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Abstract. This paper provides a comparison between two of the most used vi-
sual descriptors (image features) nowadays in the field of objecttieteThe
investigated image features involved the Haar filters and the Histogrami-of Or
ented Gradients (HoG) applied for the on road vehicle detection. Testegre
encouraging with a average detection of 97% on realistic on-road vehiatgein
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1 Introduction

On road vehicle detection is an essential part of the lgieti Vehicles Systems and has
many applications including platooning (i.e. vehiclevéiéing in high speed and close
distances in highways), Stop&Go (similar that precedemiasion, but at low speeds),
and autonomous driving.

Most of the detecting methods distinguish two basic steggoathesis Generation
(HG) and Hypothesis Verification (HV) [20]. HG approaches simple low level algo-
rithm used to locate potential vehicle locations and canldmsiied in three categories:
knowledge-based (symmetry [2], colour [23, 14], shadovi$,[@dges [8], corners [4],
texture [5], etc), stereo-based (disparity map [10], isegrerspective mapping [3], etc)
, and motion-based [9]. HV approaches performs the vatidaif the Regions of Inter-
est generated by the HG step. They can be classified in twgarés: template-based
and appearance-based. Template-based methods perfomrekation between a pre-
defined pattern of the vehicle class and the input imagezbotal and vertical edges
[18], regions, deformable patterns [7] and rigid patte@¥.[Appearance-based meth-
ods learn the characteristics of the classes vehicle andeluicle from a set of training
images. Each training image is represented by a set of logdbbal descriptors (fea-
tures) [1]. Then, classification algorithms can estimagdécision boundary between
the two classes.

One of the drawbacks of optical sensors are the consideiatdgrocessing and the
average robustness. In that way, Viola & Jones [22] develgi®ple an appearance-
based system obtaining amazing results in real time. Tipgiearance based method
uses Haar-based representation, combined with an AdaBlddstlgorithm. They also
introduce the concept of a cascade of classifiers which feigbltdetection results while
reducing computation time.



The present article compares the Haar-based featuresheitHistograms of Ori-
ented Gradient (HoG) based features using the same caschitecure.

The next section describes briefly the Haar and the HoG feat@ection two in-
troduces the learning classification algorithms based caBddst. We finish the article
with the results and conclusions.

2 Features

The common reasons why features are choosen instead of pataks are that features
can code high level object information (segments, textudeyhile intensity pixel val-
ues based system operates slower than a feature based.sykiersection describes
the features used to train the Adaboost cascade.

2.1 Haarfilters

Each wavelet coefficient describes the relationship betvtkee average intensities of
two neigh-boring regions. Papageorgieual. [16] employed an over-complete set of
2D wavelets to detect vehicles in static images.

Fig. 1. 2D Wavelet set.

Figure 1 shows basic Haar filtettsvo, threeandfour rectangle features, where the
sum of the pixels which lie within the white rectangles arbtsacted from the sum of
pixels in the grey rectangles. We conserve tilve andthreerectangle features since
vehicles have rectangular shape: diagonal featums (ectangle template) doesn'’t
give extra information for this type of pattern.

Viola & Jones [22] have introduced the Integral Image, aprmiediate represen-
tation for the input image. The sum of the rectangular regiotihe image can be cal-
culated in four Integral Image references. Then, the diffiee between two adjacent
rectangles, can be computed with only six references, éigtiie case of the three
rectangle feature.

The Haar feature set is composed of the resulting value aftttangular filters at
various scales in a image.

In figure 2 we can see the results of two rectangular filtengibag and horizontal) at
two scales: 2x2 and 4x4 pixels. Lightness pixels mean inapbgubtraction values (the
result is always calculated in modulus). The complete séta#r’s features utilizing
the three rectangular filters (see fig. 1) in a 32x32 pixel ienag{2,4,8,16} scales is
11378. Every single featurein the set could be defined a§: = (z;, y;, s;,7;), where
r; is the rectangular filter typs, the scale andz;, y;) are the position over the 32x32
image.
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Fig. 2. 2D Haar Wavelet example on a vehicle image.

