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Abstract— As miniaturization of objects and systems is fur-
ther carried on, adhesion appears to be one major problem
during the assembly and/or fabrication of micro-components.

This paper presents a model for the computation of capil-
lary forces. For simple geometries, this model complies with
literature results. In addition, it allows the computation of
capillary force for non-axisymmetrical shapes. The complexity
can arise from object shape (modelling for example an AFM
tip) and/or from geometrical configuration. One very important
result is the ability to compute the evolution of the capillary
force depending on the tilt angle of the gripper with respect to
the object. Using this results, it could be possible to manipulate
small (a few tens of µm of characteristic dimension) objects
with capillary condensation grippers.

Currently the model takes into account the contact angles, the
relative humidity, temperature and the geometrical description
of the problem. It is shown that it is possible to reach forces
up to a few hundreds of nanonewton in magnitude.

This paper also presents a test bed developed in order to
validate the models.
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I. INTRODUCTION

One major problem occuring during the assembly of

micro-components is adhesion, as quoted in literature [1],

[2]. In everyday life, when picking up a macroscopic object,

the major opposing force is gravity, which is a volume force.

When size diminishes and the objects are scaled down,

surface forces become more and more important and the

major opposing force to picking up and releasing parts

becomes adhesion [3]. The force needed to separate two

objects is also known as pull-off force. Adhesion can also

prevent structures like RF-MEMS or any high aspect ratio

structures from normal functioning [4].

The adhesion force is actually composed of different com-

ponents : electrostatic force, van der Waals force, chemical

forces, and capillary force. Electrostatic force can be avoided

by properly choosing materials. Van der Waals force arises

from the intrinsic constitution of matter : it is due to the

presence of instantaneous dipoles. It becomes non-negligible

under the nanometer scale. Chemical forces are due to

the bondings between particles. It is active when objects

are in contact (i.e. the distance between them is about an

intermolecular distance).

Capillary force between two objects is due to the presence

of liquid between them (see figure 1). It has already been

shown [5] that it can be used to manipulate small objects
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(300 − 500 µm of characteristic dimension) by manually

placing a liquid droplet on the object (a fraction of µL).

As capillary force is often the major component of adhesion,

especially at high humidity levels, this paper aims at theoreti-

cally studying the feasability of manipulating smaller objects

(50 − 100 µm of characteristic dimension) using capillary

condensation, i.e. without placing a droplet.

gripper

object

meniscus

θ1

θ2

Fig. 1. Scheme of the problem : a gripper and an object are linked by a
liquid meniscus, due to humidity condensation; the major non-geometrical
parameters are the contact angles θ1 and θ2 and the surface tension γlv of
the liquid-air interface (here the liquid is always water).

In assembly, it is as important to pick up as to release the

object : the force applied onto the object should therefore

be controllable. In macro-assembly, this problem does not

exist : usual grippers can be closed (i.e. the part is locked

between the digits of the gripper) or open (and the gripping

force falls to zero). In micro-assembly, adhesion provides a

minimal value for the ”gripping” force. If the weight of the

object is smaller than adhesion, the object cannot be released.

Conversely, if adhesion is smaller than the object weight, the

object cannot be picked up.

It is here proposed to control the force by tilting the tip

(an application could be an AFM tip) with respect to the

object. Models which assume objects and meniscus to be

axially symmetrical [6], [7] therefore become unapplicable.

A more general model has thus been developed to compute

the capillary force without this constraint of axisymmetry.

This paper is organized as follows: first, the basic equa-

tions will be recalled (section II), and their validity discussed

(section III). The model implemented in our simulation will

then be presented (section IV). Results will then be explained

(section V) and discussed (section VI) for different cases

: first axisymmetrical shapes will be used for validation

purpose only, then more complex configurations will be

studied. Finally, a test bed used for validation purpose will

be described.
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II. EQUATIONS

A. Introduction

This section will detail the different equations involved in

the problem :

• the Kelvin equation [8], which rules the curvature of

the liquid meniscus.

• the approaches encountered in literature to compute the

capillary force, i.e. :

– the Laplace approach, based on direct force calcu-

lations.

– the energetical approach, based on the derivation

of the total energy of the interfaces.

In all cases, gravity is neglected. This will be valid as long

as the dimensions of the meniscus are a lot smaller than 1

mm.

