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Abstract

The synchronicity is a strong restriction that in some cases of wide appli-
cations can be difficult to obtain. This paper studies the methodology of
using a non synchronized camera network. We consider the cases where the
frequency of acquisition of each element of the network can be different, in-
cluding desynchronization due to delays of transmission inside the network.
The following work introduces a new approach to retrieve the temporal syn-
chronization from the multiple unsynchronized frames of a scene. The math-
ematical characterization of the 3D structure of scenes, is used as a tool to
estimate synchronization value, combined with a statistical stratum. This pa-
per presents experimental results on real data for each step of synchronization
retrieval.

1 Introduction

The synchronization operation is a task that complexifies many vision operations as the
number of cameras becomes higher : cameras calibration, 3D reconstruction, frames syn-
chronization, etc... Baker and Aloimonos [2], Han and Kanade [8] introduced pioneering
approaches of calibration and 3D reconstruction from multiple views. The reader may
refer to [13, 14, 5] for other interesting work on camera networks. The aim is to retrieve
synchronization in order to compute correctly 3D structures from a set of cameras. A
solution is to set hardware synchronization as in [10]. But this kind of method cannot
be appliable because of spatial constraints. In these cases, a software based synchro-
nization can be a way to solve this problem. Most of the former works assume cases of
desynchronization with highly constraints hypotheses which exclude heavy and non lin-
ear delays [19]. In [15, 16], a set of five moving points is tracked and matched throughout
sequences for synchronization. Constraints can also be set on the scene or on the geome-
try of the cameras studying feature points [13] or trajectories [4] of the objects. Ushizaki
et al. [17] show the limitations of these approaches and present a method based on co-
occurrences of appearance changes in video sequences. This method uses appearance
changes as temporal features but it may fail when appearance changes, due to temporal
shift and the cameras have to be stationary. In this paper, we introduce a new synchroniza-
tion technique from 3D structures. From all available frames which can be synchronized
or not, 3D structures are computed regardless they are correct or not. We will show that
correct ones are only generated from synchronized frames. If we have a prior knowledge
of the exact models of the observed objects, synchronization can be recovered by deter-
mining frames that lead to shapes complying with the models. However most of the time,
this knowledge is not available. We then introduce a statistical approach which assumes
that correct shapes reconstructions (synchronized frames) occur more frequently than dis-
torted ones (non synchronized frames). A distribution model of the 3D reconstructions



can be established where wrong shapes are marginal cases of the correct ones.
We will also explain the method used to compute 3D shapes from available frames and
the way we characterize them such that discrimination between correct and wrong recon-
structions is possible. The main contributions of the paper are:

• A new method for retrieving correct 3D shapes of objects viewed by an unsynchro-
nized cameras network without any prior information on observed objects.

• The synchronicity between different cameras can be estimated using computed 3D
shapes of objects in the scene with no restrictions on the cameras’ framerate or time
shift. Our only constraint is to assume partial non deformable structures.

This paper is organized as follows. Section two describes the formal approach of our
method of synchronization. In section three, several shape characterizations indispens-
able to estimate the synchronicity are examined. In section four a propagation method is
introduced and finally the section five presents experimental results of the synchronization
of a camera network.

2 Problem formalization

2.1 Shape criterion for synchronization.

It is reasonable to assume that correct reconstructions are possible if frames are synchro-
nized and that unsynchronized frames lead likely to distorted results. We will prove in this
section that this assumption is mathematically true : ”correct reconstructions” are equiv-
alent to ”synchronized frames” if observed objects are rigid bodies. This can be done by
examining simple planar motions.
Let P1,P2,P3 andP4 be four collinear points viewed byCR andCL of centersOL andOR

(see figure 1). Since thePi are collinear, we have the following relations :

P1P2 = KP1P4 and P3P2 = MP3P4 (1)

whereK and M are constant scalars and we defineL = ||P1P4||. When the cameras
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Figure 1: If the images from the camerasCR andCL are synchronized, the pointsP1, P2,
P3 andP4 can be correctly triangulated from images. If not, the triangulation produces
shiftedP′

1P′
2P′

3P′
4 at different positions according to the rigid body hypothesis.



CR andCL are synchronized, we have a correct 3D reconstruction and the relations in
eq.( 1) are always satisfied whether the structure is moving or not. If the cameras are
not synchronized, the rays will produce a new point set{P′

i} which is different to the
set{Pi} (see figure 1). Since we only assume non deformable body, if the collinearity
is not preserved by theP′

i then the reconstructions are obviously wrong, thus we are
only considering cases for which theP′

i are collinear. In such condition we can similarly
establish relations as eq. (1) withL′, K′ andM′ for these points. TheP′

i are incorrectly
reconstructed points if some trivial metric properties satisfied by thePi are no longer true.
Then, we can apply the cross ratio between the different lines:
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If K = K′, thenM = M′ hence :
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This equality is the Thales’ theorem, satisfied byPi andP′
i only if the lines(P1P4) and

(P′
1P′

4) are parallel. IfK = K′, then there is only one reconstruction that also satisfies
L = L′. This solution corresponds to the case whereP′

i = Pi (the case where the points are
behind the centre of camera is rejected). This proves that for non synchronized cameras,
the exact reconstructions of simple rigid structures are not possible, thus we can expect
better result for complex ones.

