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Abstract

In this study, a method for human action recognition is proposed. Only one camera is used, without calibration. Viewpoint invariance
is obtained by several acquisitions of the same action. The originality of the method consists in characterizing each sequence globally, to
enhance the robustness. After detection of moving areas throughout each image, a binary volume is obtained, composed by all the sil-
houettes of the moving person. This space-time volume is characterized by a vector of its 3D geometric moments. These moments are
normalized to be invariant to the position, scale and duration of actions. Action recognition is then carried out using a nearest neighbor
classifier based on Mahanalobis distance. Results are presented on a base of 1614 sequences performed by seven persons and categorized
in eight actions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The recognition of human activity has received much
attention from the computer vision community and has
led to several surveys (Gavrila, 1999; Wang and Singh,
2003; Hu et al., 2004). It leads to modern applications such
as video surveillance for security, human–computer inter-
action, entertainment systems and monitoring of patients
or old people, in hospitals or in their homes. The different
existing approaches can be divided in four categories: (i)
3D approaches without shape model, (ii) 3D approaches
with volumetric models such as elliptical cylinders, (iii)
2D approaches with explicit shape model such as stick fig-
ures and 2D ribbons and (iv) 2D approaches without expli-
cit shape model. Since human body is not a rigid object and
may present a multitude of shapes and postures even for
the same person, a robust modeling is difficult to obtain.

Appearance models are therefore preferred over geometric
models, in most cases. Recognizing human action can then
be considered as the issue of classifying time varying data.
This can be carried out by matching a request sequence
with a set of labeled sequences which represent typical
actions. To perform this task, actions can be characterized
either globally, or as a temporal chain of local features.

1.1. Global representation of sequences

This representation has the advantage of not considering
sequences as temporal objects. Therefore, one action is rep-
resented by only one feature vector, computed on the whole
sequence. This point allows the use of simple similarity mea-
surements (e.g. Mahanalobis distance), to recognize the
action’s label. Using this approach, Bobick and Davis
(2001) characterize each action with (i) a binary motion-
energy image (MEI), representing locations where motion
has occurred through the sequence and (ii) a motion-history
image (MHI) where intensity is a function of recency of
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motion at each pixel. A statistical model of the 7 Hu
moments (Hu, 1662) is then generated over a set of MEIs
and MHIs. For the recognition of actions, the Mahanalobis
distance is estimated between the moment description of the
query and those of the known actions. Davis (1998) also
makes use of MHIs and characterize actions by multiple his-
tograms of local motion orientations to recognize move-
ments. As an extension, Weinland et al. (2005) introduce
motion history volumes (MHV) as a free-viewpoint repre-
sentation for human actions. They propose methods to align
and compare MHVs of the different actions to learn and rec-
ognize basic human action classes. Ke et al. (2005) extract
volumetric features on the whole video sequence optical flow
field. They propose an extension of Viola and Jones method
by generalizing 2D box image features to 3D spatio-tempo-
ral volumetric features. This permits event detection and
action classification in video data. Efros et al. (2003) make
use of motion descriptors based on optical flow measure-
ments in spatio-temporal volumes and utilize an associated
similarity measure to recognize human actions at lower res-
olutions. Shetman and Irani (2005) propose an extension of
the two-dimensional image correlation into three-dimen-
sional space-time video volumes correlation. With this sim-
ilarity measure they are able to detect occurrences of given
behavior in video sequences. As in object recognition, Dol-
lar et al. (2005) characterize actions by detecting and using
sparse informative feature points (e.g. space-time corners)
in the three-dimensional (x,y, t) video data. Volumes of
3D gradient fields surrounding these feature points are used
for the recognition. In Chomat and Crowley’s study (1999),
local spatio-temporal appearance is used for a probabilistic
recognition of activities. Joint statistics of space-time filters
are employed to define histograms which characterize the
actions to recognize. These histograms provide the joint
probability density functions required for the recognition
using Bayes rule. Zelnik-Manor and Irani (2001) consider
events as long term temporal objects and characterize them
by spatio-temporal features at multiple temporal scales.
Based on this assumption, they use a simple statistical dis-
tance measure between video sequences to isolate and cluster
events within long sequences.

