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Abstract— This paper presents a framework for multi-class
vehicle type identification based on oriented contour points. The
decision process combines four classifiers: three voting algorithms
and a distance error. This method have been tested on a realistic
data set obtaining similar results for equivalent recognition
frameworks with different features selections [11]. A confidence
criterion is also calculated to validate the system results. The
system also show to be robust to partial occlusions.

Keywords— Pattern Recognition, Multiclass Classification, Ori-
ented Contour Poins, Voting Algorithm.

I. INTRODUCTION

Many vision based Intelligent Transport Systems are dedi-
cated to detect, track or recognize vehicles in image sequences.
Three main applications can be distinguished. Firstly, embed-
ded cameras allow to detect obstacles and to compute their
distances to the equiped vehicle [12]. Secondly, road monitor-
ing measures traffic flow [2], notifies the health services in case
of an accident or informes the police in case of a driving fault.
Finally, Vehicle based access control systems for buildings or
outdoor sites have to authentify incoming (or outgoing) cars
[11]. The first application has to classify region-of-interest
(ROI) in two classes: vehicles or background. Vehicles are
localized in an image with 2D or 3D bounding box [12], [9].
The second one can use geometric models to classify vehicles
in some categories such sedans, minivans or SUV. These 2D or
3D geometric models are defined by deformable or parametric
vehicle templates [7], [4], [5].

The third application often uses only the recognition of a
small part of the vehicle: the license plate. It is enough to
identify a vehicle but, in practice, licence plate recognizer
can provide wrong information due to poor image quality or
fake plate. Combining such a system with other processes
dedicated to identify the vehicle type (brand and model)
can increase the authentication accuracy and robustness. This
paper addresses the vehicle type identification problem from
a vehicle greyscale frontal image.

As far as we know, only one paper deals with a similar
problem. In a recent recognition framework for rigid object
recognition, Petrovic and Cootes [11] test various features for
vehicle type classification. Their decision module is based on
two distance measures (with or without Principal Component
Analysis feature selection): the dot product d = 1− f1f2 and

the Euclidean measure d = |f1− f2|, where fi are the feature
vectors. The dot product gives slighthly outperforming results.
Best results are obtained with gradient-based representations.
These results can be explained because the vehicle rigid struc-
ture is standardized by the manufacturer for each model. The
relevant information contained in contour edge and orientation
is independent of the vehicle color. Others works [8], [10], [1]
had taken the edge orientations for the recognition of different
patterns like faces or small targets with irregular borders.

Fig. 1. Realistic vehicle images with tollgate presence.

In this paper, a multi-class recognition system is developed
using the oriented-contour pixels to represent each vehicle
class. From a vehicle frontal view, the system identifies the
instance as the most similar model class in the data base. The
classification is based on a voting process and a Euclidean
edge distance. The algorithm has to deal with partial occlu-
sions as tollgates can hide part of the vehicle (see fig. 1),
making quite inadequate appearance-based methods. In spite
of tollgate presence, our system does not have to change its
parameters or apply time-consuming reconstruction process.

In section II, we explain how we define a model for
each class in the data base using oriented-contour points.
Section III employs this model to obtain a score measuring
the similarity between the input instance and the database
classes. A Bayes confidence criterion is then proposed in order
to reject classifier response or to combine it with a license
plate recognition system. Experimental results are presented
in section IV. Last section is devoted to conclusions and
prospects.

II. MODEL CREATION

During the training stage, we produce a model for all the K
vehicle type classes composing the system knowledge. The list



of classes the system is able to recognize is called Knowledge
Base (KnB). In our system, the Knowledge Base will be the
20 vehicle type classes of the Confusion Matrix.

A. Images Databases

All ours experiments have been carried out on the Training
Base (TrB) and on the Test Base (TsB). The TrB samples
are used to produce the oriented-contour point models of the
vehicle classes. The TsB samples are utilized to evaluate the
accuracy of the classification system. The TrB is composed
of high quality frontal vehicle images captured in different
car parks. On the other hand, the TsB is made out of outdoor
nearly frontal vehicle images under different light conditions
and at a lower resolution. In figure 2, the upper row shows
samples from TrB and in the bottom row, the figure shows
the corresponding vehicle type class of the TsB.

Fig. 2. samples from the training database TrB (upper row) and the
corresponding vehicle type class in the test database TsB.

B. Confusion matrix

Our classification system will be applied to a data base (see
table 1). Formally, we select a finite set K of K = 20 classes.
For the multiclass classification problem, each example t ∈ T
(TsB) is assigned a single class k ∈ K, so that labelled
examples are pairs (t,k). The system goal is to find a function
G : T → K which matches a unknonw example (t,k)
minimizing the probability that k 6= G(t).
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TrB 1 1 4 9 5 10 12 3 6 4 7 15 32 5 5 5 19 21 4 5 173
TsB 11 20 19 21 13 21 28 17 23 20 21 37 62 22 20 14 33 33 22 23 480

Table 1. The database sets.

