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Abstract—The synchronization of image sequences
acquired by robots swarms is an essential task for
localization operations. We address this problem by
considering the swarms as dynamic camera networks
in which, each robot is reduced to a mobile camera.
The synchronicity is a strong restriction that in some
cases of wide applications can be difficult to obtain.
This paper studies the methodology of using a non
synchronized camera network. We consider the cases
where the frequency of acquisition of each element
of the network can be different, including desyn-
chronization due to delays of transmission inside the
network. The following work introduces a new ap-
proach to retrieve the temporal synchronization from
the multiple unsynchronized frames of a scene. The
mathematical characterization of the 3D structure of
scenes is used as a tool to estimate synchronization
value, combined with a statistical stratum. This paper
presents experimental results on real data for each
step of synchronization retrieval.

I. INTRODUCTION

Mobile robots using vision for navigation have to
be synchronized if some cooperative works have to be
performed. These tasks are mutual localizations, local
mapping, etc... that can be done by realtime process or
offline treatments. We are studying this problem from a
computer vision point of view by considering the robots
as mobile cameras, hence a set of several robots can
be seen as a dynamic camera network that is subject
to change and to be reconfigured through time. The
synchronization operation is a task that complexifies
many vision operations as the number of cameras be-
comes higher : cameras calibration, 3D reconstruction,
frames synchronization, etc... Baker and Aloimonos [2],
Han and Kanade [5] introduced pioneering approaches of
calibration and 3D reconstruction from multiple views.
The reader may refer to [9], [11], [4] for other interesting
work on camera networks. Works on synchronization of
cameras from images can be found in [16], [15], [10].
The aim is to retrieve synchronization in order to com-
pute correctly 3D structures from a set of cameras. A
solution is to set hardware synchronization as in [7].
But this kind of method can be not appliable because
of spatial constraints. In these cases, a software-based
synchronization can be a way to solve this problem. Most
of the former works assume cases of desynchronization
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with highly constraints hypotheses which exclude heavy
delays problems. In [12], [13], a set of five moving points
is tracked and matched throughout sequences for syn-
chronization. Constraints can also be set on the scene
or on the geometry of the cameras studying feature
points [9] or trajectories [3] of the objects. Ushizaki et
al. [14] show the limitations of these approaches and
present a method based on co-occurrences of appearance
changes in video sequences. This method uses appearance
changes as temporal features but the cameras have to
be stationary and it may fail when appearance changes,
due to temporal shift, are not dominant. In this paper,
we introduce a new synchronization technique. From all
available frames which can be synchronized or not, 3D
structures are reconstructed regardless they are correct
or not. We will then show that correct ones occur only
from synchronized frames. If we have a prior knowledge of
the exact models of the observed objects, synchronization
can be recovered by determining frames that lead to
shapes complying with the models. However most of
the time, this knowledge is not available. We introduce
then an statistical approach which assumes that correct
shapes reconstructions (given by synchronized frames)
occur more frequently than distorted ones (given by non
synchronized frames). A distribution model of the 3D
reconstructions can be established where wrong shapes
are marginal cases of the correct ones.
We will also explain the method used to compute 3D
shapes from available frames and the way we character-
ize them such that discrimination between correct and
wrong reconstructions is possible. The main contribu-
tions of the paper are:

• A new method for retrieving correct 3D shapes of
objects viewed by a unsynchronized camera network
without any prior information on the observed ob-
jects.

• The synchronicity between different cameras can be
found using computed 3D shapes of objects in the
scene with no restrictions on the cameras’ framerate
or time shift. Our only constraint is to assume non
deformable objects.

This paper is organized as follows. Section two describes
the theoretical basis of our method. In Section three,
we will describe the synchronization algorithm. Finally,
Section four and five deal with the synchronization of a
camera network with experimental results.



