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Surface tension effects are dominant in miniaturization. Therefore, a lot of capillary forces models have been
recently discussed in the literature. The work reported in this paper intends to prove the equivalence between two
methods which are very widespread in capillary forces computation at equilibrium: the energetic method based on
the derivation of the total interfacial energy and a second method summing both pressure and tension terms obtained
from the meniscus profile (based on the Laplace equation). The results are supported by different qualitative arguments,
an analytical proof in the case of a prisiplate configuration, numerical simulation, and experiments in the case of
two millimetric spheres.

1. Introduction latter being either determined exactly through the numerical
¢ solving of the so-called Laplace equation or approximated by a
ppredefined geometrical profile such as a circle (i.e., toroidal
approximation) or a parabola. The energetic approach is usually
quite clear on its approximations: the liquigapor interface
energy is sometimes neglected in order not to compute the exact
shape of the meniscus, but an exact solution can be found if the
lateral area is computed, for example, by means of a finite element
solver such as Surface Evolver (see ref 23). On the contrary,
literature results are not so clear as far as the other method is
concerned. For example, some authors neglect the so-called
tension term with respect to the Laplace term. This sometimes
pertinent assumption has led many authors to add the tension
term to the result obtained by deriving the interface energy, that
is, to mix both methods. This paper aims at clarifying this situation
by showing that the capillary force obtained by deriving the

* Towhom correspondence should be addressed. E-mail: pierre.lambert@ interface energy is exactly equal to the sum of the Laplace and
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With the current trend toward device miniaturization, a lot o
mechanical functions are being achieved using surface tensio
effects which present a particularly interesting scaling behavior,
since the surface tension forces linearly depend on the charac
teristic size. For example, let us cite the use of surface tension
in micromanipulation and microassemBlIyf,in microfluidics/
in optical development%,and in actuatiod. Other fields of
research involve the modeling of capillary forces such as, for
example, microelectromechanical system reliability and micro-
fabricatiort®-13 or capillary condensatioH.

A lot of work has thus been reported on capillary forces
modeling (see, e.g., refs $22) based on the so-called energetic
method (i.e., derivation of the total interface energy) or on a
direct force computation from the meniscus geometry, with the
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Figure 1. Axially symmetric configuration.

pressure difference to the mean curvatdifé/m) of the meniscus
and the surface tensign (N/m):

Ap =2Hy )

It will be noted that, according to the curvature sign of the
meniscus, this Laplace terfia can be either positive or negative.
This termF_ is given by

F = ApAg 3

whereAg, is the area of the solidliquid interface of the solid
on which the capillary force to compute is applied. In axially
symmetric casedis. can be replaced by (see Figure 1)

As = mlz 4)

wherer; is the radius of the triple (circular) line on the solid on
which the capillary force to compute is applied.
Equation 2 is valid for vanishing Bond numbers, that is, when

the characteristic height of the meniscus is quite smaller than the

capillary lengthL. = (y/pg)¥2 Otherwise, the effect of the
hydrostatic pressure has to be taken into account:

Ap = 2Hy — pgz (5)

The second terrft is due to the tensile action of the surface
tension along the triple line (only tt,ecomponent, projected by
sin 01 is here taken into account):

Fr=4ysin6,ds (6)
In axially symmetric cases;t can be rewritten into
Fr = 2nryy sin6, @)

An example of such a force determination in the axially symmetric
case is given in ref 17.

2.2. Energetic Approach.The energetic approach is based
on the derivation of the total interface enerdygiven by

2 2
W=yZ+ % AsyiVsvi T ) AsiiVsi T C

®)

wherey is the surface tension of the liquiljs the liquid—vapor
areaAsvi (Asij) is the solid-vapor (solid-liquid) area on solid

i, ¥svi (ysu) is the solid-vapor (solid-liquid) interface energy

of solidi, andC s an arbitrary constant, which will be discarded
by derivation at the next step. Usually, taking advantage from
the link betweerAg; and Asvi

Agi tAsy =C )
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Figure 2. Case of two parallel plates separated by a Bap

whereC' is a constant and using the YounBupre equation,
interface energies can be replaced by contact angles and surface
tension:

