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Abstract. This paper provides a comparison between two of the most used vi-
sual descriptors (image features) nowadays in the field of object detection. The
investigated image features involved the Haar filters and the Histogram of Ori-
ented Gradients (HoG) applied for the on road vehicle detection. Tests arevery
encouraging with a average detection of 97% on realistic on-road vehicle images.
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1 Introduction

On road vehicle detection is an essential part of the Intelligent Vehicles Systems and has
many applications including platooning (i.e. vehicles travelling in high speed and close
distances in highways), Stop&Go (similar that precedent situation, but at low speeds),
and autonomous driving.

Most of the detecting methods distinguish two basic steps: Hypothesis Generation
(HG) and Hypothesis Verification (HV) [20]. HG approaches are simple low level algo-
rithm used to locate potential vehicle locations and can be classified in three categories:
knowledge-based (symmetry [2], colour [23, 14], shadows [21], edges [8], corners [4],
texture [5], etc), stereo-based (disparity map [10], inverse perspective mapping [3], etc)
, and motion-based [9]. HV approaches performs the validation of the Regions of Inter-
est generated by the HG step. They can be classified in two categories: template-based
and appearance-based. Template-based methods perform a correlation between a pre-
defined pattern of the vehicle class and the input image: horizontal and vertical edges
[18], regions, deformable patterns [7] and rigid patterns [24]. Appearance-based meth-
ods learn the characteristics of the classes vehicle and non-vehicle from a set of training
images. Each training image is represented by a set of local or global descriptors (fea-
tures) [1]. Then, classification algorithms can estimate the decision boundary between
the two classes.

One of the drawbacks of optical sensors are the considerabletime processing and the
average robustness. In that way, Viola & Jones [22] developed simple an appearance-
based system obtaining amazing results in real time. Their appearance based method
uses Haar-based representation, combined with an AdaBoost[11] algorithm. They also
introduce the concept of a cascade of classifiers which reachhigh detection results while
reducing computation time.



The present article compares the Haar-based features with the Histograms of Ori-
ented Gradient (HoG) based features using the same cascade architecture.

The next section describes briefly the Haar and the HoG features. Section two in-
troduces the learning classification algorithms based on AdaBoost. We finish the article
with the results and conclusions.

2 Features

The common reasons why features are choosen instead of pixels values are that features
can code high level object information (segments, texture,...) while intensity pixel val-
ues based system operates slower than a feature based system. This section describes
the features used to train the Adaboost cascade.

2.1 Haar filters

Each wavelet coefficient describes the relationship between the average intensities of
two neigh-boring regions. Papageorgiouet al. [16] employed an over-complete set of
2D wavelets to detect vehicles in static images.

Fig. 1. 2D Wavelet set.

Figure 1 shows basic Haar filters:two, threeandfour rectangle features, where the
sum of the pixels which lie within the white rectangles are subtracted from the sum of
pixels in the grey rectangles. We conserve thetwo and three rectangle features since
vehicles have rectangular shape: diagonal features (four rectangle template) doesn’t
give extra information for this type of pattern.

Viola & Jones [22] have introduced the Integral Image, an intermediate represen-
tation for the input image. The sum of the rectangular regionin the image can be cal-
culated in four Integral Image references. Then, the difference between two adjacent
rectangles, can be computed with only six references, eightin the case of the three
rectangle feature.

The Haar feature set is composed of the resulting value of therectangular filters at
various scales in a image.

In figure 2 we can see the results of two rectangular filters (vertical and horizontal) at
two scales: 2x2 and 4x4 pixels. Lightness pixels mean important subtraction values (the
result is always calculated in modulus). The complete set ofHaar’s features utilizing
the three rectangular filters (see fig. 1) in a 32x32 pixel image at {2,4,8,16} scales is
11378. Every single featurej in the set could be defined as:fj = (xj , yj , sj , rj), where
rj is the rectangular filter type,sj the scale and(xj , yj) are the position over the 32x32
image.



Fig. 2. 2D Haar Wavelet example on a vehicle image.