II. Problem formalization

A. Generalities

Let CL and CR be two cameras of a stereoscopic
system (for the rest of the paper, indexes L and R will
refer to the corresponding camera). The acquisition time
functions for both cameras are defined as xL and xR

that map each image indexed by n and m respectively to
their acquisition time. If TL and TR are the acquisition
periods, then :

xL(n) = TL ∗ n TL ∈ R+ (1)
xR(m) = TR ∗m TR ∈ R+ (2)

The cameras are by default unsynchronized, let ∆(m,n)
be the temporal shift between the mth and the nth frames
of CL and CR :

∆(m,n) = xL(n)− xR(m) = TL · n− TR ·m (3)

The synchronization is achieved when one is able to
identify for each frame indexed by m of CR, the frame
indexed by n of CL acquired at the same time (or equiv-
alently the shift ∆(m,n)). In a general case, ∆(m,n)
can be non constant for all m, we assume however that
we have a coarse idea of ∆max, the maximum possible
desynchronization between CL and CR. For each m, we
set up an interval F = [xR(m) −∆max;xR(m) + ∆max]
such that the acquisition time of the nth image of CL is
included in it. Figure 1 gives an illustration of a simple
case of constant desynchronization.
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Fig. 1. xR and xL are represented in the particular case of TR =
TL = 30frames/sec. ∆(m, n) is constant and equal to 66ms and the
width of F is set to 6 indexes, thus for the 6th image of CR, F is
the interval [4;8]. On can see that the 4th and the 6th frames of CL

and CR respectively are acquired in the same time.

B. Reconstructing with unsynchronized frames.

It is reasonable to assume that correct reconstructions
are possible if frames are synchronized and that
unsynchronized frames lead likely to distorted results.
We will prove in this section that this assumption is
mathematically true : ”correct reconstructions” are
equivalent to ”synchronized frames” if observed objects
are rigid bodies. This can be done by examining simple

planar motions.

Let P1,P2,P3 and P4 be four collinear points viewed
by CL and CR of centers OL and OR (see figure 2). Since
the Pi are collinear, we have the following relations :

D = ‖ P1P4 ‖ (4)
P1P2 = KP1P4 K ∈ R (5)
P3P2 = MP3P4 M ∈ R (6)

where D,K and M are constant scalars.
When the cameras CL and CR are synchronized, we have
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Fig. 2. If the images from the cameras CR and CL are synchro-
nized, the points P1, P2, P3 and P4 can be correctly reconstructed
from images.

a correct 3D reconstruction and the three equations (4)-
(6) are always satisfied whether the structure is moving
or not. If the cameras are not synchronized, the rays will
produce a new point set {P′

i} which is different to the set
{Pi} (see figure 3). Since we only assume non deformable
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Fig. 3. The cameras CR and CL are unsynchronized. The pro-
jection from image to space produces the shape P′

1P
′
2P

′
3P

′
4 at

different positions according to the rigid body hypothesis.

body, if the collinearity is not preserved by the {P′
i} then

the reconstructions are obviously wrong, thus we are only
considering cases for which the {P′

i} are collinear. In such
condition we can similarly establish three relations for
theses points :

D′ = ‖ P′
1P

′
4 ‖ (7)

P′
1P

′
2 = K ′P′

1P
′
4 K ′ ∈ R (8)

P′
3P

′
2 = M ′P′

3P
′
4 M ′ ∈ R (9)

The {P′
i} are incorrectly reconstructed points if some

trivial metric properties satisfied by the {Pi} are no more
true. For example, if at least one of the equations (10) to



(12) is not satisfied, then the reconstruction is incorrect
(P′

i 6= Pi).

D = D′ (10)
K = K ′ (11)
M = M ′ (12)

Let us show now that if these three equations are
satisfied, then we have P′

i = Pi. Then, there is only one
correct reconstruction, which can be obtained when the
frames are synchronized. If we look at the figure 3, we
can see that the lines (P1P4) and (P′

1P
′
4) intersect the

same pencil of rays from OL. We can then apply the
cross ratio :
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/
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By combining the equations (4) to (9) with the equation
(13), we get :

K

M
=

K ′

M ′ (14)

If K = K ′, then M = M ′ hence :

‖ P3P2 ‖
‖ P3P4 ‖

=
‖ P′

3P
′
2 ‖

‖ P′
3P

′
4 ‖

(15)

This equality is the Thalès’ theorem, satisfied by {Pi}
and {P′

i} only if the lines (P1P4) and (P′
1P

′
4) are

parallel. If the equation (11) is satisfied, then there is only
one reconstruction that also satisfies the equation (10).
This solution corresponds to the case where P′

i = Pi (the
case where the points are behind the centre of camera is
rejected). This proves that for non synchronized cameras,
the exact reconstructions of simple rigid structures are
not possible, thus we can expect better result for complex
ones.

