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Abstract

We present in this paper a new facial feature localizer. It uses a kind of auto-associative neural network trained to localize specific
facial features (like eyes and mouth corners) in orientation-free face-images (i.e. images where faces are rotated in-plane and out-of-
plane). To increase localization accuracy, two extensions are presented. The first one uses space displacement neural networks instead
of classical, fully-connected networks. The second one combines several specialized networks trained to deal with each face orientation.
A gating network is then used for combination. Finally, a two stage localizer is presented, which increases speed. Thorough evaluation is
performed; including sensitivity to identity, noise and occlusions. The mean localization error (estimated on more than 4000 test images)
is about 15% and the system can perform 40 images/s.
� 2007 Elsevier B.V. All rights reserved.
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E1. Introduction

Localization and tracking of face and facial features is
becoming a very important task in applications such as
model-based video coding, facial image animation, face
recognition, facial emotion recognition, visual speech
understanding, and intelligent human–computer interac-
tion. Although these problems are usually simple tasks
for the human visual system, they have proven to be diffi-
cult for machine vision. Due to changes in orientation,
lightning or expression, face and facial features can have
quite different appearances. In this paper, we focus on
facial feature localization as the key step in feature-based
face image compression or head pose estimation. Many
face recognition systems are based on facial features, such
as eyes, nose and mouth, and their spatial relationship.
Chellappa et al. (1995) called this the constituted approach.
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Chin and head boundary extraction has also been
addressed by Xiao and Yan (2004). Many feature detection
methods have been developed in the last decade, but a wide
majority concentrates on eye detection. In fact, eyes are
known as the most important salient feature and one of
the easiest to detect (nose appearance changes with face
pose and mouth aspect with facial expression).

In this paper, we address the problem of facial features
(eyes and mouth corners) localization in orientation-free
(also called multi-view) face-images. There can be three
kinds of head rotations: in-plane (left–right head leaning),
out-of-plane (up–down nodding) and profile view. The
localization problem is far more complex than in the fron-
tal face issue. As we already developed in our lab a face
localizer (Belaroussi et al., 2006), we assume that face has
been already roughly localized in a cluttered image.

The paper is organized as follows. The following section
is devoted to a brief overview of state-of-art methods. In
Section 3, we describe the database we used for experi-
ments. Section 4 focuses on the localization algorithm. It
is a kind of auto-associative neural network trained to out-
put a feature map, in which intensity sorted local maxima
feature localization by combining space ..., Pattern Recognition
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correspond to facial feature position. To increase localiza-
tion accuracy, two extensions are presented. The first one
uses space displacement neural networks instead of classi-
cal, fully-connected networks. The second one combines
several specialized networks trained to deal with each face
orientation. A gating network is then used for combina-
tion. Section 5 is devoted to experimental results. Conclu-
sions and prospects are presented in Section 6.

2. Overview of existing methods

Existing methods can be divided into several categories.
A first classification is based on the acquisition device:
active infrared-based approaches (Zhu and Ji, 2005) or pas-
sive image-based approaches. Another one depends on the
processed images: pre-focused images where rough feature
regions have already been located or cluttered images
where face detection is preceded before feature detection.
A third category is based on the detection algorithm:
low-level image-based approaches or high-level statistical
appearance-based approaches. In order to get the best of
both worlds, many algorithms combine these approaches.
We present, in detail, some of these methods.

Image-based approaches use one or several low-level
detectors to find specific properties (such as edge, color,
and symmetry). Initial algorithms (like Xie et al., 1994)
were based on edge images, while a good edge image is
hard to get under uncontrolled lightning when the eye con-
trast is low. Toennies et al. (2002) applied Generalized
Hough Transform to detect and track eyes. Feng and Yuen
(2001) use three cues to detect eyes: the intensity (eye inten-
sity is relatively low), the estimated direction of the line
joining the eye centers and the result of the convolution
of the image by an eye variance filter. This process gener-
ates a list of candidate eye pairs which are further
validated.

