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Abstract. This paper formalizes the robustness of a virtual human mymaquilibrium through
the residual radius of its admissible generalized forceTde¢ admissible generalized force set is
defined as the image of the contact force constraints (gonekng to the Coulomb model) in
the generalized force space. This set is approximated byy&egmron and its residual radius is
computed using a linear program. The measure relevancaligsad from experimental data of a
sit-to-stand motion on which residual radius is evaluated.
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I ntroduction

Generating whole body motion for virtual human that appeetral is a long
standing problem in character animation, highligting #neklof a solution to Bern-
stein’s redundancy problem. A lot of studies have identifiedriants in various mo-
tions such as minimum jerk for reaching movements [1], mimmtorque change,
minimum muscle tension change, minimum motor command aaam@imum of
biological noise, etc.). Such models are well suited to geeeeference trajectories
which can be further modified to compensate expected patioris in a feedfor-
ward way. Additionaly, sensory-driven feedback strategiee needed to cope with
unexpected disturbances.

However, some strong perturbations cannot be compensagei dimitations in
contact forces and joint torques. Some “distance to constrmlation” may there-
fore be monitored in order to ensure equilibrium by trigggradjustment motion
when necessary.

The “quality” of equilibrium for humanoid robots is gendyatneasured as the
distance between some caracteristic point (ZMP, CdM ptiojecFRI) and the sup-
port polygon borders. Popovic [7] offers a comprehensiveere of those caracter-
istic points and study their evolution during human walkt Bhese measures are
only valid if the contacts are coplanar. Harada [3] exterthed MP measure in or-
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der to handle situations where the upper-limbs are in comtgle the environment.
However, the limits in frictionnal contact forces are stiit taken into account.

To overcome this restriction the force closure measuresiwihave been devel-
opped in the past for grasp and fixture analysis can be redisW/ieber [8], then
Hirukawaet al. [4] have proposed a formulation of the frictional consttsias a
feasable contact wrench domain that has lead to a more salkmeasure, however,
to our knowledge, this measure has never been used to ev#hegaset of possible
human motions.

This paper is concerned by the quantification of a posturétguagarding the
dynamical balance. We first consider a single body in corsmadtshow how the set
of feasable contact wrenches can be computed (1). We theredisfresidual radius
as a measure of the contact set quality (2). This method isdkeeralized to the
case of a virtual human in contact with its environment 3.8t the relevance of
the measure is evaluated on a sit-to-stand motion.

1 Resistable and Applicable Contact Wrenches

Let us consider a rigid body in contact atm points with bodies (i =1,...,m)
from its environment.

moment along z (N m)

Fig. 1 Arigid bodyb in contact with two other bodies (left) and the set of resilg@ontact wrench
Wy, € #¢ (right). The wrench is expressed in the frais.

For each contact point (let us say thén), we can define the framie; } and the
contact forcef . Considering the punctual with friction contact model, whe
sliding occurs, the overall friction force lies within a mution cone:

000
ﬁ’ci:{fci: fe [8%2} fo <mi[100] fq} (1)
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whereyy; is the static coefficient of friction. The set of wrenched th@se contact
forces can produce is called the setedistable contact wrenc#:

f
We={We:We=Gf;fo € Fo xx T} with fo=1| - (2)
;

cm

If the bodyb is a manipulated objedf is called thegrasp matrix A planar example
is depicted in figure 1, where the resistable contact wreetls snbounded but does
not span the entiri®.

The image of a revolution cone through a linear applicatientfie grap matrix)
cannot be computed directly. Therefore, we approximate iahinear cone. Let
us choosep regularly spaced unitary vectors on the Coulomb cone bartihre
i-th contact and call thenﬁéi (wherej = 1..p). The set spanned by their positive
combinations is a convex linear cone:

p .
yg:{f:fzza,-fgi;ajzo}zpos(fgi,...,fg) 3)
=1

which (as any polyhedron) can also be defined as a generalieqdality:
T ={f:Aqt <bg} (4)

where the rows of; are vectors chosen normal to the facets and outgoing. The set
{f%i,...,fgi‘} is called thevertice representatioof .#¢ andA andbg are called
its half-space representation