1.2. Sequence modeling as temporal objects

In the previously mentioned methods, actions were con-
sidered globally and not as a temporal set of images. This
allows obtaining robust features and using simple distance
measures to recognize actions which are represented by
only one feature vector. A drawback of these methods is
the difficulty to segment video sequences into action consis-
tent parts, which is also very time-consuming. The follow-
ing approaches consider sequences as temporal sets of local
features. Li and Greenspan (2005) recognize and estimate
the scale of time-varying human gestures by exploiting
the changes in silhouette contours along spatio-temporal
directions. Contours are thus parameterized and their evo-
lution is considered as a temporal set. Dynamic time warp-

ing (DTW) and mutual information are then employed to
match and recognize models. Pierobon et al. (2005) also
extract features directly from 3D data (x,y, t) which makes
the system insensitive to viewpoint. Frame by frame
descriptions, generated from gesture sequences are then
collected and compared using DTW.

Martin and Crowley (1997) propose a system for hand
gesture recognition composed of three modules including
tracking, posture classification and gesture recognition by
a set of finite state machines. Cupillard et al. (2004) also
use finite state automatons for recognizing sequential sce-
narios for metro surveillance. For composed scenarios, they
employ Bayesian networks proposed by Hongeng et al.
(2000). Other researchers prefer to use Hidden Markov
Models (HMM) (Rabiner, 1990) which may be a useful tool
for the recognition of patterns of variable durations. Yam-
ato et al. (1992) developed the first HMM-based gesture rec-
ognition systems to distinguish between six tennis strokes.
Sun et al. (2004) estimate motion parameters at each frame
of video sequences and compute their likelihood. Then, they
characterize and recognize actions using continuous
HMMs. Starner et al. (1998) proposed a real-time HMM-
based system for the recognition of sentence level American
Sign Language (ASL) without explicit model of fingers.
Ogale et al. (2005) use a different approach by representing
human actions as short sequences of atomic poses. After the
extraction of these atomic poses from multiview video
sequences they build a probabilistic context free grammar
(PCFG). The PCFG is used to analyze video sequences
and recognize actions within.

The method presented in this work is based on a global
characterization of sequences proposed by the same
authors (Mokhber et al., 2005). The method described in
this earlier study was however prone to less accurate
parameter estimation, due to a bias in the database separa-
tion. The presented database has therefore been modified.
Similarly, only one camera is employed, without calibra-
tion. Invariance to viewpoint is obtained by several acqui-
sitions of the same actions. Binary silhouettes are obtained
by motion detection and joined together to form a volume.
This space-time shape is then utilized and characterized by
its geometric 3D moments which form a feature vector for
each sequence. These moments are invariant to the posi-
tion, scale, and temporal duration of actions. The feature
vector is then employed in a nearest neighbor framework
for the recognition of actions. Significant improvement of
the method and further experiments are also performed,
compared to the previous approach. An extension of the
system is also proposed, by employing optical flow mea-
surements. This extension leads to slightly inferior results
but permits to avoid the step of motion detection.

Another advantage of the presented approach is that it
takes into account the global motion of objects through
the sequences. Most of the existing methods (e.g. Bobick
and Davis, 2001; Efros et al., 2003) only consider the rela-
tive movement of body parts. Authors often study with
relative motion actions or employ methods where the
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sequences are compensated for the global translation of the
moving object (so that the global motion is not considered).
Ke et al. (2005) or Shetman and Irani (2005) do not utilize
such compensation but they only consider one class of
event. Their methods are more similar to detection pro-
cesses (which consists of detecting one pattern of motion
through a sequence) than recognition ones. The approach
we expose here has the ability to discriminate between dif-
ferent types of actions and between different global motions
(e.g left to right vs. right to left). This helps to differentiate
actions such as ‘‘to walk’’ and ‘‘to jump’’ which are clearly
distinguishable from their global direction of motion.