Statistical appearance-based approaches can be divided
into static and dynamic (active) methods. Moghaddam
and Pentland (1997) applied local principal component
analysis in feature images to describe them in a low-dimen-
sional space (eigenfeatures space). Duffner and Garcia
(2005) use a Convolutional Neural Network to perform
facial feature detection. Viola and Jones’ state-of-art face
detector (2001) based on a cascade of boosted classifier
has been applied to feature detection by Cristinacce and
Cootes (2003). The method uses simple Haar wavelets to
find optimal templates and the AdaBoost algorithm to
train the detector. They demonstrate that the performance
of these local detectors can be significantly improved by
adding global shape constraints. Peng et al. (2005) use
more discriminant features instead of Haar wavelets to
improve eye detection accuracy in a similar AdaBoost pro-
cess. Active methods are also widely used. Yuille et al.
(1992) propose to use deformable templates to locate
human eyes. They design an eye model (parameterized tem-
plate) and define an energy function depending on the
image texture. The eye position is found by minimizing
Please cite this article in press as: Hanif, S.M. et al., Real-time facial
Lett. (2007), doi:10.1016/j.patrec.2007.09.016
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the function through a recursive process. Recently, Active
Appearance Model (Cootes et al., 1998) has also been used
to predict facial feature locations, by attempting to match a
face model to an unseen face through adaptation of the
model shape and texture parameters. These methods are
very promising but time consuming and significantly influ-
enced by noise, occlusions, and lightening.

3. Database

We have used two database in our experimentation –
LISIF database and ECU database. The LISIF database
contains images of 37 individuals with various ages, gen-
ders, and ethnicities. Images were taken under controlled
lightning. For each person, we took 36 images with several
facial orientations (in-plane and out-of-plane), expressions,
and ‘‘accessories’’ like beard or glasses (Fig. 9). The origi-
nal resolution is 100 · 100 pixels. In order to increase the
number of data, we computed the mirroring image. This
procedure results in a 2750 example dataset. The ECU
database contains more than 3500 images of different per-
sons with complex background and images are taken under
different light conditions. Using ground truth data (rectan-
gular face region), we extracted face-images and after mir-
roring we obtained a dataset of more than 7000 face-
images.

We clicked manually four facial features, left eye (1st
feature), right eye (2nd feature), left mouth corner (3rd fea-
ture) and right mouth corner (4th feature) to create one
feature map F for each face image. This feature map had
the size of the face image and its pixels have the following
value (where xoi and yoi denote the true feature
coordinates):

–At the feature location: F(xoi, yoi) = +1
–Anywhere else: F(i, j) = �1

To normalize input images (Fig. 1), we performed histo-
gram equalization. To normalize feature maps, we con-
volved these images with a 3 · 3 gaussian filter, which
results in smoothing feature maps. Several sub-sampling
were tested to reduce the data dimension and, thus the
number of parameters to be trained.

Facial feature are not randomly organized (except in
Picasso’s paintings perhaps). So, we can get anthropomor-
phic information about their spatial organization by ana-
lyzing feature coordinates (xoi, yoi). Assuming the feature
coordinates joint density distribution is gaussian, we can
evaluate its parameters: mean (8 parameters) and covari-
ance matrix (36 parameters) by using Maximum Likeli-
hood estimator. Assuming this density is monovariate,
this estimation can be done on the whole dataset and leads
to orientation-free parameters. To take into account the
face orientation, we assume that feature density distribu-
tion can be modeled by a mixture of gaussians, one for
each face orientation. In this latter case, we estimate
parameters on a given cluster. To perform self-supervised
feature localization by combining space ..., Pattern Recognition
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Fig. 1. Normalization process: original image (a), sub-sampled input image (b), sub-sampled and smoothed feature map (c).
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orientation clustering, we assumed that there exists a
unique relationship between 2D facial feature location
and 3D face pose. So, knowing the facial feature localiza-
tion allowed predicting the face orientation. The Expecta-
tion–Maximization algorithm is applied to get clusters
with K-Means initialization and 1000 training epochs. We
applied this procedure considering up to six face orienta-
tions. As can be seen for five clusters (Fig. 2), the clustering
had roughly separated the whole database in subsets, each
one corresponding to a certain orientation.