2.2 Using recurrence for correct shapes extraction

The correctness of the reconstruction provides a good criterion to recover synchronization
between cameras. Recurrent shapes can be reliably used to sort out correct structures from
bad ones if there is no ambiguity. We examine here if desynchronizations can produce
enough recurrent wrong shapes of lengthL′ that can compete with those corresponding to
L.
We assumeδ as the temporal shift betweenCL andCR andOL is chosen as the origin of
the world coordinate frame. ThePi define an object moving through the scene (figure 2).
CL seesP1 at t (i.e.P1(t)) and because ofδ , CR will see the same point att + δ (i.e.
P1(t + δ )). The reconstructionP

′
1 of P1 from these frames will be the intersection of

(OLP1(t)) and(ORP1(t +δ )), satisfying :

P
′
1(t) = α1P1(t) = OR+α

′
1(P1(t +δ )−OR) (4)

where(α1,α
′
1)∈R2. This equality is a set of three equations from which the scales factors

can be expressed from the other parameters. By combining them, we can expressα1 with
the known parameters :

α1 =
det(P1(t +δ )−OR,OR)

det(P1(t +δ ,P1(t))
(5)

Similar equations can be established forP4, henceL′, the norm of theP′
1P′

4 can be ex-
pressed as a function ofP1 andP4 :

L′ =‖ P′
4−P′

1 ‖=‖ α4P4−α1P1 ‖ (6)
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Figure 2: Due to the delay, the pointP′
1 is constructed from pointsP1(t) andP1(t + δ )

seen byCL andCR.

We assume now that the value ofL′ is set and given a neighborhoodD of the cameras, we
look inside it for allP1 andP4 that produceP′

1P′
4 en lengthL′.

This is done by minimizing the cost function with respect toX =
[
P1 P4

]t
:

E(X) =
(
||α4P4−α1P1||−L′

)2
(7)

Equation 7 is solved for several values ofL′ and for several initial conditions. However the
recovered lengths’ dispersion is too high to satisfy any length preservation (60 % around
the mean value).

3 Shape characterization

3D reconstructions provide information for synchronizing the cameras. Shapes being at
the core of the method, it is compulsory to set characterization of reconstructed structures
in order to compare and classify them. 3D shapes characterization has been intensively
studied in indexation techniques [11, 7]. Most of these approaches establish a mapping
between a 3D object and some vector space of dimensionn so that each object can be
summarized by a vector ofn components defined as a signature. In our case, we are
using two kind of mappings : one is based on decomposition of the object into spherical
harmonics and the other one is based on the distribution of the distance between two
randomly selected points on the object surface [11]. We set the following notations:

• S is an object moving through the scene viewed bym cameras.

• f defines the size of the search intervalF .

• Sl
n is the reconstruction computed from thel th image combination included inF .

This intervalF is centered on thenth image of an arbitrarily chosen cameraC1.

TheSl
n are geometric reconstructions obtained with standard techniques like voxel-coloring

[12]. For eachSl
n, both mentioned classification techniques are applied.

3.1 Characterization with spherical harmonics

As the equivalent of the Fourier series for 3D functions, the spherical harmonics decom-
position is suitable to express 3D shapes with a set of orthogonal functions. Funkhouser et



Figure 3: For each frame ofC1, an interval of length f is set. This defines locally a set
of images acquired by them cameras, reconstructions are then performed by combining
frames from each camera.

al.[6] and Vranic[18] used it to characterize 3D shapes for indexation and model retrieval.
Given a 3D objectS defined as a surface points set{X}, we sample it according to a
2R×2R×2R voxel grid. The object is normalized and scaled around its gravity center
according to :

S ′ =
{

X′ ∈ R3|X′ =
X− (R,R,R)t

R/2

}
The spherical decomposition is then applied toS ′ according the following assumptions
: S ′ is sampled regularly by intersecting it withn concentric spheresΩk of radii rk (and
rn = R), centered on(R,R,R)t . For eachΩk, we define the functionfk(θ ,φ) asS ′⋂Ωk.
If the Fourier transform is applied onfk over the sphereΩk, we have :

fk(θ ,φ) = ∑
m

f m
k (θ ,φ) = ∑

m

m

∑
n=−m

amn

√
(2m+1)

4π

(m−|n|)!
(m+ |n|)!

×Pmn(cosθ)einφ

where thePmn are the Legendre functions (1st kind) of degreem and ordern, and the
amn are the Fourier coefficients.f m

k can be interpreted as the projection offk on themth

representation of rotation group in harmonic spherical space. We then form the rotation
invariant signaturesk of fk with the L first spherical harmonics and the feature vector
VSpH :

VSpH = (s0,s1, . . . ,sn−1) wheresk = (| fk,0|, | fk,1|, | fk,2|, . . . , | fk,L−1|)

For each 3D reconstructionSl
n, we are now able to represent it by giving its signature

vectorVSpH.