2. Motion detection

The first step of the activity recognition process consists
of detecting moving pixels throughout sequences. This can
be avoided by the use of optical flow measurement (cf. Sec-
tion 6.3) which can also be considered as space-time
sequential shapes. For the detection, the current image is
compared at any given time to a reference image that is
continuously updated. It is also necessary to remove shad-
ows that are eventually present in the scene. To authorize
multi-modal backgrounds, the history of each pixel of the
reference image is modeled by a mixture of K Gaussian dis-
tributions (Porikli and Tuzel, 2003; Stauffer and Grimson,
1999). The probability of observing the value of the current
pixel Xt is then given by

P ðXtÞ ¼
XK

i¼1

wi;t � NðXt; li;t;Ri;tÞ ð1Þ

where for ith Gaussian at time t, wi;t is the weight of the
Gaussian, li;t is its mean vector and Ri;t its covariance ma-
trix. N( ) is the Gaussian probability density function de-
fined as followed:

NðX; l;RÞ ¼ 1

ð2pÞn=2jRj1=2
exp � 1

2
ðX� lÞTR�1ðX� lÞ

� �

ð2Þ
where n is the dimension of the vector. In this study n is
equal to 3 because we chose to work with color images with
three channels (RGB). Initialization of the Gaussian mix-
ture is carried out by the K-means algorithm on the first
images of the sequence where it is assumed that no move-
ment occurs. Each pixel of the background is modeled by

K = 2 Gaussians. It appears that this is a reasonable com-
promise between the computing time and the quality of re-
sults. For each new pixel X t, its nearest Gaussian is
searched. If the distance between this Gaussian and the
current pixel is less than a threshold value, the latter is as-
signed to the background. Otherwise, it is classified as a
pixel belonging to a moving object. To consider lighting
changes during the process of acquisition, the pixels labeled
as background are used to update the reference image and
thus the Gaussian they are closest to:

lt ¼ ð1� aÞlt�1 þ aXt

Rt ¼ ð1� aÞRt�1 þ aðXt � ltÞðXt � ltÞ
T

ð3Þ

where a is empirically set to 0.1. This method leads to rea-
sonably good detection results. However, shadows are often
detected as a moving object. As a result, the shapes of the
detected silhouettes are significantly deteriorated and dis-
turb the algorithm of action recognition. A second stage
is employed to address this issue. In this work it is assumed
that shadows decrease the brightness of pixels but do not af-
fect their color, as proposed by Porikli and Tuzel (2003).
Thus, the angle U between the color vector of the current
pixel X t and that of the corresponding background pixel
Bt, (mean of the nearest Gaussian), is an effective parameter
to detect shadows. Note that if U is below a threshold value,
and the brightness of the current pixel is lower than the
brightness of the background, it is assumed that the pixel
corresponds to shadow. Therefore, shadow is defined as a
cone around the color vector corresponding to the back-
ground, as shown in Fig. 1. At the end of the process, only
pixels detected as moving by the mixture of Gaussian and
which do not correspond to shadows are preserved. Several
morphological operations end this stage and lead to a bin-
ary map of moving pixels, for each image.

Fig. 1. Shadow is defined as a cone.

Fig. 2. Typical results for poor and good motion detection.
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As can be seen in Fig. 2a and b, fairly good detection
results are obtained. However, as presented in Fig. 2c,
for some images of these sequences, the detection is not
as clear. This is due to the close similarities between back-
ground colors and those of the moving person. Nonethe-
less, the space-time characterization of these binary
images, presented in Section 3, is robust enough to lead
to quite acceptable action recognition results.

It may be observed through the displayed figures that
the background image is relatively simple. However, for
more complicated backgrounds, the detection of moving
areas would be as efficient as here. The only condition
for obtaining acceptable results, is that the background
color should be different than the color of the moving
object (complicated backgrounds are therefore even more
suitable for this process).

3. Characterization of space-time silhouettes

Features representative of the sequence are extracted
from all the binary images obtained by the detection process.
Our initial idea was to represent each binary silhouette by its
geometrical two-dimensional moments. These moments
were normalized to obtain invariance in translation and scal-
ing. However, an important piece of information appears to
be missing after the normalization. This is due to the fact that
actions which represent a person walking from the left to the
right, from the right to the left, or approaching the camera
have similar feature vectors. For example, when a person
approaches the camera the change in height that character-
izes this action disappears during normalization. To avoid
this problem and obtain robust features, we chose to work
with global ‘‘space-time volumes’’ composed by the binary
silhouettes extracted from each sequence (i.e. all moving
points of the sequence). To form these volumes, all the binary
images obtained by motion detection for one action are con-
catenated together in chronological order (according to the
temporal axis). Fig. 3 presents a three-dimensional view of
such a volume for the action ‘‘to crouch down’’.