B. Kelvin equation

In any method used to compute the capillary force, the

meniscus shape appears explicitly or implicitly. In the Kelvin

equation approach, it is involverd through the total mean

curvature H of the meniscus, or its inverse r, the mean

curvature radius

H =
1

r
=

1

2rK
=

1

2

( 1

r1
+

1

r2

)

(1)

where rK is, in the case of capillary condensation, the so-

called Kelvin radius, and r1 and r2 are the two principal

curvature radii. The Kelvin radius is ruled by the Kelvin

equation [3] which is the fundamental equation for capillary

condensation. It links the curvature of the meniscus with

environmental and materials properties.

rK =
γVm

RT loge(p/p0)
(2)

where Vm is the molar volume of the liquid, R is the perfect

gas constant (8.31 J/mol K), T the temperature (in kelvin)

and p/p0 is the relative humidity (RH), between 0 and 1.

Typically, for water, this gives rK = 0.54 nm/ loge(RH),
which gives for RH=90%, a Kelvin radius of about 5 nm at

20◦C.

C. Laplace approach

With this method, the capillary force is splitted into two

components, i.e. the Laplace force and the surface tension

force [8].

It must be pointed out here that, in the general case, the

force has no reason to be directed only along the axis of

the distance between objects. It must be expressed as a

vector. Actually, the expressions in this section implicitely

assume that the meniscus (and the tip and the object) is

axisymmetrical. Only one component is then different from

zero. Consequently, this methodology cannot be applied in

the general case, at least in the simple form presented here.

The Laplace force is due to the pressure difference ∆p =
pin − pout across the liquid-vapor interface. Using the so-

called Laplace equation, it can be expressed as [8]

FL = −∆p A = −2 γ H A1 (3)

where γ is the liquid-vapor interface surface tension, H is

the total mean curvature of the meniscus and A is the area

of the contact between the meniscus and the object. A is

actually the effective area, i.e. the projection of the wetted

interface onto a plane perpendicular to the force.

The other component of the capillary force is due to the

surface tension of the liquid-object interface. Considering

this surface tension as a constant

FT = L γ sin θ (4)

where L is the perimeter of the liquid-object interface,

and θ the liquid object contact angle (this contact angle is

supposed constant).

The capillary force is thus given by

F = −2 γ H A+ L γ sin θ (5)

Note that FT is always attractive, while FL can be either

attractive or repulsive depending on the sign of the mean

curvature.

The calculation can also be made on the meniscus/tip

interface, the result will obviously be the same.

Different approximations are usually made to this latter

equation

• the assumption of axisymmetrical meniscus, that re-

duces the order of the equation.

• the limitation of the object shape.

• the a priori limitation to the shape of the meniscus :

arc of circle, parabola,... [6], [9], [10]

Nevertheless, since the easiest way of controlling the force

seems to be tilting one of the objects, the axisymmetry

assumption does not hold anymore and the general equation

has to be solved.

D. Energetical view

The same results can be obtained via an energetical

approach. The total energy of the meniscus can be expressed

as

W = γLVALV +γLOALO+γLTALT +γOV AOV +γTV ATV

(6)

where γij is the surface tension of the i-j interface : Liquid,

Vapor, Object and Tip, and Aij are the areas of these

interfaces. Note that here, the areas are the actual areas, and

not the effective areas.

The capillary force in the z direction can then be computed

using a classical derivative of the energy with respect to the

distance between the objects. If the problem is axisymmetri-

cal, the z direction is the axis of symmetry, otherwise it can

be any direction along which the force is calculated2.

1note on the sign of the force : here, the force is positive if attractive.
2once again, a positive force means attraction
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F =
dW

dz
(7)

It can be shown that both formulations (Laplace approach

and energetical approach) presented here are equivalent and

obviously should lead to the same results. The model pre-

sented in this paper uses the energetical approach, as it will

be explained later.

III. VALIDITY OF THE EQUATIONS

Both methods presented here are based on macroscopic

hypothesis on the nature of the liquid and solids : matter

is continuous and so are their properties such as surface

tension. It has been shown experimentally that those models

are valid down to meniscii of radii as small as 4 nm [11].

For smaller sizes, the discreet nature of matter should be

taken into account, via molecular dynamics or Monte-Carlo

calculations [12]. The results will thus have to be interpreted

keeping in mind that their validity is not proven for very

small sizes of meniscus (i.e. for meniscus with radii < 4nm).