Ysvi — Ysu = ¥ COSH; (10)
The total energy can now be derived with respect to the separation
distancez (see Figure 1), relying on the fact that the volume of
liquid is constant (&/dz = 0), leading to

_dw

F= E

(11)

Numerically, the derivative is replaced by the finite difference:

W, — W,

F=-—x

(12)

An example of such force computation is described in ref 14.
2.3. Equivalence of Both ApproachesThe purpose of this
paper is to prove that

dw

F=F +F=—"1

(13)

3. Qualitative Arguments

The energetic approach implicitly involves both Laplace and
tension terms. As afirstargument, let us illustrate this in the case
of two parallel plates (see Figure 2) separated by a distBnce
(for the need of convenience, both contact angles have been
chosen equal t6 = 7/2). In this case, the total interface energy
W is equal to

W= 221Dy + 2ar’yq + (C' — 2ar%)ys, + C  (14)

wherey is the surface tension of the liquidzED the lateral area

of the meniscusys, is the surface energy of the sotitiquid
interfacey sy is the surface energy of the sotigtapor interface,
andC' is an arbitrary constant circular area larger than?Zit

will disappear by derivation at the next step). Now, using the
Young—Dupreequation ¢sy = y cos8 + ys.) and introducing
the volume of liquidv = zr?D, the latter equation can be rewritten
as

W=2yvVaD — Z\Q cos@ + constant

D (15)

Since® = x/2, the derivation of the latter equation leads to

[NV
F= -y B

which can be compared to the force established from the curvature:

(16)

=140
;

2H

17

This leads to a pressure difference
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Ap=2Hy = % (18)

and henceforth to a “Laplace” term of the force equal to

F,=ar?Ap=y,/ %’ (19)

Note that this term is positive, that is, repulsive, because the Figure 3. Sphere (radiu®) and plate separated by a gBp= 0:
meniscus is convex, leading to a positive pressure difference.contact angled = /2.
The “tension” term of the forc&t can be written as

15 x 10 . . i
B _ NI o Simulation
Fr=—2nry = —=2y,/ D (20) + F=4m v Rcosb

leading to a total capillary force equal to

F=F +Fr=—yy/ 2 1)

Since egs 16 and 21 are equal, we conclude that the force derived
from the energy well represents both terms of the capillary force
(note well that the Israelachvili approximatiéh= 47yR cos -5 . . . .
6 proposed in eq 15.35 of ref 15 has been derived this way, 0 20 40 60 80 100
consequently including both terms). o]

A second argument is geometric. Let us consider the caseFigure 4. Case of a sphereplate configuration witlR = 13 mm,
depicted in Figure 3 where both contact angles are equelPto ¥ = 72 mNmT*, and V = 1 mn?. Comparison between the
in this case, the meniscus s clearly convex, leading to a repulsive!Sraelachvili approximation = 4zyR cos 0, solid line), the

u . . simulated “Laplace” termf@), the simulated “tension” ternxX),
Laplace” force which cannot be modeled By= 4zRy cos¢ and the sum of thent). The “Laplace” and “tension” terms have

which would lead to zero sinag= z/2. On the contrary, if we  peen obtained using the simulation described in ref 17. Note that
take the (always) attractive “tension”, we (qualitatively) see that a positive force here denotes an attractive one.

we could have a total force equal to zero. This is the second
argument showing that the Israelachvili approximation involves
both terms, because otherwise it cannot explain the simple casg o
of Figure 3.
A last argument is based on numerical simulation (see Figure X» 9
4). For a sphereplane configuration and assumiRg= 13 mm,
y =72 mNnT?, andV = 1 mn?, we compared the Israelachvili
approximation (solid line) with both the “Laplace” term)and 8, \V\ c
the total simulated capillary forc®j: we see thatthe Israelachvili S I
approximation is still closer to the total force than to the “Laplace” A p
term. Consequently, we conclude that the “tension” term is well D 9,
included in this approximation. o) >

}

Force [N]
wh

N
°

\

4. Analytical Arguments

4.1. Definition of the Case StudyWe propose to demonstrate
the equivalence of the approaches on a 2D 1/2 priglane
configuration. The prismis defined by its length in Yhéirection Figure 5. Prism-plane configuration.