2.2 Histogram of Oriented Gradient

The Histograms of Oriented Gradient (HoG) is another waynimode an input image
to obtain a vector of visual descriptors. This local degorigbased on Scale Invariant
Feature Transform (SIFT) [15], uses the gradient magniardeorientation around a
keypoint location to construct an histogram. Orientatiaresquantized by the number
of bins in the histogram (four orientations are sufficieR)r each histogram bin, we
compute the sum in the region of all the magnitudes havingghsicular orientation.
The histogram values are then normalised by the total eredigi/orientations to obtain
values between 0 and 1.

Gepperth [13] train a neural network classifier using thesgures for a two class
problem: vehicle, non-vehicle. First, a ROl is subdividetbia fixed number of regions
called receptive fieldsFrom eachreceptive field they obtain an oriented histogram
feature.

The HoG features set is composed of histograms calculagdeira rectangular
region on the original image. We evaluate the the gradietitofmage using the Sobel
filters to obtain the gradient magnitude and orientation.
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Fig. 3. HoG example on a vehicle image.

There are three types of rectangle regionssquard*1, r, vertical rectanglé* 2/,
rs horizontal rectangl@i*!. Considering! : {2,4,8,16} scales, we have a total of
4678 features. A single histografiin the set could be defined ds; = (x;,y;, s;,7;),
wherer; is the rectangular filter typa, the scale andz;, y;) are the position over the
32x32 image.



3 AdaBoost

As we saw in previous sections, Haar and HoG representatiensised to obtain a
vector of visual descriptors describing an image. The sizthis vectors is clearly
bigger than the number of pixel in the image. Using the totahber of features to
carry out a classification is inadequate from the computimg fpoint of view of the
and the robustness, since many of these features do noircanfzortant information
(noise). Different methods: statistics [17], PCA, geneiigorithms [19], etc. can be
used to select a limited quantity of representative feature

Among these methods, the Boosting [11] classification ntetimproves the perfor-
mance of any algorithm. It finds precise hypothesis by combiseveralweak classi-
fierswhich, on average, have a moderate precision.Wéak classifierare then com-
bined to create atrong classifier

= { 1 22;1 Qngn 2 % Zﬁ’=1 o =T 1)
0 otherwise

WhereG andg are the strong and weak classifiers respectivelypaisc coefficient
wheighting each feature result.is the strong classifier threshold.

Different variants of boosting are known such as Discretabfmbst [22], Real Ad-
aBoost [12], Gentle AdaBoost, etc. The procedures (pseode) of any of this variants
are widely developed in the literature.

We need, however, to study the construction of the weakifilstor both cases:
Haar and HoG features.

3.1 Haar Weak classifier

We define the weak classifier as a binary funcgon

1if pjfj < pjb’j (2)
0 otherwise

wheref; is the feature valud); the feature threshold ang the threshold parity.

3.2 HoG Weak classifier

This time, instead of evaluate a feature value, we estintaedistance between an
histogram; of the inputimage and a model histogram. The model is calculated like
the mean histogram between all the training positive examtor each histograry,
of the feature set, we have the corresponding A vehicle model is then constructed
and AdaBoost will found the most representatixg which best separate the vehicle
class from the non-vehicle class.

We define the weak classifier like a functign

{ 1if d(hj,mj) > 0j (3)
0 otherwise

whered(h;(z), m;) is the Bhattacharyya distance [6] between the featyrand

m; andd; is the distance the feature threshold.



4 Test and Results

4.1 Dataset

The images used in our experiments were collected in Frasiog & prototype vehi-
cle. To ensure data variety, 557 images where capturedgidifferent time, and on
different highways.

The training set contains 745 vehicle sub-images of typiea$, sport-utility ve-
hicles (SUV) and minivan types. We duplicate this quantiigpihg the sub-images
around y-axis, obtaining 1490 examples. We split this nevkeeping 1000 of the ex-
amples for training and the others for validation: the tiragnset (TS) contains 1000
sub-images aligned to a resolution of 32 by 32 pixels, thigladbn set (VS) contains
490 vehicle sub-images with the same resolution. The negatiamples come from
3196 images without vehicles.

The test set contains 200 vehicles in 81 images.

4.2 Single stage detector

First experiments were carried out with a strong classifegrstructed with 100, 150
and 200 Haar or HoG features using the Discrete Adaboostitdgo[22].