4. Neural localizer

4.1. Hybrid auto-associative network

It is a completely connected two-layered perceptron.
The input and output layers have the same size as the
desired output is equal to the input. So, the network is
trained to reconstruct an output identical to its input. It
implements a specialized compression as its hidden layer
has much less units than input or output does. Kramer
(1991) and Hsieh (2001) shown that this compression is
quite similar to non-linear principal component analysis.
This network was successfully used for data compression
by DeMers and Cottrell (1993), handwritten character rec-
ognition by Schwenk and Milgram (1995), and face detec-
tion by Belaroussi et al. (2006) and Féraud et al. (2002). In
this latter application, the network is used to model the
U
N

C

Fig. 2. Facial feature position for five clusters: left-sided (a), d
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‘‘face-class’’ and trained to reconstruct face-images. Here,
we do not want to reconstruct a specific pattern class (the
‘‘face-class’’ for example) but to localize specific features
within these patterns (eyes and/or mouth corners in the
face case). In other words, we want to associate an image
of face (input) with a facial feature map (output). So, we
used the normalized feature maps as desired output
described in Section 3. The network is trained using the
back-propagation algorithm with adaptive momentum.
The cost function is the mean squared error between net-
work output and desired output (Fig. 3). Once trained,
the network is able to localize facial feature on unknown
test images. The feature positions can directly be inferred
by simply searching the local maxima in the output image
and back-projected onto the original image (Fig. 4). The
first four local maxima (representing eye centers and mouth
corners), sorted by the intensity values, are used. Let
(xdi, ydi) be the coordinates of these detected features.

4.2. Space displacement neural network

Convolutional Neural Networks – also called Space Dis-
placement Neural Networks (SDNN) in image analysis –
are slightly different networks. Instead of being fully-con-
nected like classical MLP’s, their first layer(s) have local
receptive fields. Each hidden cell is just connected to a
small part of the input image and connections have their
own independent weight(s). The concept of local receptive
ownward (b), right-sided (c), upward (d), and frontal (e).

feature localization by combining space ..., Pattern Recognition
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field is inspired by perceptive psychology (Hubel and Wie-
sel, 1962). Convolutional neural networks have been
applied by LeCun et al. (1998) to handwritten character
recognition, by Garcia and Delakis (2004) to face detection
and by Duffner and Garcia (2005) to facial feature detec-
tion. The proposed network architecture is shown in
Fig. 5. The number of neurons in the first hidden layer
depends on the choice of the size of the sub-window (X
and Y) and the overlapping (defined as dX and dY)
U
N

C
O

R
R

Fig. 5. Space displacem

Please cite this article in press as: Hanif, S.M. et al., Real-time facial
Lett. (2007), doi:10.1016/j.patrec.2007.09.016
Ebetween two adjacent sub-windows. The purpose of the
second layer is to compress the features information
extracted by the first layer (feature extraction layer). The
third layer extracts higher order features and transforms
the compressed extracted features to desired output map.
The second and third (output) layers are fully-connected
layers. Non-linear sigmoı̈dal units are used for hidden
and output layers neurons. Hidden layers in neural net-
works are responsible for constructing higher order fea-
ent neural network.

feature localization by combining space ..., Pattern Recognition
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tures, so more hidden layers can be added to increase the
network representation capability as done by Garcia
et al. [5]. However, increasing the hidden layers will also
increase the computational requirement for the training
of neural network. The proposed architecture is a compro-
mise between these two constraints, i.e. optimal number of
hidden layers and computational complexity.

Important parameters of this network which are consid-
ered during training are window size (X and Y), overlap-
ping (dX and dY), number of hidden cells (NH), and
number of epochs (N). A small overlapping between two
adjacent sub-windows allows interpreting the overlapped
region by two different feature extractors. Thus, overlap-
ping helps in construction of useful features from input
image.
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4.3. Multiple localizers and gating network

To improve the localizer accuracy, we decided to use
several localizers; each one specialized on a given orienta-
tion. The clustering procedure described in Section 2 could
separate the initial dataset into several subsets correspond-
ing to a given face pose. Given N the number of considered
orientations, the corresponding multiple localizer consists
in N networks. So, for an input image, we have now N out-
put images and N localization hypotheses corresponding to
the first four intensity sorted local maxima of each output
image (Fig. 6).