(see Figure 5)L, and its angular aperture, Its location is

defined by the distand® between its apeA and the plane. Let ~ and the undefined pressure differeAqe A more straightforward

us assume a volume of liquidwetting the plane with a contact ~ derivation is based on the fact that since one of the curvature
angled; and the prism with a contact anglg Since the curvature radii is infinite and that the total curvaturédds constant, the

of the meniscus in the directionperpendicular to the axi®x second curvature radius (§1x'?)3?)/x" is constant: letus denote

andOz(see Figure 5) is equal to zero, the Laplace eq 2 becBmes it asp. Therefore, the meniscus profile is a curve with constant
curvature, that is, a circle given by the following equation:

Xr [ &)

@ v =

(X—x)*+ (@z—2z)° =0 (23)

wherex' = dx/dz. wherexp andz are the coordinates of the circle center. Once
Assuming a vanishing Bond number, the hydrostatic pressure again, three parameters are to be determingdz, andp. This

inside the meniscus is neglected by comparison to the Laplacecan be done using three boundary conditions: both contact angles

pressure differenc&p, which is therefore constant in all the 0, and 6, and the volume of liquidv.

meniscus. Therefore, the right-hand side of eq 22 is constant, 4.2. Preliminary Computations. Let us expresso, zo, and

and this equation can be integrated twice with resped o p as functions of known datay( D, 6,1, 62) and the immersion

order to find the relation = x(2), with two integration constants  heighth, which is still unknown at this step but which will be
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Figure 6. Determination of the immersion height from the volume
of liquid.

determined using the condition on the volume of liguidNote

thatx; is an intermediary variable and thatwill be used later.
For the sake of convenience, the notatior 0, + ¢ has been
adopted in the following equations:

_h
= tang (24)
_ D+h
P~ Cos6, + cosa (25)
Z, = p C0S0, (26)
X=X, — (z— D — h) tana 27)
X, =Xy — Zytanf, (28)

Additional useful relations are the meniscus equation

x=x — 0’ = (z—2)* (29)
the meniscus slopg
__tT%
X == % (30)

and finally, the rewritten Laplace equation linkidg and p

Ap=Z

P (31)

his still to be determined using the volume of liquidsee next
step).

4.3. Determination of the Immersion Heighth. The volume
of liquid can be used to determine the value of the immersion
heighth, starting from the volume of liqui as illustrated in
Figure 6

V=2LA (32)
=2L[xh+ D) —A —A — Ay — A (33)
where
A= Xih (34)
2
5~ om0 +h-2) )

2

Lambert et al.

Ay = M (36)
2
—a—20
Ay = w (37)

Therefore, the equation giving the volure&an be rewritten as
follows:

20 _ o~y —
V=2L Xo(D+h)_Xizh_M_
(Xo_xz)([;+h_ Z) _ZO(XOZ_ X1) (38)

= L{2x,D + x,h + p*[sin & cosa + 2sina cos6, —
7w+ a+ 6, —sinf, cosb,]} (39)

By noting

[sina cosa + 2sina cosf;, —x+ o+ 6, —
sin#, cos6,] = u(cosé, + cosa)?

V can be further rewritten into

e 1 1 2
V= L[h (—tan 5t ﬂ) + 2hD(—tan 5+ ﬂ) +uD ] (40)
This latter equation can be rewritten as a second degree equation
with respect to the unknowh:

2 _
h2+2hD+“D—Y/L=O (41)
“ ang
which leads to
2. _
h= p? - D=L (42)
A7 Gng

The “—" solution makes no physical sense, since the immersion
height cannot be negative. Consequently

(43)

and the variation dfi with respect to a variation of the separation
distanceD (it will be used in what follows) is given by

dh_
dD

D 1

_1+D+h1+utan¢

(44)

4.4. Laplace Equation Based Formulation of the Capillary
Force. As it has previously been explained, the capillary force
can be written as the sum of a term depending on the Laplace
pressure differencAp and the so-called tension term:


http://pubs.acs.org/action/showImage?doi=10.1021/la7036444&iName=master.img-005.jpg&w=210&h=121
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F=2Lx,Ap+ 2Ly sin¢, (45)
= 2Ly( + sin@ ) (46)
P (47)

P
X, D+h-—
= 2Ly(—2 2 R an (1) (48)
p p
o ( h cosé, + cosa s ) 49
b +hT tane sina (49)

Langmuir, Vol. 24, No. 7, 28081

aw 1 _
dD 2Ly
D 1 cos6, cosez)
ﬁ+( 1+D+h1+ytan¢)( ang  sing) ©7)
_ co¥, cosb, D 1
“tang ' sing D+hltutans
cosf, coso,
- S (58)
tang  sing

whereu, h, and 8 have been defined in egs 39, 43, and 55,
respectively. All the other parameters are given data. It should
be now proved that eqs 49 and 58 are equivalent.

