynaptic stimuli. Post.: postsynaptic stimulation
characteristics. The effective duration of presynaptic stimulation
was estimated as the product of the number of presynaptic
stimulations by the duration of excitation per unitary stimulus. This
duration was estimated to be 0.01 s, the typical time constant of
excitatory postsynaptic potentials (EPSPs). This calculation is valid
for stimulation frequencies up to the order of 100 Hz. For higher
frequencies, successive EPSPs merge within a train, and the duration
of the excitation provoked by an individual train was estimated as the
sum of the duration of the train (0.02 s for [58–60]; 0.035 s for [8,61])
plus the time constant of an EPSP. Maintenance: duration of the
monitored maintenance or time constant (s symbol) of activity-
dependent modifications.
Found at doi:10.1371/journal.pcbi.0030124.st001 (50 KB XLS).
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