Another discussion encountered in literature is the pa-

rameter kept constant during the derivative : should it be

computed keeping the volume or the curvature constant

[13] ? Different mechanisms play a role here, mainly the

condensation/ evaporation rate. It seems admitted that the

condensation takes place in the millisecond (< 5 ms [13])

scale while the evaporation needs more time. It has been

measured meniscus stretching at tip-object distance much

larger than rK . Capillary condensation also has a long term

(up to tens of days) component, which will not be considered

here [14].

If experimental investigation could provide an estimation

of the characteristic times involved in the processes, it would

seem natural to compute the volume condensed -fulfilling the

Kelvin equation- at the smallest tip-object distance and then

compute the evolution of the force with constant volume

when retracting the tip.

IV. MODEL AND SIMULATION SCHEME

It can be necessary to be able to cope with non axisym-

metrical meniscii, for example to quantify the effect of geo-

metrical difference with ideal case or to deal with complex

shapes. As the equations in the general case cannot be solved

analytically, a numerical model has been developed, which

allows the user to define three dimensional shapes, with some

limitations though, that are presented below.

The solver makes use of the software Surface Evolver

(SE) [15]. The total energy of the meniscus is minimized,

fulfilling the Kelvin equation on the shape of the meniscus.

The energy is then derived (by finite differentiation) in the

desired direction (usually the distance between objects, but

this is not mandatory) to obtain a component of the force

acting between the objects.

A. Available shapes

The goal of this model is to allow the user to easily com-

pute the capillary force between two objects with parameters

unavailable for usual axisymmetrical models. The choice was

made to keep a reference axis z, similar to the symmetry axis

of former models (see figure 2 ).

To develop complex shapes without having to define each

point of the tip (or the object), analytical shapes have been

used. In the z direction, usual profiles can be chosen :

circular, conical or parabolical, while in the (x, y) plane,

the section of the tip can be described as a polar function.

Elementary sections are

• circle : r(θ) = R
• triangle : r(θ) = c/(2

√
3 cos θ) for −π/3 < θ ≤ π/3

• square : r(θ) = c/(2 cos θ) for −π/4 < θ ≤ π/4

In a similar way, any regular polygon of side length c can

be very easily implemented. Actually, virtually any section

can be represented as it is developed in Fourier series (in

polar coordinates) in order to obtain an analytical shape on

the domain θ = [0; 2π].
The profile and section are then coupled to obtain the

complete tip that has to be used in the equations. An example

of a tip with parabolic profile and triangular section is shown

on figure 2. The same formulation is also available for the

object.

Fig. 2. Example of a tip and its projection on the (x, y) plane. Here, the
section is a triangle and the profile is a parabola.

This model should now be soon applied to actual com-

mercial tips, such as AFM tips.

V. THEORETICAL RESULTS

A. Introduction

The results presented in this section are twofold. First,

validity of the code will be shown in section V-B. As

literature only provides results for axisymmetrical shapes,

those results will be the only ones that can be used as a

proof for the model, since no result is available for other

shapes.

Then, in section V-C, more complex shapes will be inves-

tigated.

B. Validation

Benchmark results used for comparison have to be sepa-

rated into two groups :

• Exact solution : analytical solution [7], [16]

• Assumed shape meniscii [6], [9]

In [7], analytical solutions are derived from the base

equations. They provide results for the sphere-plane and
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sphere-sphere cases separated by a liquid bridge. The results

(see figure 3) are presented with respect to the so-called

filling angle ψ (see inner schematic of 3). One can see that

the correspondance is very good with the model from [7]

and that the approximation of [3] (F = 4πRγ cos θ) is valid

for very small angles.

The discrepancies between the model results and [7] can

be explained by the meshing of the meniscus. The mesh has

to be limited to keep the computation time within acceptable

boundaries. In general, the total computation time for a

configuration is in the1-5 minutes range .

filling angle ψ [◦]

F̃
=
F
/
(π
R
γ
)

[
]

ψθ2
θ1

own results

[7], exact

[7], circular approx

[3]
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Fig. 3. Comparison of capillary force at the contact between a sphere and
a plane for several models (θ1 = θ2 =40◦). The positive value of force
means an attractive force.

In [6], the shape of the tip is a parabola. The force values

are in good agreement. We chose here to show the shape

of the meniscus (see figure 4). It can be seen that –in

the axisymmetrical case–, the circle approximation for the

meniscus shape is valid under the considered conditions (see

figure caption).

[9] and [16] also present the capillary force for different

tip shapes (spheres, paraboloids). As the results of the model

are as close with those literature results as for the other ones,

they will not be reproduced here.