Using eq 43, the force can be expressed as a function of the 4.6. Equivalence of Both FormulationsEquation 58 can be

volume of liquidV, the separation distan@; and the angles of

the problem: contact anglés and 6, at the one hand and the

prism anglep at the other hand. Let us recall that= 6, + ¢.
4.5. Energetic Formulation of the Capillary Force. As

explained in section 2.2, the energetic or thermodynamic approach

is based on the differentiation of the total surface en&vyyith
respect to the separation distarize

=y(Z— A, cosf, — A,cosf,) +C (50)
where
S=2L1=2Lp(x—a—0,) (51)
A =2Lx (52)
A, = o (53)
sing

Consequently, the reduced surface en&#fi2L y) can be written
as

W —_— J— — J—
cose

——+psina— psinb, h— (54)

h

ang sing
Observing that the expressiontang) + p sina. — p sin 0, is
equal tox; already defined, the reduced energy can be rewritten
into

W _
Ay (D + h) x
7w —a— 6, —sina cosf, + siné, cosb,
cosf, + cosa

cosf, coso,
- (55)

tang  sing
Defining = (r — a. — 61 — sina cosé; + sin6; cosH1)/(cos

01 + cosa), we can further write

cod),
tang

w

2Ly

00592)
sing

= DB+ h( (56)

To compute the force from the energy, the latter equation has

to be derived with respect © using eq 44 £ is constant with
respect taD):

rewritten as

dw _ co¥; cod,
2LydD tang = sing
[7 —a— 60, —sinoacod), + sin 6, cod),
D+ h[ (cosf, + cosa)(1 + u tana)

1 [cosf, cosO
1+ utang\ tang

2)] (59)

sing
It is shown in the Appendix that the expression in brackets in
eq 59 is equal te-(cosf; + cosa)/tan¢. Therefore, eq 59 can
be rewritten into
dw 1 _ cosb, cosb, D
dD2Ly  tang ' sing D+h
= [(cos 6, cos¢ + cosH,)(D + h) —
D cos¢(cos6, + cosl, cos¢ —
sin 8, sin$)]/[(D + h)sing] (60)

COS¢
sing

(cos6, + cosa)

In order to let the term sin. present in eq 49 to appear, let us
add and subtract sin simultaneously to and from the latter
equation: after some (tedious) calculations and using the relation
o = 6, + ¢, the following expression can be obtained:

daw 1
dD 2Ly
h cos¢(cosf, + cos, cos¢ — sinb, sing)
- + sina
(D + h)sing
_ h cosf,+ cosa L -
" D+h tang sina (61)

As a conclusion, the latter equation leads to a force given by

cosf, + cosa
tan¢

daw
dD

h
- _ZL”(D Th

The negative sign in front ofl2ndicates that the force is attractive.
Consequently, it is concluded that the force computation based
on the Laplace equation (eq 49) and the result obtained from the
energy formulation (eq 62) are equal.

F=—

+ sin a) (62)

5. Experimental Comparison Between Two Spheres

5.1. Benchmark Models.The measures which will presented
in the next subsection have been compared to benchmark models,
describing the capillary forces between two spheres:

(1) Reference 4 has proposed an analytical model based on
the energetic method in which the lateral area of the meniscus
is approximated with a cylinder for the computation of the volume
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of liquid and for the contribution of the liquielvapor interface
energy to the total interface energy. As usual, the immersion
height is assumed to be small. At contdat=£ 0), the proposed
model is (eq A.23 of ref 4)

F = —47Ry cos6 (63)

where 1R = 1/R; + 1/R, and 2cos) = cosf, + cos0,. Let (a) (b)
us note that this equation is formally equal to the Israelachvili
approximation, in whiclR s the radius of the sphere interacting
with a plane.

