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Surface tension effects are dominant in miniaturization. Therefore, a lot of capillary forces models have been
recently discussed in the literature. The work reported in this paper intends to prove the equivalence between two
methods which are very widespread in capillary forces computation at equilibrium: the energetic method based on
the derivation of the total interfacial energy and a second method summing both pressure and tension terms obtained
from the meniscus profile (based on the Laplace equation). The results are supported by different qualitative arguments,
an analytical proof in the case of a prism-plate configuration, numerical simulation, and experiments in the case of
two millimetric spheres.

1. Introduction

With the current trend toward device miniaturization, a lot of
mechanical functions are being achieved using surface tension
effects which present a particularly interesting scaling behavior,
since the surface tension forces linearly depend on the charac-
teristic size. For example, let us cite the use of surface tension
in micromanipulation and microassembly,1-6 in microfluidics,7

in optical developments,8 and in actuation.9 Other fields of
research involve the modeling of capillary forces such as, for
example, microelectromechanical system reliability and micro-
fabrication10-13 or capillary condensation.14

A lot of work has thus been reported on capillary forces
modeling (see, e.g., refs 15-22) based on the so-called energetic
method (i.e., derivation of the total interface energy) or on a
direct force computation from the meniscus geometry, with the

latter being either determined exactly through the numerical
solving of the so-called Laplace equation or approximated by a
predefined geometrical profile such as a circle (i.e., toroidal
approximation) or a parabola. The energetic approach is usually
quite clear on its approximations: the liquid-vapor interface
energy is sometimes neglected in order not to compute the exact
shape of the meniscus, but an exact solution can be found if the
lateral area is computed, for example, by means of a finite element
solver such as Surface Evolver (see ref 23). On the contrary,
literature results are not so clear as far as the other method is
concerned. For example, some authors neglect the so-called
tension term with respect to the Laplace term. This sometimes
pertinent assumption has led many authors to add the tension
term to the result obtained by deriving the interface energy, that
is, to mix both methods. This paper aims at clarifying this situation
by showing that the capillary force obtained by deriving the
interface energy is exactly equal to the sum of the Laplace and
tension terms. For this purpose, section 2 briefly reminds the
principle of both methods. Their equivalence is then considered
with three qualitative arguments exposed in section 3. An
analytical argument is developed in section 4 in the case of the
interaction between a prism and a plane. Finally, a comparison
with experimental results is led in section 5, and, after a discussion
in section 6, conclusions are drawn in section 7. This papers ends
with an Appendix including some complements to the develop-
ments of section 4.

2. Equations

As previously explained, this paper aims at comparing two
methods for capillary forces calculations, which are exposed in
this section.

2.1. Laplace Approach. The so-called Laplace approach
consists of determining the force from the shape of the meniscus.

whereFL is the so-called Laplace or pressure term andFT is the
so-called tensile or surface tension term.FL arises from the
pressure difference across the meniscus, which applies to the
wet area of the solids in interaction. This pressure difference∆p
(Pa) is described by the so-called Laplace equation, linking this
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pressure difference to the mean curvatureH (1/m) of the meniscus
and the surface tensionγ (N/m):

It will be noted that, according to the curvature sign of the
meniscus, this Laplace termFL can be either positive or negative.
This termFL is given by

whereASL is the area of the solid-liquid interface of the solid
on which the capillary force to compute is applied. In axially
symmetric cases,ASL can be replaced by (see Figure 1)

wherer1 is the radius of the triple (circular) line on the solid on
which the capillary force to compute is applied.

Equation 2 is valid for vanishing Bond numbers, that is, when
the characteristic height of the meniscus is quite smaller than the
capillary lengthLc ) (γ/Fg)1/2. Otherwise, the effect of the
hydrostatic pressure has to be taken into account:

The second termFT is due to the tensile action of the surface
tension along the triple line (only thez-component, projected by
sin θ1 is here taken into account):

In axially symmetric cases,FT can be rewritten into

An example of such a force determination in the axially symmetric
case is given in ref 17.