C. Tilted tips

In addition to the already existing results, our model is able

to compute the capillary force for additional configurations,

as detailed in section IV-A.

An important result which can be achieved with non

axisymmetrical tips is the evolution of the capillary force

with the tilt angle of the tip with respect to the object. Figure

5 shows the influence of the tilt angle τ on the force for a

conical tip.

The conical tip for which the results are presented has

an aperture angle α of 80◦(the tilt angle is thus limited to

a maximum of 90-80=10◦). One can see that the force can

vary from about 30 nN to over 400 nN, simply by tilting the

tip over the plane.
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Fig. 4. Comparison of capillary meniscii between a paraboloid (of curvature
radius 20nm at the apex) and a plane for our model and the model from
[6]. γ = 72.5 mN/m, θ1 = θ2 = 0◦
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Fig. 5. Force between a tilted tip (the tilt angle is τ ) and a plane. the
aperture angle of the cone (α) is 80 degrees, temperature is 298 K the
relative humidity is 90 %. Both contact angles are 30 degrees and the surface
tension is 72 mN/m. The positive value of force means an attractive force.
The different points at the same tilt value are for different mesh refinements.
They give an idea of the numerical incertitude on the results.

VI. DISCUSSION

In the previous paragraphs, it was shown that our model

could be used to compute the capillary force between two

objects for usual shapes : spheres, cones, planes,... and

reproduce existing results. In addition, the three dimensional

capabilities of the model allow the user to compute capillary

force for complex configurations with simple shapes or even

with complex shapes (e.g. pyramids, rounded pyramids that

can model the Berkovich AFM tips).

Possible applications

A very interesting result presented is that the force can

easily be varied by a factor of more than 10. This ratio should

allow the user to pick up and release a part by controlling

the tilt angle of the tip with respect to the object.

To fix order of magnitude, the minimum and maximum

forces are sufficient to lift respectively a cube of about

100 µm and 250 µm for a density of 2300 kg/m3 (ap-

proximately the density of silicon). For objects with masses
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between those values, a conical tip should be able to pick up,

manipulate, and then release them in atmospheres of 90%̃ of

relative humidity.

The manipulable part weights can also be extended using

different tip shapes or using multiple tips.

VII. EXPERIMENTAL VALIDATION

In order to validate the model, a test bed has been devel-

oped, following an AFM type design : a laser is reflected

by an AFM tip onto a photodiode, using lenses and mirrors.

If a force is applied on the AFM tip, the tip is deflected,

the laser reflexion is modified and this modification can be

measured using the photodiode. The laser spot displacement

on the photodiode can then be converted to a force if the tip

has a known stiffness.

The test bed is illustrated on figure 6. Currently, the force

can be measured between an AFM tip and a substrate. The

substrate can be moved over a 25 mm range with a 200 nm
resolution, and over a further 200 µm range with a 1 nm
resolution.

The tip and substrate are approached until contact, then the

pull off is measured when retracting the substrate. As the tip

and the substrate can be enclosed in a small box, humidity

can be controlled and the variations of the force with respect

to humidity can be measured. For validating purpose, a few

pull offs were done using uncalibrated tips, as illustrated on

figure 7.

Fig. 6. Developed test bed : the left picture shows a general view of the test
bed; the top right picture shows a closer view of the laser, lenses, mirrors
and photodiode; the bottom right picture shows a close up view of the AFM
tip holder.

VIII. CONCLUSIONS

This paper presents a three dimensional model for the

computation of the capillary force. It allows to compute the

effects of capillary condensation, with problems that are not

mandatorily axisymmetrical. The model has been validated

by comparing it with existing results. The new application

shown here was the tilt angle of a conical tip with respect
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Fig. 7. Validation pull-off. The substrate is approached of the tip until
contact (at the left). The substrate is then retracted until the photodiode
signal takes its initial value. Our focus is on the pull-off, i.e. the vertical
gap that expresses the value of the adhesion force. As it is validation pull-
off, the AFM cantilver has not been calibrated and the y axis is only the
photodiode measurement.

to a plane and the effects of this tilt angle on the capillary

force between them.

The studied configuration shows that it should be possible

to pick up and then release objects whose weight is between

50-500nN. The object could be picked up with a tilted tip,

correctly positioned, and then released by reorienting either

the tip or the object.

The next step will be to validate those numerical results

through AFM experiments. For that purpose, a test bed was

developed, which will be used to make force measurements.
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