The image¥" of ¢ x .- x Z¢ through the grasp map is also given by a
positive combination:

m
W = {wc W = Z‘(S"iAd;O)T fo, wheref, € 9‘;} (5)
i=

= pos(wy

LWL, W ) wherew] = (S%Ady)T fL (6)

When a grasping problem is considered, the contact foree®féen actively
controlled and also limited by additionnal (actuatorstetl) constraints#; is then
replaced by the set @pplicable contact wrencl¥ .:

WC:{WC:WC:GfC;fCchlX"'XyCm:X(fC):1} (7)

{ 1 if the additionnal constraints hold

wherey () = (8)

0 otherwise

A common choice fory is to limit the total normal contact force, because its ap-
proximation leads to the following convex hull:
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. m p . .
V/C:a{W:W: Zai’jwéi;oga;’jgl}:aconv(O,W%l,...,W(J:i,...,wgm)
i=1]=1
9)

wherea € R* is a scale factor. Mishra [6] proposed several other chdimeg.

2 Residual Ball and Radius

2.1 Definition

For a manipulation task? . (or #¢) is strongly related to the grasp quality: it can be
used to check whether some expected external wrerdfor instance the wrench
of gravity and inertial effects) is sustainable or not (siynpheck if we € #¢).
Moreover, the “further'we is from the boundary o# ¢, the “more robust” is the
grasp. Kirkpatrick et al. [5] used thesidual radiusof # . (or #¢) as a quantitative
measure of this robustness.

Let us consider the largest hypersphere centered and fully contained inside
W .. The hypersphere is called thesidual balland its radius theesidual radius
Physically, the residual radius is the norm of the largesineh which can be sus-
tained in any direction.

2.2 Implementation

Finding the largest hypersphere included in the polyhedfgncan be written as
the following linear program (LP): maximizesubjecttodr < b— Ac
whereA, b are’#;" half-space representationjs the hypersphere center adds

computed fromA as follows:A= (&j) d=(di) di=Y;, /aﬁ
In what follows, we make use of the polyhedral computatibrdiycddlib writ-

ten by Fukuda [2] to compute the half-space representatfoasdb).
The process of computing the residual radius can be sumeasaiz follows:

. for each contact, compute the verticfég

. compute each vertice image in the wrench spege

. compute the half-space representatio/gf,

. compute the centerof the sphere (which is given by the external wrenches),
. solve the LP to compute the residual radius.

gabrhownN -
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3 Virtual Human Dynamics

Let us consider the problem of controlling a multi-leggedteyn such as a human.
These systems are underactuated and thus rely on the céorees to produce
motion. Therefore, the limitations holding on the contactés reduce the range of
possible motions. We will show here how these limitations lsa accounted for in
the configuration space and then generalize the residualkrateasure.

3.1 Equations of Motion

We model the virtual human as set of rigid
bodies linked together by a tree-like structure.
The mechanism has = 36 degrees of freedom
(dof). Let us denotg € R" the generalized co-
ordinates of these joints. The whole system can
be viewed as a free flying robot, whose configu-
ration is given by the vectay and the pose of a
“reference” bodyH, (see figure 2). The general-
ized velocities and accelerations are then respec-
tively v = {\(ﬂ andv = | V|

Assuming that all the contacts occur with
§t§1tic bodies_, the condit_ion of gdhesion gnd NOM 4 2 The virtual human with 36 ac-
lifting are written as & kinematic constaints: e dof and the homogeneous trans-

. formation matrix accounting for the
0=J.(q)v+J(g,q)v (10) position of the free floating reference
body (the pelvis).
whereJ. € RG™<("+9)) js the jacobian of all the contact points.
The Newton-Euler equations of motion are given by

M(q)V +N(q,v)v = g(Hr,q) + Sy(t) + J(a)" f. (11)

whereM,N e R("6)x(n+6) are respectively the inertia and non-linear effects matri-
ces,g € R"6 is the vector of gravitational generalized forces, gfitd € R" are the

control input functions which are mapped with the constaatrm S= {?:::} into

the actively controlled joints. Eventually, accounts for the contact forces, which
can also be viewed as the Lagrangian multipliers of the atmtdated kinematic
constraints.