These volumes are characterized by their three-dimen-
sional geometric moments.

Let {x,y, t} be the set of points belonging to the binary
‘‘space-time volume’’ V(x,y, t), where x and y represent the
space coordinates and t, the temporal coordinate. The
moment of order (p + q + r) of this volume is determined by:

Apqr ¼ Efxpyqtrg ¼
R R R

V ðx; y; tÞxpyqtr dxdy dtR R R
V ðx; y; tÞdxdy dt

ð4Þ

where E{x} represents the expectation of x. In order to
work with features invariant in translation, the central mo-
ments are considered, as follows:

Acpqr ¼ Efðx� A100Þpðy � A010Þqðt � A001Þrg ð5Þ

These moments must also be invariant to the scale to
preserve invariance with the distance of action or with
the size of people. A direct normalization on the different
axes, by dividing each component by the corresponding

standard deviation is not desirable because it leads to an
important loss of information, that is, the shape of the bin-
ary silhouettes appears to be spherized. Hence, an identical
normalization is carried out on the first two axes, while the
third (time) is normalized, separately. The normalization
performed by preserving the ratio of width-to-height of
the binary silhouettes is thus obtained by the following
relation:

Mpqr ¼ E
x� A100

Ac1=4
200Ac1=4

020

 !p
y � A010

Ac1=4
200Ac1=4

020

 !q
t � A001

Ac1=2
002

 !r( )
ð6Þ

4. Non-binary silhouettes

Since the space-time volume V(x,y, t) has only binary val-
ues, all space-time points used to compute the expectation
(i.e. the moment) have the same weight. Using this method
every motion-detected point has the same importance for
the moment estimation. This includes details in the silhouette
and false detected points due to noise or poor motion detec-
tion. The purpose of the present study is to consider the glo-
bal movement of a person’s body. For example, when a
person sits down, his silhouette becomes smaller and closer
to the ground. It is not desirable for us to give importance
to the relative motion of small body parts such as hands or
even arms and legs. It would therefore be interesting to
advantage the points that are located near the silhouette cen-
ter (i.e. those that characterize more global motion) over
those that are closer to the boundaries. For this purpose
new space-time volumes V2(x,y, t) and V3(x,y, t) are con-
structed, which are non-binary. Based on V, V2 is computed
by assigning to every pixel, its distance to the nearest back-
ground pixel in the same frame. If the pixel already corre-
sponds to background, it has zero-value. V3 is built by
assigning to each pixel its distance to the nearest background
pixel in the whole volume. Fig. 4b and c present the result of
such operations. The values of these new space-time volumes
may be used to compute the vector of moments. Accord-
ingly, the weight of space-time points is no longer uniform
in the expectation estimation. It is proportional to the value

Fig. 3. Space-time binary volume for a typical action.
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of V2 or V3 at any considered point. In Section 6.3, the
geometric moments are also estimated over the norm and
squared norm of optical flow volumes and results are
compared.

5. Presentation of the sequence database

A sequence database comprising eight actions is
considered:

(1) ‘‘to crouch down’’,
(2) ‘‘to stand up’’,
(3) ‘‘to sit down’’,
(4) ‘‘to sit up’’,
(5) ‘‘to walk’’,
(6) ‘‘to bend down’’,
(7) ‘‘to get up from bending’’, and
(8) ‘‘to jump’’.

Various viewpoints were acquired for each action: front,
45�, 90�, �45� and �90�. Each action was executed by
seven people, and repeated 230 times on average. The data-
base comprises 1614 sequences. Presented below, are some
examples of images of the database representing various
actions and silhouettes of actors (Fig. 5).

The scale of actions (i.e. the distance with respect to
the camera) may also change from one sequence to the
other. Fig. 6 presents the binary images obtained when
a same person performs the same action at two different
scales.