We employ a Gating Network to combine these hypoth-
eses. The Gating Network is a part of an ensemble network
as shown in Fig. 7. Ensemble networks are powerful tools
specially when facing complex problems. Network ensem-
bles are made up of a linear combination of several net-
works that have been trained using the same data,
although the actual sample used by each network to learn
can be different. Each network within the ensemble has a
potentially different weight in the output of the ensemble.
Perrone and Cooper (1993) have shown that generally,
U
N

C
O

Fig. 6. Multiple localizers: Input image (a), target image (b), outpu
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the network ensemble has a generalization error smaller
than that obtained with a single network and also that
the variance of the ensemble is smaller than that of a single
network. The output of an ensemble Y is

Y ¼ RgðiÞyðiÞ

where y(i) is the output of ith network in ensemble when a
face-image is presented to it and g(i) is the coefficient or
weight associated to the ith network. The sub-sampled ver-
sion of the same face-image is also presented to gating
network.

In general, during the training of ensemble network, the
experts learn their own task and gating network generates
associated weights. But in our case, experts and gating net-
work are trained individually. Experts have already been
attributed the task. Each expert is specialized on a given
face orientation. Once experts have been trained, the gating
network is trained. The desired output of gating network is
the associated weight g(i) of each network. These weights
t image for the five networks and localization hypothesis (c–g).

feature localization by combining space ..., Pattern Recognition
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are computed with Generalized Ensemble Method (GEM)
using the output of each expert. Perrone and Cooper (1993)
have shown that the mean square error of GEM estimator
is always less than or equal to mean square error of naı̈ve
estimator. Moreover, as far as, the error of different experts
in ensemble is correlated, GEM provides the best estimate
of the target function (Y) in mean square sense. For a detail
discussion, please see the authors work.

As stated earlier that generalized ensemble method
chooses such weights g(i) that minimize the mean square
error with respect to target function. It computes the misfit
function, i.e. deviation of expert output from target and
then using the symmetric correlation matrix, the desired
weights/coefficients g(i) are calculated.

In our case, the purpose of gating network is not to
extract features from face-image, a sub-sampled image is
used for training. The gating network is a classical, fully-
connected two-layered perceptron. The network input is a
20 · 20 face-image and its outputs are N (five for example)
coefficients.

4.4. A cascade system for real-time facial feature localization

The performance of multiple localizer is better than sin-
gle one but due to increased number of neural networks, its
processing speed decreases. In Section 5, we can see that
single network can process 110 images/s while multiple
localizer can process on 11 images/s. However, in order
to perform the localization task in real-time, the system
must process at least 30 images/s while keeping the good
performance, i.e. low localization error.

To accomplish this task, we propose a cascade system
that is able to meet real-time constraints while keeping
good performance. In our cascade system, the single and
multiple localizers are intelligently combined. Single local-
izer acts as level 1 detector. If its hypothesis is rejected,
multiple localizer is activated to perform the detection of
facial features in face image. This acts as level 2 detector.
If level 2 detector fails, the face-image is rejected and next
face-image is processed.

The rejection or acceptance of a certain localizer’s
hypothesis (a feature map) is based on a validation step
which is able to differentiate between a poor localization
(false detections) or good localization (correct detections).
As human face has a particular geometry so knowing the
location of some facial features, any false detection can eas-
ily be detected and rejected. This validation step is based on
the computation of six mutual distances between the four
facial features (eyes centers and mouth corners). In this
method, each distance is modeled by a univariate Gaussian
distribution. The parameters (l, r) of these distributions
are estimated on the reference database. A set of features
is considered as valid if the six mutual distances lie within
(l ± 2r) of the estimated distribution.

At level 3 of cascade a ‘‘local feature analyzer and cor-
rector’’ is employed at the end to improve accuracy and
to do detail analysis of facial features. It consists of four
Please cite this article in press as: Hanif, S.M. et al., Real-time facial
Lett. (2007), doi:10.1016/j.patrec.2007.09.016
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small neural networks which try to give accurate position
of a certain detected feature and also analyze the detected
region in more detail, e.g. eye region analyzer and corrector
can make a detail map of eye and eyebrows and also accu-
rately locate eye center as desired. In our experimentation,
four such level 3 detectors are employed to correct the
detection made by precedent detectors.