2.2 Histogram of Oriented Gradient

The Histograms of Oriented Gradient (HoG) is another way to encode an input image
to obtain a vector of visual descriptors. This local descriptor, based on Scale Invariant
Feature Transform (SIFT) [15], uses the gradient magnitudeand orientation around a
keypoint location to construct an histogram. Orientationsare quantized by the number
of bins in the histogram (four orientations are sufficient).For each histogram bin, we
compute the sum in the region of all the magnitudes having that particular orientation.
The histogram values are then normalised by the total energyof all orientations to obtain
values between 0 and 1.

Gepperth [13] train a neural network classifier using these features for a two class
problem: vehicle, non-vehicle. First, a ROI is subdivided into a fixed number of regions
called receptive fields. From eachreceptive field, they obtain an oriented histogram
feature.

The HoG features set is composed of histograms calculated inside a rectangular
region on the original image. We evaluate the the gradient ofthe image using the Sobel
filters to obtain the gradient magnitude and orientation.

Fig. 3.HoG example on a vehicle image.

There are three types of rectangle regions:r1 squarel* l, r2 vertical rectanglel*2l,
r3 horizontal rectangle2l* l. Consideringl : {2, 4, 8, 16} scales, we have a total of
4678 features. A single histogramj in the set could be defined as:hj = (xj , yj , sj , rj),
whererj is the rectangular filter type,sj the scale and(xj , yj) are the position over the
32x32 image.



3 AdaBoost

As we saw in previous sections, Haar and HoG representationsare used to obtain a
vector of visual descriptors describing an image. The size of this vectors is clearly
bigger than the number of pixel in the image. Using the total number of features to
carry out a classification is inadequate from the computing time point of view of the
and the robustness, since many of these features do not contain important information
(noise). Different methods: statistics [17], PCA, geneticalgorithms [19], etc. can be
used to select a limited quantity of representative features.

Among these methods, the Boosting [11] classification method improves the perfor-
mance of any algorithm. It finds precise hypothesis by combining severalweak classi-
fierswhich, on average, have a moderate precision. Theweak classifiersare then com-
bined to create astrong classifier:

G =

{

1
∑N

n=1
αngn ≥ 1

2

∑N

n=1
αn = T

0 otherwise
(1)

WhereG andg are the strong and weak classifiers respectively, andα is a coefficient
wheighting each feature result.T is the strong classifier threshold.

Different variants of boosting are known such as Discrete Adaboost [22], Real Ad-
aBoost [12], Gentle AdaBoost, etc. The procedures (pseudo-code) of any of this variants
are widely developed in the literature.

We need, however, to study the construction of the weak classifier for both cases:
Haar and HoG features.

3.1 Haar Weak classifier

We define the weak classifier as a binary functiong:

g

{

1 if pjfj < pjθj

0 otherwise
(2)

wherefj is the feature value,θj the feature threshold andpj the threshold parity.

3.2 HoG Weak classifier

This time, instead of evaluate a feature value, we estimate the distance between an
histogramhj of the input image and a model histogrammj . The model is calculated like
the mean histogram between all the training positive examples. For each histogramhj

of the feature set, we have the correspondingmj . A vehicle model is then constructed
and AdaBoost will found the most representativemj which best separate the vehicle
class from the non-vehicle class.

We define the weak classifier like a functiong:

g

{

1 if d(hj ,mj) > θj

0 otherwise
(3)

whered(hj(x),mj) is the Bhattacharyya distance [6] between the featurehj and
mj andθj is the distance the feature threshold.



4 Test and Results

4.1 Dataset

The images used in our experiments were collected in France using a prototype vehi-
cle. To ensure data variety, 557 images where captured during different time, and on
different highways.

The training set contains 745 vehicle sub-images of typicalcars, sport-utility ve-
hicles (SUV) and minivan types. We duplicate this quantity flipping the sub-images
around y-axis, obtaining 1490 examples. We split this new set keeping 1000 of the ex-
amples for training and the others for validation: the training set (TS) contains 1000
sub-images aligned to a resolution of 32 by 32 pixels, the validation set (VS) contains
490 vehicle sub-images with the same resolution. The negative examples come from
3196 images without vehicles.

The test set contains 200 vehicles in 81 images.

4.2 Single stage detector

First experiments were carried out with a strong classifier constructed with 100, 150
and 200 Haar or HoG features using the Discrete Adaboost algorithm [22].