2.2. Energetic Approach.The energetic approach is based
on the derivation of the total interface energyW given by

whereγ is the surface tension of the liquid,Σ is the liquid-vapor
area,ASVi (ASLi) is the solid-vapor (solid-liquid) area on solid
i, γSVi (γSLi) is the solid-vapor (solid-liquid) interface energy
of solid i, andC is an arbitrary constant, which will be discarded
by derivation at the next step. Usually, taking advantage from
the link betweenASLi andASVi

whereC′ is a constant and using the Young-Dupréequation,
interface energies can be replaced by contact angles and surface
tension:

The total energy can now be derived with respect to the separation
distancez (see Figure 1), relying on the fact that the volume of
liquid is constant (dV/dz ) 0), leading to

Numerically, the derivative is replaced by the finite difference:

An example of such force computation is described in ref 14.
2.3. Equivalence of Both Approaches.The purpose of this

paper is to prove that

3. Qualitative Arguments

The energetic approach implicitly involves both Laplace and
tension terms. As a first argument, let us illustrate this in the case
of two parallel plates (see Figure 2) separated by a distanceD
(for the need of convenience, both contact angles have been
chosen equal toθ ) π/2). In this case, the total interface energy
W is equal to

whereγ is the surface tension of the liquid, 2πrD the lateral area
of the meniscus,γSL is the surface energy of the solid-liquid
interface,γSV is the surface energy of the solid-vapor interface,
andC′ is an arbitrary constant circular area larger than 2πr2 (it
will disappear by derivation at the next step). Now, using the
Young-Dupréequation (γSV ) γ cosθ + γSL) and introducing
the volume of liquidV) πr2D, the latter equation can be rewritten
as

Sinceθ ) π/2, the derivation of the latter equation leads to

which can be compared to the force established from the curvature:

This leads to a pressure difference

Figure 1. Axially symmetric configuration.

Figure 2. Case of two parallel plates separated by a gapD.

γSVi - γSLi ) γ cosθi (10)

F ) - dW
dz

(11)

F ) -
Wi+1 - Wi

∆zi
(12)

F ) FL + FT ) - dW
dz

(13)

W ) 2πrDγ + 2πr2γSL + (C′ - 2πr2)γSV + C (14)

W ) 2γxVπD - 2
Vγ
D

cosθ + constant (15)

F ) -γxπV
D

(16)

2H ) 1
r

+ 0 (17)

∆p ) 2Hγ (2)

FL ) ∆pASL (3)

ASL ) πr1
2 (4)

∆p ) 2Hγ - Fgz (5)

FT ) Iγ sin θ1 ds (6)

FT ) 2πr1γ sin θ1 (7)

W ) γΣ + ∑
i)1

2

ASViγSVi + ∑
i)1

2

ASLiγSLi + C (8)

ASLi + ASVi ) C′ (9)
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and henceforth to a “Laplace” term of the force equal to

Note that this term is positive, that is, repulsive, because the
meniscus is convex, leading to a positive pressure difference.
The “tension” term of the forceFT can be written as

leading to a total capillary force equal to

Since eqs 16 and 21 are equal, we conclude that the force derived
from the energy well represents both terms of the capillary force
(note well that the Israelachvili approximationF ) 4πγR cos
θ proposed in eq 15.35 of ref 15 has been derived this way,
consequently including both terms).

A second argument is geometric. Let us consider the case
depicted in Figure 3 where both contact angles are equal toπ/2:
in this case, the meniscus is clearly convex, leading to a repulsive
“Laplace” force which cannot be modeled byF ) 4πRγ cosθ
which would lead to zero sinceθ ) π/2. On the contrary, if we
take the (always) attractive “tension”, we (qualitatively) see that
we could have a total force equal to zero. This is the second
argument showing that the Israelachvili approximation involves
both terms, because otherwise it cannot explain the simple case
of Figure 3.

A last argument is based on numerical simulation (see Figure
4). For a sphere-plane configuration and assumingR) 13 mm,
γ ) 72 mNm-1, andV ) 1 mm3, we compared the Israelachvili
approximation (solid line) with both the “Laplace” term (0) and
the total simulated capillary force (O): we see that the Israelachvili
approximation is still closer to the total force than to the “Laplace”
term. Consequently, we conclude that the “tension” term is well
included in this approximation.