(2) Reference 22 has taken a step further, giving an analytical
approximation of the (assumed to be small) immersion height
(eq 20 of ref 22)

_D

=3

_ A
( 1+ 1+ﬂRD2) (64)

which can be used to compute the force at separation distance
different from zero (eq 18 of ref 22):

47Ry cos6
F=——"——"-
1+ D/(2h) (65)

These authors claim that “when the attraction force due to the
vertical component of the liquid bridge is taken into account, the

complete formula for the capillary force can be expressed as” Figure 7. (a) Original picture; (b) black and white corresponding
(eq 19 of ref 22) image; and (c) fitting curves: both spheres are fitted with circles

(green lines), and both sides of the meniscus are fitted with a 4th

(c)

degree polynomial (blue lines). Based on the contact angles given

F=— 4nRy cosb _ 4nRy sinacsin@ +a)  (66) by the intersection of these fitting curves, the volume of liquid is
1+ D/(2h) adjusted in the simulation to fit the meniscus profile (red points).
wherea is the so-called filling angle given by ces= 1 — h/R. portion of the upper sphere available for fitting. The calibration

(3) Our own numerical computations based on the energetictechnique has thus been preferred.

approach whose details are presented in ref 14. Using these curves (the two circles and the two polynomials),
5.2. Test Bed Description.The test bed is an atomic force  he contact points are then computed. The contact angles are
microscopy (AFM)-like set up at the millimeter scale (its detailed - g\ ety ally evaluated using those same curves. The contact angle

description can be found inref17). In the following experirpents, between the meniscus and the upper sphere is found to be in the
the liquid used is Rhodia silicone oil R47V50< 20.8 mNnT), 13-16° interval, while the contact angle between the meniscus

the upper sphere is a steel ball with a diameter of 7.9 mm, and 5 the lower sphere is found to be zero. One parameter that
the lower ballis a ruby hemisphere wia 4 mmdiameter, glued .4 influence the contact angle is the threshold used for contour

ona itleel cantilevered beam, whose stiffness is of the order of ygtection. Different thresholds showed that contact angles values
1 Nm™%. The liquid was dispensed with an Eppendorf manual 4re kept within a+5° interval, even for extreme values of
dispensing device (0-42.5 mn?). The actual volume of liquid thresholds.

and the contact angles were determined with a CV500 Keyence
camera (see the next section).
5.3. Procedure to Extract the Contact Angles and the

Using these contact angles, computations are made with a
Surface Evolver based simulation t&db find a meniscus with

Vol f Liquid. T . ts with simulati the same neck radius as the experimental meniscus. Figure 7c
olume ot Liquid. 1o compare experments with SImuiation, - g4y the superposition of the actual and simulated profiles,

the parameters of the simulation, that is, the contapt angles an hich are in good agreement for a volume of liquid equa¥to
the meniscus volume, are evaluated based on pictures of the_ 1.4 mné.
meniscus.

First, to estimate the contact angles, profiles of the spheres
and the meniscus are fitted on the picture of Figure 7b which
is obtained from a black and white conversion of Figure 7a.
After a contour detection applied to Figure 7b, the spheres are
fitted with circles and the meniscus is fitted with a 4th degree
polynomial.

Two techniques have been compared to fit the circles: the
first one assumes unknown radii and unknown center positions.
They are all fitted using a least-square fit. The second technique
uses a calibration of the charge-coupled device (CCD) camera Figure 8 shows afairly good agreement between all the models.
optical scale using a Mitutoyo ceramic slip gauge of 1 mm Although, eq 65 (eq 18 of ref 22) shows a better agreement with
thickness. Only the circles centers are then fitted. For the lower the experiments than eq 66 (eq 19 of ref 22) for small separation
sphere, both techniques match within 1%, while, for the upper distances (the contrary is true for large separation distances). It
sphere, a 15% error is encountered. This is due to the limited is difficult to discriminate between both formulations. With the

5.4. MeasurementsDuring the experiments, the separation
distance can be varied from contact to meniscus rupture and the
corresponding force can be measured. This force is then compared
with the models presented in the previous subsection.

Two volumes of liquid have been tested:= 0.065 mni in
Figure 8 andv = 1.4 mn? in Figure 9. The values of all the
parameters are given in the figure captions.