C. Experimental measurements on basic structures
A correct reconstruction is a reliable criterion to

recover synchronization between cameras. If correct
shapes are unknown, we have to extract it from images
sequences. We postulate that among all reconstructions
performed by combining the set of images, the correct
one is the most recurrent one. We will show this assertion
through two experiments. 3D reconstructions are tested
on synthetic and real data of two unsynchronized
cameras.

1) Synthetic data: We assume δ as the temporal shift
between CL and CR. OL is chosen as the origin of
the world coordinate frame and P1P4 defined an object
moving through the scene (see figure 3). Let us examine
the figure 4. CL sees P1 at t (i.e. P1(t)) and because
of δ, CR sees the same point at t + δ (i.e. P1(t + δ)).
The reconstruction P

′

1 of P1 from the frames will be the
intersection of (OLP1(t)) and (ORP1(t + δ)), hence :

P′
1(t) = α1P1(t) = OR+α′

1(P1(t+δ)−OR) (α, α′) ∈ R2

(16)
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Fig. 4. Due to the delay, the point P′
1 is constructed from points

P1(t) and P1(t + δ) seen by CL and CR.

This equality is a set of three equations (one for each
component) from which the scales factors can be
expressed from the other parameters. For example, with
the equation along x, we have :

α′
1 =

α1Px1(t)−OxR

Px1(t + δ)−OxR
(17)

By injecting this equality into the other two equations
we have after rearrangement :

α1 =
det(P1(t + δ)−OR,OR)

det(P1(t + δ,P1(t))
(18)

Similar equations can be established for P4, hence D′,
the norm of the P′

1P
′
4 can be expressed as a function of

P1 and P4 :

D′ =‖ P′
4P

′
1 ‖=‖ α4P4 − α1P1 ‖ (19)

Given a neighborhood N of both cameras, we look
inside it for any positions and orientations of P1P4 that
lead to length preserving reconstructions despite the
desynchronization. If there are such configurations, the
correct shape criterion will not hold anymore.
We set an arbitrary length D′ as the constraint for
reconstructions from non synchronized frames and we
list all P1P4 inside N that produce such reconstructions.
Figure 5 shows the lengths of the P1P4 that produce
reconstructions of constant length D′, for several values
of D′. One can see that there is no configuration
that preserves both D and D′, hence our criterion is
legitimate.

2) Real data: The first experiment provides cues
on the validity of the use of shapes to establish
synchronization. We present a similar experiment with
real data.

Three collinear points with perfectly known metric
properties are viewed by both cameras. D is the length
of P1P4 and K, the ratio such that P1P2 = KP1P4.
The cameras framerates are set to 30 frames per second.
The ground truth is provided by a LED panel able to
measure less than 2ms durations to determine exactly
the acquisition time of the images.
Using the stereoscopic system, we can position the points
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Fig. 5. Computed lengths of P1P4 for several arbitrary fixed D′.
The initial length D is set to 28 cm. For readability purpose, only
some curves are presented and we can see that the estimate length
in each case is not constant.

in the 3D coordinate frame and compute the values of
D and K. With synchronized images, we see that the
length D and the ratio K have small dispersions around
their mean values. In the case of unsynchronized images,
these dispersions are much more significant, because of
reconstruction errors (see figure 6).
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Fig. 6. (a) If the frames are synchronized, the computed lengths
of reconstructed segments are stable around the mean value (red
curve). On the other hand, if frames are unsynchronized, the
dispersion is much more important (blue curve). (b) We observe
the same result for the ratio K. Figures (c) and (d) present the
corresponding errors.