4. Analytical Arguments

4.1. Definition of the Case Study.We propose to demonstrate
the equivalence of the approaches on a 2D 1/2 prism-plane
configuration. The prism is defined by its length in they-direction
(see Figure 5),L, and its angular aperture,φ. Its location is
defined by the distanceD between its apexA and the plane. Let
us assume a volume of liquidV wetting the plane with a contact
angleθ1and the prism with a contact angleθ2. Since the curvature
of the meniscus in the directiony perpendicular to the axisOx
andOz(see Figure 5) is equal to zero, the Laplace eq 2 becomes17

wherex′ ) dx/dz.
Assuming a vanishing Bond number, the hydrostatic pressure

inside the meniscus is neglected by comparison to the Laplace
pressure difference∆p, which is therefore constant in all the
meniscus. Therefore, the right-hand side of eq 22 is constant,
and this equation can be integrated twice with respect toz, in
order to find the relationx ) x(z), with two integration constants

and the undefined pressure difference∆p. A more straightforward
derivation is based on the fact that since one of the curvature
radii is infinite and that the total curvature 2H is constant, the
second curvature radius ((1+ x′2)3/2)/x′′ is constant: let us denote
it asF. Therefore, the meniscus profile is a curve with constant
curvature, that is, a circle given by the following equation:

wherex0 andz0 are the coordinates of the circle center. Once
again, three parameters are to be determined:x0, z0, andF. This
can be done using three boundary conditions: both contact angles
θ1 andθ2 and the volume of liquidV.

4.2. Preliminary Computations. Let us expressx0, z0, and
F as functions of known data (φ, D, θ1, θ2) and the immersion
heighth, which is still unknown at this step but which will be

∆p ) 2Hγ ) γ
r

(18)

FL ) πr2∆p ) γxπV
D

(19)

FT ) -2πrγ ) -2γxVπ
D

(20)

F ) FL + FT ) -γxπV
D

(21)

x′′
(1 + x′2)3/2

) ∆p
γ

(22)

Figure 3. Sphere (radiusR) and plate separated by a gapD ) 0:
contact angleθ ) π/2.

Figure 4. Case of a sphere-plate configuration withR ) 13 mm,
γ ) 72 mNm-1, and V ) 1 mm3. Comparison between the
Israelachvili approximation (F ) 4πγR cos θ, solid line), the
simulated “Laplace” term (0), the simulated “tension” term (]),
and the sum of them (O). The “Laplace” and “tension” terms have
been obtained using the simulation described in ref 17. Note that
a positive force here denotes an attractive one.

Figure 5. Prism-plane configuration.

(x - x0)
2 + (z - z0)

2 ) F2 (23)
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determined using the condition on the volume of liquidV. Note
thatx2 is an intermediary variable and thatx1 will be used later.
For the sake of convenience, the notationR ) θ2 + φ has been
adopted in the following equations:

Additional useful relations are the meniscus equation

the meniscus slopex′

and finally, the rewritten Laplace equation linking∆p andF

h is still to be determined using the volume of liquidV (see next
step).

4.3. Determination of the Immersion Heighth. The volume
of liquid can be used to determine the value of the immersion
heighth, starting from the volume of liquidV as illustrated in
Figure 6

where

Therefore, the equation giving the volumeV can be rewritten as
follows:

By noting

V can be further rewritten into

This latter equation can be rewritten as a second degree equation
with respect to the unknownh:

which leads to

The “-” solution makes no physical sense, since the immersion
height cannot be negative. Consequently

and the variation ofhwith respect to a variation of the separation
distanceD (it will be used in what follows) is given by

4.4. Laplace Equation Based Formulation of the Capillary
Force. As it has previously been explained, the capillary force
can be written as the sum of a term depending on the Laplace
pressure difference∆p and the so-called tension term:

Figure 6. Determination of the immersion height from the volume
of liquid.

AIII )
z0(x0 - x1)

2
(36)

AIV )
F2(π - R - θ1)

2
(37)

V ) 2L[x0(D + h) -
x2h

2
-

F2(π - R - θ1)

2
-

(x0 - x2)(D + h - z0)

2
-

z0(x0 - x1)

2 ] (38)

) L{2x2D + x2h + F2[sin R cosR + 2sinR cosθ1 -
π + R + θ1 - sin θ1 cosθ1]} (39)

[sin R cosR + 2sinR cosθ1 - π + R + θ1 -

sin θ1 cosθ1] ≡ µ(cosθ1 + cosR)2

V ) L[h2( 1
tanφ

+ µ) + 2hD( 1
tanφ

+ µ) + µD2] (40)

h2 + 2hD + µD2 - V/L

µ + 1
tanφ

) 0 (41)

h ) -D ( xD2 - D2µ - V/L

µ + 1
tanφ

(42)

h ) -D + xD2 - D2µ - V/L

µ + 1
tanφ

(43)

dh
dD

) -1 + D
D + h

1
1 + µ tanφ

(44)

x2 ) h
tanφ

(24)