C. Prototype image

We create a canonical rear-viewed vehicle image I from
the four corner points of the license plate {A,B,C,D} (see
fig. 3). The image templates are called prototypes and in the
present work are 600 * 252 pixels. A ROI defined by the points
{A,B,C,D} is independent of the vehicle location in the image
and the scale (fig.3.a). In order to correct the orientation of the
original image (see example in fig.2), an affine transformation
moves original points {A,B,C,D} to the desired {A’,B’,C’,D’}

reference position, considering the vehicle grid and the license
plate in the same plane. A license plate recognition system
provides the corners of the vehicle license plate.

(a) (b)

Fig. 3. (a) original image, (b) prototype I .

The Sobel operator is used to compute the gradient’s magni-
tude and orientation of the greyscale prototype I (|∇gI |,φI ).
An oriented-contour points matrix EI is obtained using an
histogram-based threshold process. Each edge point pi of EI

is considered as a vector in <3: pi=[x,y,o]T , where (x,y) are
the coordinates and o the gradient orientation of pi [10]. We
sample the gradient orientations to N bins. To manage the
cases of vehicles of the same type but with different colors,
the modulus π is used instead of the modulus 2π [1]. In the
present application, N = 4.

D. Model Features

1) Oriented-Contour points features array: Each class in
the KnB is represented by n prototypes in the TrB. This
quantity n varies from one class to another. Some classes are
defined with only one prototype.

Superposing the n prototypes of the class k, we find an array
of the redundant oriented-contour points. This feature array of
Oriented-contour points models this class in the KnB. The
algorithm operates the n prototypes of the class k in the TrB
by couples (having Cn,2 couples at all). Let be (Ei,Ej) a

Fig. 4. Model creation.

couple of Oriented-Contour Points matrix of the prototypes 1
and 2 from the k class. We define an 600x252xN accumulator
matrix Aij and the vote process is as follow: a) taking a
point pi of Ei, we seek in Ej the nearest point pj with
the same gradient orientation; b) the algorithm increments the
accumulator Aij in the middle point of pipj at the same
gradient orientation; c) the procedure is repeated for all the
points pi of Ei. Considering the addition of all Aij we obtain
the accumulator array Ak: Ak =

∑
i,j Aij . The most voted

points am=[x,y,o] of Ak are selected iteratively. We impose
a distance of 5 pixels between the am in order to obtain a
homogeneous distribution of the model points. We store am

in a feature array Mk. The array Mk contains the Oriented-



Contour Points that are rather stable through the n samples of
the class k.

When n = 1, the accumulator matrix Ak cannot be
computed: the feature array Mk is then determined from the
maximum values of the gradient magnitude |∇gI |.

2) Weighted Matrix: The Chamfer distance is applied to
determine the distance from every pixel to the given Mk set
(fig. 5). This figure shows the four Rk

i Chamfer region matrix
(one for each gradient orientation) obtained after thresholding
the Chamfer chart matrix Dk

i with the distances smaller than
r.

I Mk Rk
1 Rk

2

Dk Rk
3 Rk

4

Fig. 5. Obtaining Chamfer region matrix.

Two weighted region arrays W k
+ and W k

− will be created
for each class k. W k

+ is based on the Rk region matrix where
each pixel has a weight related to the discriminative power of
the corresponding oriented-contour point. Pixel rarely present
in other classes obtains highest weights. We assign a lower
weight to the points present in the majority of the Knowledge
Base classes.

W k
+ =

1
K − 1

∑
i,i 6=k

(Rk −Ri ∩Rk)

W k
− gives a negative weight to the points of the other models

which are not present in the matrix Rk of the model k. Pixels
that are present in most of the other classes obtain higher
weights. In the other hand, pixel present in a few classes get
lower weights.

W k
− = − 1

K − 1

∑
i,i 6=k

(Ri −Ri ∩Rk)

The K classes in the KnB are modelled by {M1, ...,MK},
where each Mk = {Mk,W k

+,W k
−}.

III. CLASSIFICATION

This section develops the methods to classify the samples
providing from the database set using the models Mk. A
new instance t is evaluated on the classification function
G(t) = ArgMax{g1(t), ..., gK(t)} using a winner-take-all
rule. The example t is labelled by k ∈ K with the highest
score of the gk. Two types of matching scores compose the
gk (see fig. 6). The first obtains a score based on three kind
of votes (positive, negative and class votes) for each class k.