For each action, a vector of features composed
of the 14 moments of 2nd and 3rd order is
considered:

O¼ fM200;M011;M101;M110;M300;M030;M003;M210;M201;M120;

M021;M102;M012;M111g

Fig. 4. Non-binary silhouettes obtained by distance computing.

Fig. 5. Sample images from the sequence database.

Fig. 6. A person performing the same action at two different scales.
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Note that the moment M020 is not calculated. This is due
to the normalization which makes M020 inversely propor-
tional to M200. In addition, the moment M002 is always
equal to 1.

6. Recognition results

For the recognition, the sequence database is divided
into two disjointed sets: (1) a reference database, and (2)
a test database. To test invariance of the method compared
to people’s morphology, the reference database is made up
of actions carried out by six people. The sequences
achieved by the last person were assigned to the test data-
base. The recognition is done by searching for the vector of
features corresponding to the query action the nearest vec-
tor in the reference database, using the Mahalanobis dis-
tance. The action to be recognized is then assigned to the
class of this nearest vector.

6.1. Recognition with binary volumes

Raw binary volumes are initially used to compute the
vector of moments and recognize actions. Presented in
Table 1, are the seven recognition rates obtained by placing
each of the seven persons in the test database one by one.
The average recognition rate on the seven persons is also
presented.

The average recognition rates, on the eight actions vary
from 77.1% to 97.2%, depending on the person. Thus, one
may conclude that actions are well recognized. Note that
the person present in the test database is not at any time
present in the reference database. This shows that the char-
acterization is relatively invariant to the silhouette of the
person. The worst recognition rate (77.1%) is obtained
for person 7. This is not surprising because this person pre-
sents a particular binary silhouette due to her clothing, as
shown in Fig. 7. This person wears a long skirt (and it is
the only person with a skirt in the base). In spite of this

characteristic, the recognition rate is still acceptable, which
demonstrates that the global characterization of actions is
robust. An extension of the number of actors in the base is
envisaged in order to improve classification results. In
Table 2, the confusion matrix obtained by averaging the
seven confusion matrices corresponding to the different
people, is presented. The most poorly recognized action
is action 4 (‘‘to sit up’’) sometimes confused with action 7
(‘‘to get up from bending’’) which is a nearly similar action.
Other actions such as (‘‘to crouch down’’ and ‘‘to walk’’)
are significantly well recognized (with recognition rates of
97.2% and 98.4%, respectively). The recognition rate for
the remaining actions is acceptable.

6.2. Recognition with ‘‘distance’’ volumes

The distance to background is computed on the
obtained silhouettes, thus leading to non-binary space-time
volumes. The vector of features is computed on each vol-
ume and used for the recognition. Tables 3 and 4 present
the average recognition rates per person and the average
confusion matrix that are obtained by computing the dis-
tance to the background on the same frames (V2). As can
be seen, the results are slightly improved. The average rec-
ognition rate on the seven persons is 90.0% (w.r.t. 89.5%
for the previous method). It is assumed that the improve-

Table 1
Recognition rates using binary volumes

Person 1 2 3 4 5 6 7 Average
Rate 89.9 90.2 82.7 97.2 92.1 95.2 77.1 89.5

Fig. 7. Detection of a particular silhouette.

Table 2
Average confusion matrix using binary volumes

1 2 3 4 5 6 7 8

1 97.2 0.0 0.0 0.0 0.0 2.8 0.0 0.0
2 0.0 90.5 0.0 0.0 0.0 0.0 9.5 0.0
3 4.8 0.0 84.1 0.0 0.0 9.4 1.2 0.5
4 0.0 3.3 0.0 76.1 0.0 0.0 17.1 3.6
5 0.0 0.0 0.0 0.0 98.4 0.9 0.2 0.4
6 11.1 0.0 0.0 0.0 0.0 88.3 0.0 0.5
7 0.0 10.7 0.0 0.7 0.0 0.0 88.2 0.3
8 0.0 8.6 0.0 0.0 0.0 1.7 0.9 88.8

Table 3
Recognition rates using same frame distance

Person 1 2 3 4 5 6 7 Average
Rate 92.6 88.3 88.1 93.1 89.8 96.2 77.1 90.0
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ment is indeed due to the noise reduction and the charac-
terization of more global motions provided by this new
space-time volume. Person 7 still yields the lower rate,
and confusion stands between the same actions, which is
not surprising. The results obtained by employing the dis-
tance to background on the whole volume (V3) are also
similar but less enhanced (Tables 5 and 6). As shown in
Fig. 4c and b, V3 is less accurate than V2. The latter gives
a strong weight to the center of silhouettes and thus advan-
tages the motion of the centroid of the person. On the other
hand V3 gives more importance to the 3D center of space-
time volumes and do not emphasize the center of silhou-
ettes at each frame. Nonetheless, the average recognition
rate stands at 89.7%.