F ) D + h
cosθ1 + cosR

(25)

z0 ) F cosθ1 (26)

x0 ) x2 - (z0 - D - h) tanR (27)

x1 ) x0 - z0 tanθ1 (28)

x ) x0 - xF2 - (z - z0)
2 (29)

x′ ) -
z - z0

x - x0
(30)

∆p ) γ
F

(31)

V ) 2LA (32)

) 2L[x0(h + D) - AI - AII - AIII - AIV] (33)

AI )
x2h

2
(34)

AII )
(x0 - x2)(D + h - z0)

2
(35)
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Using eq 43, the force can be expressed as a function of the
volume of liquidV, the separation distanceD, and the angles of
the problem: contact anglesθ1 andθ2 at the one hand and the
prism angleφ at the other hand. Let us recall thatR ) θ2 + φ.

4.5. Energetic Formulation of the Capillary Force. As
explained in section 2.2, the energetic or thermodynamic approach
is based on the differentiation of the total surface energyWwith
respect to the separation distanceD.

where

Consequently, the reduced surface energyW/(2Lγ) can be written
as

Observing that the expression (h/tanφ) + F sin R - F sin θ1 is
equal tox1 already defined, the reduced energy can be rewritten
into

Definingâ ≡ (π - R - θ1 - sinR cosθ1 + sinθ1 cosθ1)/(cos
θ1 + cosR), we can further write

To compute the force from the energy, the latter equation has
to be derived with respect toD using eq 44 (â is constant with
respect toD):

whereµ, h, and â have been defined in eqs 39, 43, and 55,
respectively. All the other parameters are given data. It should
be now proved that eqs 49 and 58 are equivalent.

4.6. Equivalence of Both Formulations.Equation 58 can be
rewritten as

It is shown in the Appendix that the expression in brackets in
eq 59 is equal to-(cosθ1 + cosR)/tanφ. Therefore, eq 59 can
be rewritten into

In order to let the term sinR present in eq 49 to appear, let us
add and subtract sinR simultaneously to and from the latter
equation: after some (tedious) calculations and using the relation
R ) θ2 + φ, the following expression can be obtained:

As a conclusion, the latter equation leads to a force given by

The negative sign in front of 2L indicates that the force is attractive.
Consequently, it is concluded that the force computation based
on the Laplace equation (eq 49) and the result obtained from the
energy formulation (eq 62) are equal.

5. Experimental Comparison Between Two Spheres

5.1. Benchmark Models.The measures which will presented
in the next subsection have been compared to benchmark models,
describing the capillary forces between two spheres:

(1) Reference 4 has proposed an analytical model based on
the energetic method in which the lateral area of the meniscus
is approximated with a cylinder for the computation of the volume

F ) 2Lx1∆p + 2Lγ sinφ1 (45)

) 2Lγ(x1

F
+ sin θ1) (46)

) 2Lγ
x0

F
(47)

) 2Lγ(x2

F
+

D + h - z0

F
tanR) (48)

) 2Lγ( h
D + h

cosθ1 + cosR
tanφ

+ sin R) (49)

W ) γ(Σ - A1 cosθ1 - A2 cosθ2) + C (50)

Σ ) 2Ll ) 2LF(π - R - θ1) (51)

A1 ) 2Lx1 (52)

A2 ) 2L
h

sinφ
(53)

W
2Lγ

) F(π - R - θ1) -

cosθ1( h
tanφ

+ F sin R - F sin θ1) - h
cosθ2

sinφ
(54)

W
2Lγ

) (D + h) ×
π - R - θ1 - sin R cosθ1 + sin θ1 cosθ1

cosθ1 + cosR
-

h(cosθ1

tanφ
+

cosθ2

sinφ ) (55)

W
2Lγ

) Dâ + h(â -
cosθ1

tanφ
-

cosθ2

sinφ ) (56)

dW
dD

1
2Lγ

)

â + (-1 + D
D + h

1
1 + µ tanφ)(â -

cosθ1

tanφ
-

cosθ2

sinφ ) (57)

)
cosθ1

tanφ
+

cosθ2

sinφ
+ D

D + h
1

1 + µ tanφ
×

(â -
cosθ1

tanφ
-

cosθ2

sinφ ) (58)

dW
2Lγ dD

)
cosθ1

tanφ
+

cosθ2

sinφ
+

D
D + h[π - R - θ1 - sin R cosθ1 + sin θ1 cosθ1

(cosθ1 + cosR)(1 + µ tanφ)
-

1
1 + µ tanφ(cosθ1

tanφ
+

cosθ2

sinφ )] (59)

dW
dD

1
2Lγ

)
cosθ1

tanφ
+

cosθ2

sinφ
- D

D + h
(cosθ1 + cosR)

cosφ

sinφ

) [(cosθ1 cosφ + cosθ1)(D + h) -
D cosφ(cosθ1 + cosθ2 cosφ -

sin θ2 sinφ)]/[(D + h)sinφ] (60)

dW
dD

1
2Lγ

)

h cosφ(cosθ1 + cosθ2 cosφ - sin θ2 sinφ)