3.2 Characterization with distance distribution

This method is based on a statistical consideration of the geometric properties of a 3D
shape (see [1]). It establishes the distribution of distances between 2 randomly selected
surface points of the object. We form its distances histogram which is normalized into
a feature vectorVd. Due to the low complexity of this technique, the required com-
putational load is limited. These characterization vectors allow the computation of the
shapes distribution with respect to a reference geometric structure (normalized sphere for
instance). More precisely, the distribution of the distancesd(V,Vref) of each vector to



the reference structure’s one is computed (d() is any suitable distance e.g. Euclidean,
Minkowski, ...). From this distribution, one can identify the most recurrent signature,
hence the correct shape.

4 Optimization : extension to large networks

Computational time is the major limitation of the synchronization method : we have to
perform 3D reconstructions for each combination of images in the temporal window. As
the number of cameras increases, the computational load becomes quickly unacceptable.
In order to reduce it, we propose to split the synchronization into two parts similar to [3]:

• We first synchronize a small subset of cameras of the network according to our
technique. Hence this subset is able to provide the correct reconstruction of any
scene structure.

• Assuming now that all cameras are calibrated and observing an object which cor-
rect 3D model is provided by the synchronized subset, we can propagate the syn-
chronization by comparing the projections of both the model and the real object.
A camera is synchronized if the projections are equal in the sense of they exactly
overlap each other.

Let Si andS
′
i be respectively the silhouette of the object and the silhouette of its 3D model

in the ith camera (see figure 4). We compute for each camera the coherenceC as defined
in [9] :

C(Si ,S
′
i) =

∫
(Si ∩S

′
i)∫

Si
(8)

A desynchronization will produce shift between both silhouettes, the quantityC is a de-
creasing function as the desynchronization increases. Theith camera can then be synchro-
nized ifC is maximized.
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Figure 4: Synchronization propagation. The 3D model reinserted into the scene is pro-
jected asS

′
i in ith the camera. If the coherence is maximum, the camera is synchronized.



5 Experimental results.

5.1 Synchronizing an eight cameras network

The presented method is applied to synchronize a set of eight cameras placed all around a
scene inside which a rigid body is moving (see figure 5). The desynchronizations between
the video signals result from cumulation of hardware latencies : non equal cameras start-
ing time, signals integration which is not instantaneous, data transfert time, etc... Given

Figure 5: (a) A set of 8 cameras placed around the scene, watching an object moving
inside. The reconstructions as previously stated and their characterization vectors are
computed.

the videosequences acquired by the cameras, 3D shapes are reconstructed by using frames
defined within the search intervalF . The characterization vector is established for each
reconstruction and used to compute the shape distribution with respect to a unit sphere.
Figure 6 shows the different measures of distances of each shape to the unit sphere. Since
the correct shapes are also the most recurrent, the characterization vectors should be sta-
ble hence the standard deviation of their distances is minimal.

If correct shape is recovered, its correct trajectory can also be extracted. The estimated
trajectory is compared to ground truth data given by a camera observing the scene from
above and locating the observed object using a visual tag. The results are shown by
figure 7 and underline the accuracy of the approach.

5.2 Synchronization propagation.

The synchronization is extended to a twenty-four camera network according to the prop-
agation techniques described in section 4 from a subset of six synchronized cameras.
The object is a person moving inside the scene whose upper body part is assumed to be
partially not deformable. The 3D model is computed from a subset of cameras synchro-
nized with the method and is used to compute the coherence of the silhouettes for each
unsynchronized camera. The correct reconstructions are presented along the estimated
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Figure 6: Distances measurements between each characterization vector and the unit
sphere : (a) Euclidean, (b) Minkowski, (c) Intersection and (d) Bhattacharrya. The cor-
rect shapes can be detected as the populations, represented here by the triangles, with
minimum standard deviation.
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Figure 7: (a) Trajectories computed from the correct shapes with the synchronization
method and the ground truth one. (b) For each position, both curves are compared to each
other by measuring a ”point-to-point” error. The mean error (5mm) is reasonably small
enough compared to the magnitude of the trajectory (∼ 35cm, the error is less than 2%).

trajectory (figure 8(a)) and the estimation of trajectory is compared to the real one as
shown in figure 8(b).
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Figure 8: (a) Reconstructed upper body along the estimated trajectory. (b) Trajectory
recovery (blue curve) from cameras synchronized with propagation method. The red dots
are positions estimated from unsynchronized frames.

6 Conclusion

We proposed in this paper a new method to synchronize a set of cameras. We proved the
possibility to recover the time shifts between the cameras from scene structures without
need of any external hardware. The constraints set on the scene are limited to the hy-
pothesis of mobile rigid bodies. If our method can benefit from a prior knowledge of the
geometric models of the bodies to recover the synchronization, it can also provide solu-
tion in more general cases where such an information is not available. We also showed
the equivalence between synchronization and correct structures reconstructions. In order
to reduce computational loads as the number of camera increases we introduced a propa-
gation process to synchronize a large network with a small subset of already synchronized
cameras. Unnecessary reconstructions can then be avoided.
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