As expected, these results also comply with our as-
sertion. Since correct 3D shapes cannot be computed
from the non-synchronized frames, we can recover syn-
chronization with shape based criteria. For example, one
can perform several reconstructions by combining frames
of each camera taken inside a temporal interval F as
previously defined. If some recurrent 3D reconstructions
are obtained then these shapes are likely the correct ones,
hence the set of images used for their reconstructions are
synchronized.

We underline that reconstructions are labelled as cor-
rect only if the correct geometric properties are pre-
served i.e. lengths and collinearity, hence even if recurrent
shapes are obtained from triangulations, they may result
from unsynchronized streams. Correct shapes are only in
general statistically more recurrent, but in some special
cases, false reconstructions can be equally or even more
recurrent than synchronized ones. For example, static

objects will not allow discrimination between synchro-
nized and non synchronized frames since correct recon-
structions are possible whatever the time shifts are. The
same results will occur for stationary motions. That is the
motions combined to the delays between frames produce
globally invariant projections in the images planes.

III. Synchronization from reconstructions

3D reconstructions provide information for synchroniz-
ing the cameras, but first we need methods for shapes
characterization to compare and classify reconstructed
structures.

• Let S be an object moving through the scene viewed
by m cameras.

• Let f be the size of the search interval F .
• Let Sj

n be a reconstructed shape computed from the
jth combination of images defined by the interval
F . F is centered on the nth image of an arbitrarily
chosen camera C1.

The Sj
n are geometric reconstructions obtained with

voxel coloring method [8], [6]. This method has many
advantages as it gives a dense reconstruction of objects,
and is easy to compute. This main idea is to reproject
each voxel in each image of the network, check the
consistency of the voxel by analyzing the color of the
area in the images and affect the valid color to this
voxel. We compute these 3D reconstructions for the
j combinations of images defined for every image n
according to the search interval F .

For each Sj
n, we use the characterization DL defined

as :
DL : Sj

n 7→ VS = DL(Sj
n) (20)

DL maps each Sj
n to the histogram of the interdistances

of all of its surface points. The key idea is to transform a
3D model into a parameterized vector that can be easily
compare with the others. This approach based on geo-
metrical features is useful for discriminating objects with
different shapes as it is fast to compute and invariant to
rigid motions[1]. A similar histogram is also computed
for an arbitrary, but perfectly known structure (e.g. a
sphere, cube, etc...) and is used as reference structure to
compare reconstructed shapes. We only assume a rigid
body hypothesis for the objects moving in the scene, no
constraint is set on the motions.
The 3D geometric models are usually unknown, the most
recurrent reconstructions are assumed to be the correct
one up to the exceptions discussed in previous section.
Then the most recurrent ones are extracted, labelled as
the exact shapes and can be used to synchronize the
video sequences of the m cameras. A synchronization is
achieved by determining the image set inside the interval
F that produces correct reconstructions (see figure 7).
Time delay δ can then be estimated and used to optimize
the size of the interval F through an iterative process.



Fig. 7. For each frame of C1, an interval of length f is set.
This defines locally a set of images acquired by the m cameras,
then reconstructions are performed by combining frames from each
camera.

Fine estimation of δ can be obtained.

Computational time is the main limitation of the syn-
chronization method. We have to test each combination
of images in the temporal window. In most of case, if the
variation of temporal shift is slow enough, we can apply
predictive filtering. The prediction is initialized with the
synchronization of the first images, then for each video
stream, we apply a stochastic gradient descent method
(NLMS) to synchronize the upcoming frames. This allows
us to reduce the length of F , and in the best case it is
equal to zero and no reconstruction is needed. In such
case, we are only readjusting temporally the sequences.
The method can also deal with heavy time delays. In
the general case, the temporal window is initialized
large enough but is readjusted according to the retrieved
synchronization. The number of reconstructions is high
at the beginning but decreases over time.