The second score computes the distance between the oriented-
contour points of the model Mk to the oriented-contour points
of t. We prouve that the fusion of all these matching scores
improves the classification results (see fig. 9).

Obtaining an image prototype of a sample t from the Test
Base, we calculate the corresponding oriented-contour points
matrix Et (section II-C). Considering the large number of
points in Et, we have to choose a limited set of T points.
The value of T is a compromise between the computing time
and a good rate of correct classifications (in our algorithm,
T = 3500). To select these points, we construct a sorted list of
the prototype positions (x, y, o). We sort in decreasing order,
the values of the weighted arrays W i

+ i = 1, ...,K, placing the
discriminant pixels (highest values) in the firsts positions of
the list. Looking iteratively if the pixels in the list are present
in Et, we add the T points in Pt.

A. Designing the discriminant function

Fig. 6. Obtaining the discriminant function.

1) Positive votes: The methode consists in accumulating
votes for the class k, whenever a point of Pt falls in a
neighbourhood of a Mk point. We define the neighbourhood
of the point Mk as a circle of radius r around the point
of interest. These neighbourhood are computed like Chamfer
regions Rk

i . Moreover, each point of Pt votes for the class k
with a different weight depending on its value in the matrix
W k

+.
The nonzero points of the dot product ([•] in the equation 1)

of Pt and W k
+ correspond to the points of Pt, that belong to

a neighbourhood of the Mk’s points. Thereafter, we calculate
the amount of positive votes:

vk
+ =

∑
x

∑
y

∑
o

Pt • W k
+ (1)

2) Negative votes: The negative votes take into account the
points of Pt that did not fall into the neighbourhood of the
Mk points. We punish the class k by accumulating these points
weighted by the matrix W k

−. The amount of negative votes is
defined as:

vk
− =

∑
x

∑
y

∑
o

Pt • W k
−



3) Votes to test: We compute the votes from the models to
the sample test. The method is similar to the one detailed in
the preceding section. We first build the Chamfer Distances
map for Et. We keep the regions around the oriented-contour
points of Et which are a distance lower than r pixels in the
matrix Rt. Then, randomly selecting T points from the array
Mk, we obtain a representation of this set in an array Pk.
Each point of the matrix Pk is weighted by the matrix W k

+.
Total votes from the class k to the sample test t are calculated
as:

vt
+ =

∑
x

∑
y

∑
o

Rt •Pk • W k
+

4) Distance Error: The last score is the error measure
of matching the Pt points with their nearest point in Mk.
Calculating the average of all the minimal distances, we obtain
the error distance dk [3] :

H(Pt,Mk) = max(h(Pt,Mk), h(Mk,Pt))

with :

h(Pt,Mk) = meana∈Pt(minb∈Mk
‖a− b‖))

Furthermore, we applied a decreasing function on the values
of the error vector.

5) Discriminant Function: The four matching scores
{vk

+, vk
−, vt

+, dk} are combined in a discriminant function
gk(t) matching the sample test t to the class k. A pseudo-
distance of Mahalanobis normalizes the scores: v̄ = (v−µ)/σ,
where (µ, σ) are the mean and the standard deviation of v. The
discriminant function is defined as:

gk(t) = α1 v̄k
+ + α2 v̄k

− + α3 v̄k
+ + α4 d̄k (2)

The αi are coefficients which weight each classifier. In our
system, we give the same value for all αi.

Finally, given the test sample t, its class label k is deter-
mined from:

k = G(t) = ArgMax{g1(t), ...gK(t)}

B. Confidence criterion

The multiclass identification system, developed in the pre-
ceding section, always gives a label for an input instance. This
section studies the cases when a new instance is not present in
the KnB. A confidence criteria allows us to accept or reject the
response of the classification function G(t). Rejected samples
can be submitted to an exhaustive classifier or a fusion process
(e.g. logo detection).

We construct a new Test Base with vehicle samples included
in the KnB and new vehicle classes not present in the data
base. Applying the classification function G(t) over all the
Test Base samples, we obtain 3 different responses: CC, the
correct classifications; BC, bad classifications, the misclassi-
fied samples of the KnB and FC, the false classifications,
when the type is not present in the KnB.

We place the G(t) results in a 2D graphic. The y-axis
represents the highest score of the G(t) function. The x-axis
is the difference between the two highest scores of G(t).

(a)

(b)

Fig. 7. (a) is a 2D representation of the results of the discriminant function
G(t), and the covariance ellipses of the two clusters, the diamonds represent
the CC and the cercles the BC+FC, (b) is the frontier separating the CC
region (R1) and the BC+FC region (R2) with λ = 1.