5. Experimental results

5.1. Performance measure

The performance of a certain localizer is evaluated in
terms of normalized localization error (le). The normalized
localization error is defined as the mean Euclidean distance
between the detected feature position and the true feature
position normalized with respect to the inter-ocular dis-
tance Deyes (Euclidean distance between left and right eyes).

leðjÞ ¼ 1

4�Deyes

X4

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxoi � xdiÞ2 þ ðyoi � ydiÞ

2
q

where ðxoi; yoiÞ is the ith feature location in desired feature
map and ðxdi; ydiÞ is the ith feature location detected in net-
work output.

The mean normalized error is computed on all the test
images. All the localization speeds are given on Intel Pen-
tium Centrino 1.6 GHz using Matlab.

5.2. LISIF database

To evaluate the localizer accuracy, we applied the leave-
many-out method for all the following experiments (except
the identity test). We divided the whole dataset into two
sets: training set (three-fourth) and test (one-fourth). We
dispatched peoples in both training and test sets with
slightly different orientations. For the identity test, we
applied the leave-one-out strategy: we tested networks on
images of one individual and used all the others to train.

5.2.1. Hybrid auto-associative Network

We studied thoroughly this fully-connected architecture
in (Prevost et al., 2006). We just present here the main
conclusions.

Single localizer. First, we trained a single neural network
to localize facial feature on the whole database and per-
form orientation-free localization. In the first experiment,
we tested the localizer sensitivity to feature number and
position. We trained several localizers. The first one con-
sisted of four single feature localizers; each one specialized
on one facial feature. It results in four localization errors
for the left eye (LE), the right eye (RE), the left mouth cor-
ner (LC) and the right one (RC). The second localizer used
two double feature localizers and each localizer deals with
a couple of features: left and right eyes (LRE) and mouth
corners (LRC). The last one was a quadruple feature local-
izer (LREC). Table 1 summarizes results in term of mean
feature localization by combining space ..., Pattern Recognition
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Table 1
Mean normalized error of the single, double and quadruple feature
localizers on the test set

Localizer Mean normalized error

LE 0.12
RE 0.12
LC 0.15
RC 0.15
LRE 0.11
LRC 0.16
LREC 0.14

Fig. 8. Mean normalized error on the training set (dotted) and the test set
(solid) versus number of orientations considered.
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normalized error for the best network we found after opti-
mization: 20 · 20 input and output cells corresponding to
the total number of pixels in image and feature map, 60
hidden cells and 10,000 training epochs.

These results are very interesting. The mean normalized
error is lower for the eyes than for the mouth corners as
these latter are more sensitive to facial expression. Sec-
ondly, the mean error does not change when the number
of feature to localize increases. Owing to these conclusions,
we decide to use the quadruple localizer for further exper-
iments. We also tested its sensitivity to person identity. The
results are shown in Table 2. Some useful statistics: mean,
median, standard deviation, etc. have been calculated from
leave-one-out test. It has been observed that mean localiza-
tion error approximately doubles when a person is not
present during training. Person identity problem depends
on various factors which include race, personal features
(a kid has different features than an aged person), skin
color, presence of ‘‘accessories’’ like beard or glasses, etc.
However, using a huge database containing various age
groups having different colors and race etc will solve this
problem.

Multiple localizers. To improve the localizer accuracy,
we decided to use several localizers; each one specialized
on a given orientation. The clustering procedure described
in Section 2 could separate the initial dataset into several
subsets corresponding to a given face pose. Given N the
number of considered orientations, the corresponding mul-
tiple localizers consist in N networks. So, for an input
image, we have now N output images and N localization
hypotheses corresponding to the first 4 intensity sorted
local maxima of each output image. To compare the accu-
racy of the multiple localizers, we compute the normalized
U
N

Table 2
Sensitivity to person identity

Statistics Mean normalized error
(network trained with
all persons present)

Mean normalized error
(network trained using
leave-one-out method
for identity test)

Maximum 0.53 0.82
Minimum 0.05 0.10
Mean 0.16 0.28
Standard deviation 0.10 0.16
Median 0.12 0.24

Please cite this article in press as: Hanif, S.M. et al., Real-time facial
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Oerror for each hypothesis and apply the WTA (Winner

Takes All) criterion to select the best one. We have consid-
ered up to N = 6 orientations.