(D + h) sinφ
+ sin R

) h
D + h

cosθ1 + cosR
tanφ

+ sin R (61)

F ) - dW
dD

) -2Lγ( h
D + h

cosθ1 + cosR
tanφ

+ sin R) (62)

Comparison between Two Capillary Forces Models Langmuir, Vol. 24, No. 7, 20083161



of liquid and for the contribution of the liquid-vapor interface
energy to the total interface energy. As usual, the immersion
height is assumed to be small. At contact (D ) 0), the proposed
model is (eq A.23 of ref 4)

where 1/R ) 1/R1 + 1/R2 and 2cosθ ) cosθ1 + cosθ2. Let
us note that this equation is formally equal to the Israelachvili
approximation, in whichR is the radius of the sphere interacting
with a plane.

(2) Reference 22 has taken a step further, giving an analytical
approximation of the (assumed to be small) immersion height
(eq 20 of ref 22)

which can be used to compute the force at separation distance
different from zero (eq 18 of ref 22):

These authors claim that “when the attraction force due to the
vertical component of the liquid bridge is taken into account, the
complete formula for the capillary force can be expressed as”
(eq 19 of ref 22)

whereR is the so-called filling angle given by cosR ) 1 - h/R.
(3) Our own numerical computations based on the energetic

approach whose details are presented in ref 14.
5.2. Test Bed Description.The test bed is an atomic force

microscopy (AFM)-like set up at the millimeter scale (its detailed
description can be found in ref 17). In the following experiments,
the liquid used is Rhodia silicone oil R47V50 (γ ) 20.8 mNm-1),
the upper sphere is a steel ball with a diameter of 7.9 mm, and
the lower ball is a ruby hemisphere with a 4 mmdiameter, glued
on a steel cantilevered beam, whose stiffness is of the order of
1 Nm-1. The liquid was dispensed with an Eppendorf manual
dispensing device (0.1-2.5 mm3). The actual volume of liquid
and the contact angles were determined with a CV500 Keyence
camera (see the next section).

5.3. Procedure to Extract the Contact Angles and the
Volume of Liquid. To compare experiments with simulation,
the parameters of the simulation, that is, the contact angles and
the meniscus volume, are evaluated based on pictures of the
meniscus.

First, to estimate the contact angles, profiles of the spheres
and the meniscus are fitted on the picture of Figure 7b which
is obtained from a black and white conversion of Figure 7a.
After a contour detection applied to Figure 7b, the spheres are
fitted with circles and the meniscus is fitted with a 4th degree
polynomial.

Two techniques have been compared to fit the circles: the
first one assumes unknown radii and unknown center positions.
They are all fitted using a least-square fit. The second technique
uses a calibration of the charge-coupled device (CCD) camera
optical scale using a Mitutoyo ceramic slip gauge of 1 mm
thickness. Only the circles centers are then fitted. For the lower
sphere, both techniques match within 1%, while, for the upper
sphere, a 15% error is encountered. This is due to the limited

portion of the upper sphere available for fitting. The calibration
technique has thus been preferred.

Using these curves (the two circles and the two polynomials),
the contact points are then computed. The contact angles are
eventually evaluated using those same curves. The contact angle
between the meniscus and the upper sphere is found to be in the
13-16° interval, while the contact angle between the meniscus
and the lower sphere is found to be zero. One parameter that
could influence the contact angle is the threshold used for contour
detection. Different thresholds showed that contact angles values
are kept within a(5° interval, even for extreme values of
thresholds.

Using these contact angles, computations are made with a
Surface Evolver based simulation tool14 to find a meniscus with
the same neck radius as the experimental meniscus. Figure 7c
shows the superposition of the actual and simulated profiles,
which are in good agreement for a volume of liquid equal toV
) 1.4 mm3.

5.4. Measurements.During the experiments, the separation
distance can be varied from contact to meniscus rupture and the
corresponding force can be measured. This force is then compared
with the models presented in the previous subsection.