6. Discussion
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e at small separation distances and conversely). In the case of
;"i‘ﬁ“-““‘“m“ ' larger volumes of liquid, it has been shown that no analytical
4£ i approximation could predict the experiments very accurately
iy %?J s E@i (however, they give an excellent order of magnitude). In the case
- of our experiments, it seems that the additional term introduced
in eq 66 would not be necessary, leading to a less accurate
prediction. The numerical simulation is in fairly good agreement
with experiments in all cases. Therefore, this numerical tool will
be used in the future to compute the validation limits of all the
Fe analytical approximations, according to a given uncertainty
0 005 01 015 02 025 03 interval. An inherent limitation of all the discussed models,
distance hetween spheres  [mm] . . . s
analytical or numerical, is that they rely on equilibrium

Ei?Uﬂt?h&f(l?lapi!'ary fc;rcfe asafupct;gn 0f2the s%paraéi%gdistance assumptions. Therefore, a perspective is to investigate the
or the following set of parameter$y; = 2 mm,R, = 3.95 mm, i

0, = 0°, 0, = 14.3, y — 20.8 MNm L, and volume= 0.065,L.  0Ynamics of these forces.

The () symbol indicates the error crosses centered on the ) )
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i . oxJ)m‘iments
0.4 = “IIL] Appendix
i ==[22] - eq. flS‘
- 0.3 ' 22| - eq. {19 dw  cosf; cosb, D
= 3 —
f 2LydD tan¢  sing D+h”~

7 —a— 6, —sina cosf, + siné, cosb,
(cosf, + cosa)(l + u tang)
cosf, cos6
0 - 1 ( L= 2) 67)
dli).l 02 03 04 05 1+ utang\tang = sing
istagce between spheres [l

Figure 9. Capillary force as a function of the separation distance ; : i
D for the following set of parameters®; = 2 mm, R, = 3.95 mm, In this latter equation, let us replace the expression in brackets

01 =0°, 0, = 14.3, y = 20.8 mNnT?, volume= 1.44L. The (+) by a new parameteB, which can be reduced to a common

symbol indicates the error crosses centered on the experimentadeénominator. Using eq 39 to replae@ando. = 62 + ¢, we then
points @), the solid line states for the numerical simulations with ~ find

0, =0° andf, =14.3, the O) symbol states for eq 63, the dashed-

dotted line states for eq 65, and the dotted line states for eq 66. cos¢(cosb, + cos)

B= sing (68)

volume tending to zero, the force with our numerical model
tends to the analytical computations, made with the assumption . . .
of vanishing filling angles. At contact, eq 63 is quite good (it and the surface energy derivative given by eq 59 can be rewritten
is exactly equal to eq 65 anyway). Into

Figure 9 shows the limitations of the approximations made
with the analytical models in the case of a large volume of liquid. =
The analytical models do not correctly take into account the 2Ly dD
influence of the volume. The experiments and the numerical cosf cosf, p CoOSs¢(cosd, + cosa)
model show that, for the same experimental conditions, the volume tang sing “"D+h sing (69)
has an influence on the force between objects. For larger volumes,
the force is smaller at small distances, while it decreases sloweradding and subtracting sia, the latter equation can be written
than that for small volumes, so that the force is larger at large s follows:
distances. Anyway, we see that, for large volumes, the additional

tension term in eq 66 is not correct. dw cosf, cosb, D
= A - X
7. Conclusions 2lydD tang sing D+h
cos¢(cosh, + cosa.

The contributions of this paper are twofold. First, it has been al 1 ) —sino + sina
shown with three qualitative arguments and analytical develop- sing
mentsin the case of a prisaplane interaction that two widespread . h cosf, + cosa
capillary forces models at equilibrium are equivalent to one =sino + D+h tang (70)

another: the energetic approach and the Laplace equation based
approach. Second, it has been shown how powerful the analytical
approximations of eqs 63 and 65 are in the case of small volumes
of liquid. In this case, both formulations (egqs 65 and 66) are
more or less in the uncertainty domain, so that one cannot be sai
to be more exact than the other (the first one seems to be bettelLA7036444

The latter equation is equal to eq 49, which demonstrates the
equivalence between the Laplace equation based and energetic
cIor(:e formulations.
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