As can be seen (Fig. 8) the mean normalized error
decreases continuously on both training and test sets when
N increases. Such results are quite logical: as the number of
specialized networks increases, the range of face orienta-
tions each network has to deal with decreases. The associ-
ation process between face image and feature map becomes
easier and the normalized error decreases.
E
D

5.2.2. Space displacement neural network

Single localizer. Eight different realizations of this archi-
tecture, based on choice of values of window size, overlap-
ping and number of neurons in second hidden layer, are
trained and evaluated on the test dataset (720 images). A
total of 10,000 iterations are used to train each network
realization. The best score (minimum localization error in
mean sense) is obtained from network realization R4 which
contains 144 neurons (window size is 6 · 6 and overlapping
is 2 · 2) in first hidden layer and 50 neurons in second hid-
den layer. The mean error obtained on reference database
is 0.86 and on test database is 0.14. Comparison of first
four realizations (R1–R4) is shown in Fig. 9. The window
Fig. 9. Mean localization error for different network realizations.
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sizes, overlapping and number of neurons in hidden layers
are different for each realization.

Network realizations R1 and R4 have the same first
layer but R4 contains more neurons in second hidden layer
than R1 and generalize a little better. We will use R4 in the
following experiments and summarize now its perfor-
mance. The mean error is 0.08 on the training set and
0.15 on the test set, 60% examples have a localization error
lower than 0.1 and the system can perform 110 images/s.

Multiple localizers. We trained five single-orientation
specialized SDNN on each image subset. We also trained
a gating network with 80 hidden cells. Fig. 10 shows the
combination process of multiple localizer on one example.
Each expert produces its hypothesis Y(i) and gating net-
work generates associated weights g(i), we can see that
the localization error of each expert is greater than that
U
N

C
O

R
R

Fig. 11. Mean normalized error on the training set (solid) and the test set
(dotted).
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Rof the final output (Y). Note that the expert # 3 has been

weighted heavily because of its closeness to desired output.
Fig. 11 shows localization error distribution. The mean

error is 0.05 on the training set and 0.12 on the test set, 65%
of the examples have approximately 0.1 localization error.
The overall multi-network system with gating network can
perform 11 images/s.

5.2.3. Sensitivity to noise and occlusion

Finally, we wanted to evaluate the multiple SDNN
localizer robustness against noise and occlusions.

Noise test. First, we synthesized images by adding white
gaussian noise on all the images in test database. The signal
to noise ratio varied from 0 dB to 20 dB. As can be seen
(Fig. 12), the system is quite insensitive to gaussian noise
due to its convolutional filters.
Fig. 12. SDNN multiple localizer: Noise Test.
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Fig. 14. Localization results on some test images of LISIF database. The
normalized error is indicated bellow.

S.M. Hanif et al. / Pattern Recognition Letters xxx (2007) xxx–xxx 9

PATREC 4257 No. of Pages 11, Model 5+

26 October 2007 Disk Used
ARTICLE IN PRESS
C
O

R
R

E
C

Occlusion test. In real life, face occlusions are quite com-
mon. So we need to test the localizer on occluded images.
For this test, synthetic images are formed by masking
10–80% of the face region. Images are occluded in two dif-
ferent manners: from Bottom to Top (mouth is occluded
first) and from Top to Bottom (Eyes are occluded first).
The localization error is directly proportional to occlusion
percentage (Fig. 13). There is a small change in localization
error when images are 10–20% occluded and it increases
rapidly as occlusion percentage reaches 40%. An occlusion
of 40% hides the mouth/eyes region in the face and thus
hinders the network to extract the corresponding features.
Neural networks are known to generate a mean output
when outlier occurs. In this case, occlusion can be consid-
ered as an outlier thus, the network outputs the mean.
Comparing the two occlusion tests discussed above, we
can note that localization error is more sensitive to occlu-
sion from top than from bottom. An occlusion of 40%
results in a localization error of 33% when occluded from
top while localization error is 28% when occluded from
bottom. Thus in general we can say that detection of eyes
is more stable than that of mouth as mouth undergo differ-
ent expression and occlusion makes it nearly impossible to
correctly detect the mouth corners.
N
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U5.3. Cascade system

Finally, the cascade system of Section 4.4 is imple-
mented using single, multiple localizers, validation step
and local feature analyzer and corrector. In first experi-
ment, the simple cascade system i.e. single, multiple localiz-
ers and validation step is formed. This combination gives
12.1% mean localization error on the test database. The
system rejection rate is 3% i.e. when level 1 and 2 detectors
fails to localize the features and validation procedure
Please cite this article in press as: Hanif, S.M. et al., Real-time facial
Lett. (2007), doi:10.1016/j.patrec.2007.09.016
declares a poor localization. The missed detection rate,
i.e. validation procedure declares a poor localization when
it is not true, is only 0.6%.