Two volumes of liquid have been tested:V ) 0.065 mm3 in
Figure 8 andV ) 1.4 mm3 in Figure 9. The values of all the
parameters are given in the figure captions.

6. Discussion

Figure 8 shows a fairly good agreement between all the models.
Although, eq 65 (eq 18 of ref 22) shows a better agreement with
the experiments than eq 66 (eq 19 of ref 22) for small separation
distances (the contrary is true for large separation distances). It
is difficult to discriminate between both formulations. With the

F ) -4πRγ cosθ (63)

h ) D
2(-1 + x1 + 2V

πRD2) (64)

F ) - 4πRγ cosθ
1 + D/(2h)

(65)

F ) - 4πRγ cosθ
1 + D/(2h)

- 4πRγ sin R sin(θ + R) (66)

Figure 7. (a) Original picture; (b) black and white corresponding
image; and (c) fitting curves: both spheres are fitted with circles
(green lines), and both sides of the meniscus are fitted with a 4th
degree polynomial (blue lines). Based on the contact angles given
by the intersection of these fitting curves, the volume of liquid is
adjusted in the simulation to fit the meniscus profile (red points).
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volume tending to zero, the force with our numerical model
tends to the analytical computations, made with the assumption
of vanishing filling angles. At contact, eq 63 is quite good (it
is exactly equal to eq 65 anyway).

Figure 9 shows the limitations of the approximations made
with the analytical models in the case of a large volume of liquid.
The analytical models do not correctly take into account the
influence of the volume. The experiments and the numerical
model show that, for the same experimental conditions, the volume
has an influence on the force between objects. For larger volumes,
the force is smaller at small distances, while it decreases slower
than that for small volumes, so that the force is larger at large
distances. Anyway, we see that, for large volumes, the additional
tension term in eq 66 is not correct.

7. Conclusions

The contributions of this paper are twofold. First, it has been
shown with three qualitative arguments and analytical develop-
ments in the case of a prism-plane interaction that two widespread
capillary forces models at equilibrium are equivalent to one
another: the energetic approach and the Laplace equation based
approach. Second, it has been shown how powerful the analytical
approximations of eqs 63 and 65 are in the case of small volumes
of liquid. In this case, both formulations (eqs 65 and 66) are
more or less in the uncertainty domain, so that one cannot be said
to be more exact than the other (the first one seems to be better

at small separation distances and conversely). In the case of
larger volumes of liquid, it has been shown that no analytical
approximation could predict the experiments very accurately
(however, they give an excellent order of magnitude). In the case
of our experiments, it seems that the additional term introduced
in eq 66 would not be necessary, leading to a less accurate
prediction. The numerical simulation is in fairly good agreement
with experiments in all cases. Therefore, this numerical tool will
be used in the future to compute the validation limits of all the
analytical approximations, according to a given uncertainty
interval. An inherent limitation of all the discussed models,
analytical or numerical, is that they rely on equilibrium
assumptions. Therefore, a perspective is to investigate the
dynamics of these forces.
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Appendix

In this latter equation, let us replace the expression in brackets
by a new parameterB, which can be reduced to a common
denominator. Using eq 39 to replaceµ andR ) θ2 + φ, we then
find

and the surface energy derivative given by eq 59 can be rewritten
into

Adding and subtracting sinR, the latter equation can be written
as follows:

The latter equation is equal to eq 49, which demonstrates the
equivalence between the Laplace equation based and energetic
force formulations.

LA7036444

Figure 8. Capillary force as a function of the separation distance
D for the following set of parameters:R1 ) 2 mm,R2 ) 3.95 mm,
θ1 ) 0°, θ2 ) 14.3°, γ ) 20.8 mNm-1, and volume) 0.065µL.
The (+) symbol indicates the error crosses centered on the
experimental points (b), the solid line states for the numerical
simulations withθ1 ) 0° andθ2 ) 14.3°, the (O) symbol states for
eq 63, the dashed-dotted line states for eq 65, and the dotted line
states for eq 66.

Figure 9. Capillary force as a function of the separation distance
D for the following set of parameters:R1 ) 2 mm,R2 ) 3.95 mm,
θ1 ) 0°, θ2 ) 14.3°, γ ) 20.8 mNm-1, volume) 1.4µL. The (+)
symbol indicates the error crosses centered on the experimental
points (b), the solid line states for the numerical simulations with
θ1 )0° andθ2 )14.3°, the (O) symbol states for eq 63, the dashed-
dotted line states for eq 65, and the dotted line states for eq 66.
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