6.3. Recognition with optical flow volumes

Another solution for the action recognition problem
consists of employing optical flow measurements. This
method has the advantage of avoiding the step of motion
detection. Optical flow (Lucas and Kanade, 1981) is there-
fore computed over every sequence, which characterizes
motion speed and direction at every pixel of every frame.
Results will be compared to those obtained with binary sil-
houettes of motion detection.

As moments have to be calculated over positive scalar
functions the norm V and squared norm V2 of flow vectors
are utilized. If Vx and Vy are the horizontal and vertical
flow channels at pixel (x,y) and time t, V is defined by:

V ðx; y; tÞ ¼ V 2
x þ V 2

y

� �1=2

ðx; y; tÞ ð7Þ

and is used as space-time volume to compute the feature
moments. In this method, higher weight is given to pixels
that move faster. Fig. 8 presents the map of V and V2 at
key frames of action ‘‘to crouch down’’.

Tables 7 and 8 present the recognition rates. The results
are deteriorated compared to those obtained with binary or
distance volumes. The average recognition rate is 85.8%
when employing V as weighting function and 85.9% when
employing V2. A difference that should be noted on these
last results is that person 7 presents similar results as the
other persons. The characterization is therefore not as sim-
ilar to binary silhouettes as the ‘‘distance to background’’
characterization was. In addition, since faster pixels have
more important weights, the centers of the silhouettes are
not privileged in the moment estimation. By avoiding the
step of motion detection, this method however has the

Table 4
Average confusion matrix using same frame distance

1 2 3 4 5 6 7 8

1 94.6 0.0 0.0 0.0 0.0 5.4 0.0 0.0
2 0.0 93.6 0.0 0.5 0.0 0.0 6.0 0.0
3 9.9 0.0 77.3 0.0 0.0 10.6 0.6 1.6
4 0.0 7.9 0.0 76.3 0.0 0.0 15.3 0.5
5 0.0 0.0 0.2 0.0 99.4 0.0 0.0 0.4
6 6.8 0.0 0.7 0.0 0.0 92.5 0.0 0.0
7 0.0 10.1 0.0 3.5 0.0 0.0 86.4 0.0
8 0.9 5.0 0.0 0.0 0.0 0.0 0.0 94.1

Table 5
Recognition rates using whole volume distance

Person 1 2 3 4 5 6 7 Average
Rate 95.8 85.9 85.7 94.4 88.2 97.1 74.0 89.7

Table 6
Average confusion matrix using whole volume distance

1 2 3 4 5 6 7 8

1 96.7 0.0 0.0 0.0 0.0 3.3 0.0 0.0
2 0.0 92.4 0.0 0.5 0.0 0.0 7.1 0.0
3 8.6 0.0 82.3 0.0 0.0 6.9 0.6 1.6
4 0.0 5.5 0.0 76.0 0.0 0.0 17.9 0.6
5 0.3 0.0 0.2 0.0 98.6 0.0 0.0 0.9
6 8.9 0.7 0.0 0.0 0.0 90.5 0.0 0.0
7 0.0 10.0 0.0 2.8 0.0 0.0 86.9 0.3
8 0.0 8.1 0.0 0.0 0.0 3.1 0.0 88.8

Fig. 8. Optical flow vector norm and squared norm images. (a) Original frame; (b) flow norm; (c) squared norm.

Table 7
Recognition rates using optical flow norm

Person 1 2 3 4 5 6 7 Average
Rate 86.9 78.2 89.3 93.8 80.3 87.6 76.0 85.8

Table 8
Recognition rates using optical flow squared norm

Person 1 2 3 4 5 6 7 Average
Rate 90.2 75.2 89.0 91.3 81.1 84.8 87.5 85.9
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counterpart of requiring that only one person is present in
the scene.