In second experiment, local feature analyzer and correc-
tor is employed as level 3 detector along with single, multi-
ple localizers, validation step. The input to local feature
analyzer and corrector is an image 9 · 9 around a certain
facial feature and the desired output is an image 9 · 9 con-
taining the exact feature location as one bright point. This
configuration gives a mean localization error of 11.9% on
test database and can perform 40 images/s. The contribu-
tion made by ‘‘local feature analyzer and correctors’’ has
a little effect (a gain of 0.2%) on localization error. How-
ever, the ‘‘cascade system with local feature analyzer and
corrector’’ performs better than single localizer that gives
15.6% mean localization error.

The information combination outperforms the single
localizer. We can summarize the cascade results on the test
set as follows: 65% examples have localization error lower
feature localization by combining space ..., Pattern Recognition
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than 0.1. For single network, only 60% examples had a
localization error lower than 0.1%. Finally, we present
some localization results on test images (Fig. 14): frontal
faces (1st line), left-sided and right-sided faces (2nd line),
upward and downward faces (3rd line), and tilted faces
(4th line). Examples of localizer sensitivities to glasses
(5th line), scale (6th line) and partial occlusions (7th line)
are shown. The association procedure makes the system
less sensitive to partial occlusions and noise: e.g. if one fea-
ture is not visible, its position is inferred by the positions of
other visible features. Two localization errors are presented
(7th line). Note that, in both cases, an accurate localization
hypothesis was found but the combination method failed
to select it.

5.4. ECU database

Opposite to LISIF database, this database contains gen-
eral scenarios for facial feature localization. In particular,
the number of persons (except some ‘‘starts’’ personalities)
in this database is nearly equal to the number of images. As
stated earlier, we extracted the face-images using ground
truth (rectangle around face) and using mirror images, we
constructed a face database of more than 7000 images with
different resolutions. As this database does not contain var-
ious orientations, we decided to use simple localizer
(Hybrid auto-associative network and SDNN), i.e. one net-
work for all orientations. We divided the database into two
equal halves, each containing more than 3500 face-images.
One half serves as a training database and other half is used
for evaluation (test database). The best network, obtained
after rigorous experimentation, for hybrid auto-associative
network has (900 inputs, 60 hidden cells and 400 outputs)
while for SDNN has (X = 6, Y = 6, dX = 2, dY = 2,
NH = 50, 400 outputs). Both networks were trained for
10,000 epochs. The mean localization error obtained with
hybrid auto-associative network is 0.10 on training data-
base and 0.15 on test database, while we obtained 0.11
on training database and 0.14 on test database using
Please cite this article in press as: Hanif, S.M. et al., Real-time facial
Lett. (2007), doi:10.1016/j.patrec.2007.09.016
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RSDNN. With these results, we can see that generalization

of SDNN is better than auto-associative network when
number of examples in training database increases. More-
over, the problem of sensitivity to persons identity has van-
ished. Some localization results are shown in Fig. 15.

6. Conclusions

We have presented a novel algorithm for the detection
of facial features in a pre-focused face image. It is based
on a particular neural network trained to associate a fea-
ture map with a face image. We studied thoroughly the sin-
gle, orientation-free localizer and show that its accuracy
increases with the number of features to detect. We pro-
posed an alternate method where several specialized net-
works were trained to deal with specific face pose. The
best localization hypothesis is then formed by combining
all the network outputs with a gating network. This multi-
ple localizer is more accurate than the orientation-free
localizer: the mean normalized error decreases from
15.6% to 11.9% and the system performs more than 40
images/s.

We have shown that with a large training database, the
system is less susceptible to person identity and its general-
ization increases. Currently, we are working on actual sys-
tem with three step: face detection localization (Belaroussi
et al., 2006), facial feature localization, detail facial feature
analysis (local localizers).
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