IV. Application to network of 8 cameras

In this section, we apply our synchronization method
to find temporal sets of images from several cameras
observing a rigid object. The video acquisition system
is formed by 8 cameras placed around the scene. We
place inside it a vehicle constraint to move planarly (see
figure 8). The same framerate is set for all the cameras.
We compute the characterization vector (or histogram

of distance) for each reconstruction. If the exact shape
is known, its associated histogram can be used to select
correct reconstructions from flawed ones as shown in
the figure 9(a). In general case, the correct shape has
to be extracted from all reconstructions. We use a
unit sphere as a reference structure to compare the
reconstructions. The distances of their histograms to the
histogram of the unit sphere are shown in figure 9(b).
As one can see, two classes of reconstruction can be
segmented from the measurements. The blue dots have
little dispersion around some mean value compared
to the red ones. According to previous sections, the
associated reconstructions are the correct ones.

As the correct scene structure can be reconstructed if
the frames are synchronized, we can expect to recover
the exact trajectory of the vehicle, thus we can also use

Fig. 8. Experimental system of 8 cameras observing a mobile
vehicle that describes a planar trajectory. A camera seeing the scene
from the above is used to segment the vehicle. Two markers are
placed on it to ease the segmentation process. We can determine
the position and the orientation of the car in each image of the
sequence. The trajectory (black curves) of the car is computed and
can be used as reference curve for comparison purpose.
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Fig. 9. (a) Characterization vectors for 3 reconstructions. The red
one is the histogram of an exact reconstructed car i.e. the frames are
synchronized. (b) Correct shapes (blue dots) can be extracted from
available reconstructions since they have little dispersion around
some mean value. Some geometrically correct shapes but not time
complying are represented by red dots inside the blue area. These
cases appear when their (exact) time shift is not far (but bigger)
from the estimate one.

this estimation to give credit to our method.
A camera placed above the scene to track the vehicle
provides a first estimation of the trajectory. Two markers
are placed on the object to help its segmentation, hence
its position and orientation can be extracted to build
the trajectory (see figure 8). Since this estimation is
obtained from a single camera, it is not subject to
desynchronization. Providing the segmentation process is
precise enough, the trajectory can be reasonably assumed
to be exact and used as a model of reference.
On the other hand, we compute the trajectory from the
correct reconstructed shape by replacing it inside the
scene anytime. Its gravity center will describe a trajec-
tory similar to the reference one, up to some translation.

Both estimations, the one from the synchronization
method (blue) and the one from segmentation (red) are
represented in figure 10 and one can see that their ”point-
to-point” errors are small enough for us to claim for
the correctness of the reconstructions and hence of the
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Fig. 10. (a) Trajectories computed from the correct shapes with
the synchronization method (blue curve) and the segmentation
method (red) in the plan XY . (b) For each position, the blue curve
is compared to the red one by measuring a ”point-to-point” error.
The mean error (5mm) is reasonable small enough compared to the
magnitude of the trajectory (∼ 35cm, the error is less than 2%).

synchronization. Finally, figure 11 shows several recon-
structions and positions (hence the trajectory) of the car
when cameras are properly synchronized by applying our
method.

Fig. 11. Reconstructions from synchronized frames. We can
confirm that cameras are properly synchronized by examining
reconstructed shapes and trajectory

V. Conclusion

We proposed in this paper a new method to syn-
chronize a set of cameras. We proved the possibility to
recover the time shifts between the cameras from scene
structures without need of any external hardware. The
constraints set on the scene are limited to the hypothesis
of mobile rigid bodies. If our method can benefit from a
prior knowledge of the geometric models of the bodies to

recover the synchronization, it can also provide solution
in more general cases where such an information is
not available.We also proved the equivalence between
synchronization and correctness of structures reconstruc-
tions, hence we have legitimate the synchronization based
on a shape criterion. A major drawback for the method
is the important computational load as we perform blind
search of the correct shapes, however this can be reduced
as we suggest by using a predictive filters in order to
limit the number of reconstructions. One can argue that
the shape criterion cannot be applied for static scenes,
since any reconstructions will be correct regardless the
cameras are unsynchronized or not. However one can also
argue about the relevance to consider static scenes since
such cases are statistically non significant since the ro-
bots/cameras are mobile. The number of reconstruction
increases exponentially with the number of the cameras,
then future work will focus on the propagation of the
synchronization from a small network to a bigger one in
order to avoid unnecessary computations.
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