7. Discussion

As mentioned before, an advantage of the global repre-
sentation of sequences is to avoid temporal representation.
Actions are therefore represented by only one vector,
which permits to use simple measurements to determine
the similarity between actions and recognize them. Further-
more, one can presume that this global characterization is
even more robust than temporal object modeling of
sequences. To convince ourselves of this point, results
obtained with a semi-global characterization are consid-
ered. Here the extracted features are computed on
‘‘space-time micro-volumes’’ composed of several (but
not all) successive frames of the sequences. The feature vec-
tors are therefore extracted on a sliding temporal window,
which comprise the binary masks of moving points
detected through N frames. This allows representing a
sequence by a temporal succession of semi-global feature
vectors. Hidden Markov Models are then employed to
learn and recognize the actions. A study is performed on
the evolution of the recognition rate according to the
length N of the temporal window and the number of states
used for the HMMs. The number of states varies from 1 to
6 and the length of the temporal window varies from 2 to
17 frames. Fig. 9 presents the results and demonstrates that
the highest window length associated to the lowest number
of states lead to the best results. This shows that the char-
acterization becomes more robust when the sequences are
considered more globally. The results obtained by this
approach (89.8%) are similar to the recognition rates pre-
sented in this work. Thus, a semi-global characterization
may be a valuable alternative for action recognition.

Another issue that should be pointed out is that results
become more accurate when more global motion is consid-

ered. The method based on the distance of pixels to the
background gives rise to a non binary function that charac-
terizes the shape to be recognized. Blank et al. (2005) utilize
a similar approach to recognize actions. They assign for
every internal point of the silhouette a value that reflects
the mean time required for a random walk to hit the
boundaries. This function (as well as the one proposed
here) has level sets that represent smoother versions of
the bounding contour of the silhouette. To recognize
actions, Blank et al. also use global moment features of this
function and obtain significantly improved results. How-
ever, their database is only comprised of binary masks that
are compensated for translation of the center of mass and
all silhouettes have the same scale. Therefore, they only
consider the motion of the body parts relative to the torso.
As we mentioned before, our method does not make use of
such compensations but instead keeps the information
about the change in position and scale from one frame to
another. This allows th recognition of the direction of
motion (i.e. left or right orientation) and whether a person
is moving towards the camera or far from it.

Results obtained with optical flow measurements show
that the speed of body parts is also an effective cue for
the recognition of actions, but is not as well suited as the
variation of the shape and position of the moving object
when considering more global motions.

8. Summary and conclusions

In this work, a general method to recognize actions of
everyday life is proposed. The approach has the ability to
distinguish between different classes of actions. It does
not compensate for the global motion so that the recogni-
tion of some actions is facilitated. Motion detection is ini-
tially performed on each image by modeling each pixel by a
mixture of Gaussians and removing shadows. The 3D vol-
ume constructed for each sequence from the binary images
resulting from detection, is characterized by its 3D geomet-
rical moments. Those are normalized in order to obtain
invariance to the position and scale of actions, to the mor-
phology of people executing them and to the duration of
actions. Invariance to viewpoint is obtained by several
acquisitions of the same action at different angles.
Moments are also calculated over non-binary volumes in
which the value of each pixel depends on the distance to
the background. Using this method, a recognition rate of
90.0% is obtained on a database of 1614 sequences, divided
in eight actions and carried out by seven persons. Optical
flow measurements are made and used as well for the fea-
ture estimation. They provide the less improved results,
compared to the other methods.

A parallel study is performed, using semi-global features
estimated on a sliding sub-window of sequences. By vary-
ing the parameters of this method, it is observed that the
recognition rates increase as the features are considered
more globally on the sequence. One can therefore conclude
that a global or semi-global representation of sequences is
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Fig. 9. Recognition rate according to the length of the temporal window
and the number of states in HMMs.
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more robust than approaches which consider actions as
temporal objects. An extension of the number of actors
in the database is envisioned to be more robust to the sil-
houette of the person or his clothing and improve classifi-
cation results. Furthermore, increasing the number of
examples may lead to a finer modeling of each class.
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