Even if the two clusters are not separable in the 2D space,
the Bayes rule found the optimal frontier, considering they
have binomial distributions(w1 and w2 representing the CC
samples and the regrouped BC+FC samples respectively):

P (wi|x) =
p(x|wi) · P (wi)∑
p(x|wi) · P (wi)

For each wi, we can obtain: P (wi) the a priori probability
of this cluster, and p(x|wi) the probability density function.
The normal bi−variable distribution is defined by N(µi,Σi).
Both covariance matrix have differents values for each cluster
(see fig. 7.a). Applying the logarithms we obtain a discriminant
function replacing the p(x|wi) for the normal bi−variable :

fi(x) = −1
2
(x− µi)T Σ−1

i (x− µi)− · · ·

− d

2
log(2π)− 1

2
log|Σi|+ log(πi) (3)

where πi = P (wi).



Two discriminants functions are obtained : f1 (CC samples)
and f2 (BC+FC samples). For a x point, the rule 4 is evaluated
in order to determine if the sample is placed in the CC region
R1, or otherwise.

f1(x) < λf2(x) (4)

This criterion maximizes the quantity of CC samples placed
in R1 and at the same time minimize the BC and FC samples
placed in this region.

IV. RESULTS

Fig. 8. classification results in the Confusion Matrix.

The Oriented-Contour Voting Algorithm correctly identifies
93.75 % of samples from the Confusion Matrix (fig. 8). The
Confusion Matrix respects the order defined in the table 1
and the percentages are computed on the rows (e.g. in the
fourth row -class Citroën Saxo in the table 1)- 19 samples are
correctly classified and two are labelled as Renault Clio D and
Renault Laguna).

In figure 9 we clearly see that the fusion of the four
matching scores obtains the best results in the classification.
Better rates could be obtained: a training algorithm could
optimised the αi values, but we have to acquire more frontal
view vehicle samples.

The ROC (receiver-operating-characteristic) curve showed
in the figure 10, is obtained varying λ in equation (4). For
λ = 0.41, we obtain 91.46 % of CC and 20.13 % of BC+FC
in R1. This means 84.79 % of CC from the total and 1.46
% of BC. For this value of λ, only 12.84 % of the retained
samples (those placed in R1) are the false alarms. The final
λ value depends on the application requirements: i.e., if the
final system is designed in order to be combined with others
identification methods (license plate recognition, electronic
cards, etc.), higher rejection ratios could be admitted (the
global error will be compensated for the combination).

Another test simulates the presence of the tollgate at four
different locations: in a car park access control system it is

Matching
scores

Correct Classi-
fications (%)

v+ 92.08
v+,v− 91.25
v+,vt 90.42
v+,d 89.17
v+,v−,vt 93.54
v+,v−,d 89.79
v+,v−,vt,d 93.75

Fig. 9. Matching scores fusion results.

Fig. 10. ROC Curve varying λ in equation 4.

very difficult to define the relative vertical position between
the barrier and the vehicle even if the license plate is always
visible (see fig. 11.a). The results for each tollgate location
are showed in figure 11.b. The lowest results (for the 4th
position) comes from the fact that the virtual barrier hides the
nearest part of the license plate. These points contain important
information for the classification and they also are the more
stable points before the affine transformation.

(a)
Toll Position Correct Classifications (%)

1 91.25 %
2 91.88 %
3 90.92 %
4 88.33 %

(b)

Fig. 11. (a) the four positions of a virtual tollgate, hiding a 15% of the
pattern I , and (b) the Oriented-Contour Points Set based algorithm results.

V. CONCLUSIONS

This article has presented a voting system for the multiclass
vehicle type recognition based on Oriented-Contour Points Set.
Each vehicle class is composed from one or many grayscale
frontal images of one vehicle type (manufacturer and model).
A discriminant function combines the scores provided from
three voting based classifiers and an error distance. We have
tested this method on a realistic data sets of 480 frontal images
of cars. Our recognition rate is over 93%. The results showed
that the method is robust to a partial occlusion of the patterns.
Furthermore a confidence criterion will allow to combine it
with others process like license plate recognition systems or
to reject vehicles which are not in the KnB.



Without occlusion, our system obtains similar results as
[11]. Future works will be oriented to increase the number of
classes in our KnB. This operation would reduce the classifica-
tion rates: a preliminary test with 30 classes gives a recognition
rate of over 89.2%. But we expect to compensate this effect in
adding more classifiers. Our voting classifiers are closed to a
weighted Modified Hausdorff Distance [3], with heaviside step
functions applied on a Distance Transform. So we would test
others linear or nonlinear functions to design new classifiers.
Another way consists in creating subclasses with more than
one vehicle type and designing specific classifiers for each
subclasses and for the set of subclasses. We would obtain a
hierarchical decision tree [6].
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