We used the TS for the positive examples. The non-vehicle (negatives) examples
were collected by selecting randomly 5000 sub-windows froma set of 250 non-vehicle
images at different scales.

To evaluate the performance of the classifiers, the average detection rate (DR) and
the number of false positives (FP) were recorded using a three-fold cross validation
procedure. Specifically, we obtain three sets of non-vehicle sub-windows to train three
strong classifiers. Then, we test these classifiers on the test set.

4.3 Multi stage detector

This section shows the test realised using a cascade of strong classifiers [22]. The multi
stage detector increases detection accuracy and reduces the computation time. Simpler
classifiers (having a reduced number of features) reject themajority of the false posi-
tives before more complex classifiers (having more features) are used to reject difficult
sub-windows.

Stages in the cascade are constructed with the Adaboost algorithm, training a strong
classifier which achieves a minimum detection rate (dmin = 0.995) and a maximum
false positive rate (fmax = 0.40). The training set is composed of the TS positive
examples and the non-vehicle images separated in 12 different folders (the maximum
number of stages). Subsequent classifiers are trained usingthose non-vehicle images of
the corresponding folder which pass through all the previous stages.

An overall false positive rate is defined to stop the cascade training process (F =
43 ∗ 10−7) within the maximum number of stages.

This time, the average accuracy (AA) and false positives (FP) where calculated
using a five-fold cross validation procedure. We obtain five detectors from five differents
TS and VS randomly obtained.



4.4 Results

Classifier DR (%) FP Time
HoG - 100 fts 69.0 1289 3,52
HoG - 150 fts 72.5 1218 4,20
HoG - 200 fts 83.1 1228 5,02

Haar - 100 fts 96.5 1443 2,61
Haar - 150 fts 95.7 1278 3,93
Haar - 200 fts 95.8 1062 5,25

Table 1.Single stage detection rates (Haar and HoG classifiers)

Table 1 shows the detection rate of the single stage detectortrained either on Haar
features or on HoG features with respectively 100, 150 and 200 features. These results
are very interesting though quite predictible. As seen before, HoG classifiers computes
a distance from the test sample to a "vehicle model" (the meanhistograms). These are
generating classifiers. When the number of considered features increases, the model is
refined and the detection rate increases while the number of false positives keeps stable.
On the other hand, Haar classifiers are discriminative classifier evaluating a fronteer
between positive and negative samples. Now, the fronteer isrefined - and the number of
false positives decreases - when the number of features increases. Figure 4 presents the
ROC curves for each detector. As told before, for a given detection rate, the number of
false positives is lower for Haar classifiers than for HoG classifiers.
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Fig. 4. ROC curves for Haar and HoG detectors.

Table 2 shows results of cascade detectors using Haar and HoGbased features. We
also tested the effect of increasing the size of the negativeset in each training stage.



Classifier Stages # Features Negatives DR (%) FP t (seg)
HoG 9 87 2000 96.8 1107 0.57
HoG 11 152 3000 97,5 1032 0.71
Haar 12 332 2000 94 447 0.83
Haar 12 386 3000 94,5 387 0.80

Table 2.Multi stage detection rate (Haar and HoG classifiers)

The behavior of each detector is the same as described before. HoG detector try to
construct a finer vehicle model to take into account the new negatives. The number of
features used increases twice and as the model refines, the detection increases slowly.
But the number of false positives does not changes significantly. Haar detector refines
the fronteer using somemore features and the number of falsepositives decreases while
the detection keeps quite stable.

5 Conclusions

This communication deals with a benchmark comparing Haar-like features and His-
tograms of Oriented Gradients features applied to vehicle detection. These features are
used in a classification algorithm based on Adaboost. Two strategies are implemented:
a single stage detector and a multi-stage detector. The tests - applied on realistic on-
road images - show two different results: for the HoG (generative) features, when the
number of considered features increases, the detection rate increases while the number
of false positives keeps stable; for the Haar-like (discriminative) features, the number
of false positives decreases. Future works will be orientedto combined these behaviors.
An approach could be build using simultaneously both feature types. We should also
select relevant features.
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