We used the TS for the positive examples. The non-vehiclgafives) examples
were collected by selecting randomly 5000 sub-windows feoset of 250 non-vehicle
images at different scales.

To evaluate the performance of the classifiers, the averegetibn rate (DR) and
the number of false positives (FP) were recorded using atfule cross validation
procedure. Specifically, we obtain three sets of non-vetiab-windows to train three
strong classifiers. Then, we test these classifiers on thedes

4.3 Multi stage detector

This section shows the test realised using a cascade ofsttassifiers [22]. The multi
stage detector increases detection accuracy and redcesrtiputation time. Simpler
classifiers (having a reduced number of features) rejeamidgerity of the false posi-
tives before more complex classifiers (having more feajumesused to reject difficult
sub-windows.

Stages in the cascade are constructed with the Adaboosithigptraining a strong
classifier which achieves a minimum detection ratg;(, = 0.995) and a maximum
false positive rate fi,,.. = 0.40). The training set is composed of the TS positive
examples and the non-vehicle images separated in 12 difféskelers (the maximum
number of stages). Subsequent classifiers are trained thgisg non-vehicle images of
the corresponding folder which pass through all the prevsiages.

An overall false positive rate is defined to stop the cascealribg process (F =
43 * 10~7) within the maximum number of stages.

This time, the average accuracy (AA) and false positiveg (kRere calculated
using a five-fold cross validation procedure. We obtain feeedtors from five differents
TS and VS randomly obtained.



4.4 Results

Classifier DR (%) FP Time
HoG - 100 fts 69.0 1289 3,52
HoG - 150fts 72.5 1218 4,20
HoG - 200 fts 83.1 1228 5,02
1
3

Haar- 100 fts 96.5 1443 2,6
Haar - 150 fts 95.7 1278 3,9
Haar - 200 fts 95.8 1062 5,25
Table 1.Single stage detection rates (Haar and HoG classifiers)

Table 1 shows the detection rate of the single stage detatoed either on Haar
features or on HoG features with respectively 100, 150 afidf@ftures. These results
are very interesting though quite predictible. As seenteefdoG classifiers computes
a distance from the test sample to a "vehicle model" (the rhéstongrams). These are
generating classifiers. When the number of considered fatacreases, the model is
refined and the detection rate increases while the numbatsef positives keeps stable.
On the other hand, Haar classifiers are discriminative flasgvaluating a fronteer
between positive and negative samples. Now, the fronteefirged - and the number of
false positives decreases - when the number of featuresaises. Figure 4 presents the
ROC curves for each detector. As told before, for a givenddiete rate, the number of
false positives is lower for Haar classifiers than for HoGsifiers.
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Fig. 4. ROC curves for Haar and HoG detectors.

Table 2 shows results of cascade detectors using Haar andbbedsl features. We
also tested the effect of increasing the size of the negativén each training stage.



Classifier Stages # Features Negatives DR (%) FP t(seg)

HoG 9 87 2000 96.8 1107 0.57
HoG 11 152 3000 97,5 1032 0.71
Haar 12 332 2000 94 447 0.83
Haar 12 386 3000 94,5 387 0.80

Table 2. Multi stage detection rate (Haar and HoG classifiers)

The behavior of each detector is the same as described béfof detector try to
construct a finer vehicle model to take into account the neyatiees. The number of
features used increases twice and as the model refines, tdetide increases slowly.
But the number of false positives does not changes significataar detector refines
the fronteer using somemore features and the number ofgalstves decreases while
the detection keeps quite stable.

5 Conclusions

This communication deals with a benchmark comparing Haarfeatures and His-
tograms of Oriented Gradients features applied to vehieteafion. These features are
used in a classification algorithm based on Adaboost. Tvadegires are implemented:
a single stage detector and a multi-stage detector. The tegiplied on realistic on-
road images - show two different results: for the HoG (getmexpfeatures, when the
number of considered features increases, the detectema@aeases while the number
of false positives keeps stable; for the Haar-like (disarative) features, the number
of false positives decreases. Future works will be orietdegbmbined these behaviors.
An approach could be build using simultaneously both featypes. We should also
select relevant features.
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