3.2 Resistable Generalized Contact Force

When considering the virtual human equilibrium, we areriegéed in the impact
of the contact force limitations on the set of admissibleggatized forces. In the
section 1, we mapped the Coulomb cones through the grasiximatrthe resistable
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contact wrench, we may extend this method by mapping thédnicone through
the transposed contact point jacobian into the generalaree space;. Its linear
approximation#{  is given by:

T ={t:1=3%Q) fo: foe T x...xF } (12)
tl,..., 18 ) wheret) = J; (q)"fL (13)

=pos(Tg,,...,
" is a polyhedron intd® ("6 which represents the set of generalized contact
forces which can be sustained by the contact forces. Onearapuge its residual
radius as in section 2.2. However, it is harder to give a & sheaning to the radius
in this space. Moreover, computing the half-space reptasen of this polyhedron
in this high-dimensionnal space is time consuming. Theegfave will only con-
sider a subset of the generalized forces. As the ground fonitations are much
more restrictive for the unactuaded DOFs than for the aetbanes (because in the
latter case, the actuators can compensate for the restisgtiwe choose to consider
the generalized forces corresponding to the unactuatedsDi@fhe case of a vir-
tual human, the only unactuated DOFs are the ones positigithé root body (the
bust), therefore the 6 corresponding generalized forcesisoof a wrench and the
measure developped for the grasping can be applied diregtheplacingG with
the 6 first lines ofl.(q)".
Let us multiply the dynamic equilibrium equation with" = [lsxs Osex3s], it
comes:

P~ (M()V +N(q,v)v —g(Hr,a)) = P Jc(a)" f, (14)

One can then compute the residual radius measure on thénmgg€utimension-
nal space as follow:

for each contact, compute the vertides

compute each vertice image throughl!,

compute the half-space representation of the polyhedron

compute the center= P+ (M(q)v +N(q,v)v —g(Hr,q)), of the sphere,
solve the LP to compute the residual radius.

agrONPE

3.3 Evaluation on Human Motion

In order to evaluate the relevance of this measure, we cadpubn a sit-to-stand
motion recorded with an optical motion tracking system.

The subjet is initially sitting on a stool, with its bottom @ontact with the stool
and each foot in contact with the ground. We modeled the cbb&tween each foot
and the ground as well as between each thick and the stoolegfectively 4 and
1 punctual with friction contacts (see figure 3).

We computed the measure as detailed in the section 3.2, tgrgaptured mo-
tion as input. We choose the frardb} to be parallel to the inertial frame with
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Fig. 3 (right) The virtual human at the beginning of the sit-to-stand omtin contact with the
ground and the seat. The linearized friction cones appegellow. (top lef) Resistable contact
moment (numerical values in Nmbdttom lef} Resistable contact force (numerical values in N).

its origin at the virtual human center of mass. The corredpanset of resistable
generalized contact force space at the beginning of theom@ti showed figure 3
together with the residual ball.
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Fig. 4 Residual radii of the contact wrench (force and torque)uateld over the time during a
sit-to-stand motion. The origin of time is chosen at thedift

Figure 4 shows the evolution of the residual radii of bottyte and force com-
ponents during the motion. One can notice that:

e thereis a discontinuity when the seat contacts lift off,
e the radii present a maximum when the normal force is the Isiglieat is when
the vertical acceleration is maximal ;
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¢ the radii reach low level, indicating that the system islyeadar to tip.

This evolution is very conform to expectations and suggististhe proposed mea-
sure can be successfully used to monitor the equilibriutlitg during a motion.

Conclusion and per spectives

We defined a measure of dynamic equilibrium robustness amdeshits relevance

on a sit-to-stand motion. Further work is needed to study kemsitive the mea-

sure is to errors in contact parameters estimation. Chgdkim measure behaviour
against other human motions, typically involving contdmsveen the upper limbs
and the environment would also be usefull. Eventually, wddase the measure to
adjust a virtual human posture in order to improve its ehiilim robustness.
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