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Abstract. This paper formalizes the robustness of a virtual human dynamic equilibrium through
the residual radius of its admissible generalized force set. The admissible generalized force set is
defined as the image of the contact force constraints (corresponding to the Coulomb model) in
the generalized force space. This set is approximated by a polyhedron and its residual radius is
computed using a linear program. The measure relevance is analysed from experimental data of a
sit-to-stand motion on which residual radius is evaluated.
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Introduction

Generating whole body motion for virtual human that appearsnatural is a long
standing problem in character animation, highligting the lack of a solution to Bern-
stein’s redundancy problem. A lot of studies have identifiedinvariants in various mo-
tions such as minimum jerk for reaching movements [1], minimum torque change,
minimum muscle tension change, minimum motor command change, minimum of
biological noise, etc.). Such models are well suited to generate reference trajectories
which can be further modified to compensate expected perturbations in a feedfor-
ward way. Additionaly, sensory-driven feedback strategies are needed to cope with
unexpected disturbances.

However, some strong perturbations cannot be compensated due to limitations in
contact forces and joint torques. Some “distance to constraint violation” may there-
fore be monitored in order to ensure equilibrium by triggering adjustment motion
when necessary.

The “quality” of equilibrium for humanoid robots is generally measured as the
distance between some caracteristic point (ZMP, CdM projection, FRI) and the sup-
port polygon borders. Popovic [7] offers a comprehensive review of those caracter-
istic points and study their evolution during human walk. But these measures are
only valid if the contacts are coplanar. Harada [3] extendedthe ZMP measure in or-
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der to handle situations where the upper-limbs are in contact with the environment.
However, the limits in frictionnal contact forces are stillnot taken into account.

To overcome this restriction the force closure measures which have been devel-
opped in the past for grasp and fixture analysis can be revisited. Wieber [8], then
Hirukawaet al. [4] have proposed a formulation of the frictional constraints as a
feasable contact wrench domain that has lead to a more universal measure, however,
to our knowledge, this measure has never been used to evaluate the set of possible
human motions.

This paper is concerned by the quantification of a posture quality regarding the
dynamical balance. We first consider a single body in contactand show how the set
of feasable contact wrenches can be computed (1). We then define its residual radius
as a measure of the contact set quality (2). This method is then generalized to the
case of a virtual human in contact with its environment 3. At last, the relevance of
the measure is evaluated on a sit-to-stand motion.

1 Resistable and Applicable Contact Wrenches

Let us consider a rigid bodyb in contact atm points with bodiesei (i = 1, . . . ,m)
from its environment.

Fig. 1 A rigid bodyb in contact with two other bodies (left) and the set of resistable contact wrench
wb ∈ Wc (right). The wrench is expressed in the frame{b}.

For each contact point (let us say thei-th), we can define the frame{ci} and the
contact forcef ci

. Considering the punctual with friction contact model, when no
sliding occurs, the overall friction force lies within a revolution cone:

Fci =

{

f ci
:

√

f T
ci

[

0 0 0
0 1 0
0 0 1

]

f ci
≤ µi [1 0 0] f ci

}

(1)
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whereµi is the static coefficient of friction. The set of wrenches that these contact
forces can produce is called the set ofresistable contact wrenchWc:

Wc =
{

wc : wc = G fc; f c ∈ Fc1 ×·· ·×Fcm

}

with f c =





f c1

...
f cm



 (2)

If the bodyb is a manipulated object,G is called thegrasp matrix. A planar example
is depicted in figure 1, where the resistable contact wrench set is unbounded but does
not span the entireR3.

The image of a revolution cone through a linear application (ie. the grap matrix)
cannot be computed directly. Therefore, we approximate it by a linear cone. Let
us choosep regularly spaced unitary vectors on the Coulomb cone borderof the
i-th contact and call themf j

ci (where j = 1..p). The set spanned by their positive
combinations is a convex linear cone:

F
∗
ci

=

{

f : f =
p

∑
j=1

a j f j
ci

;a j ≥ 0

}

= pos
(

f 1
ci
, . . . , f p

ci

)

(3)

which (as any polyhedron) can also be defined as a generalizedinequality:

F
∗
ci

= { f : Aci f ≤ bci} (4)

where the rows ofAci are vectors chosen normal to the facets and outgoing. The set
{

f 1
ci
, . . . , f m

ci

}

is called thevertice representationof F ∗
ci

andAci andbci are called
its half-space representation.

The imageW ∗
c of F ∗

ci
× ·· · ×F ∗

cm
through the grasp map is also given by a

positive combination:

W
∗

c =

{

wc : wc =
m

∑
i=1

(SciAdb)
T f ci

where f ci
∈ F

∗
ci

}

(5)

= pos
(

w1
c1

, . . . ,w j
ci
, . . . ,wp

cm

)

wherewj
ci

= (SciAdb)
T f j

ci
(6)

When a grasping problem is considered, the contact forces are often actively
controlled and also limited by additionnal (actuators-related) constraints.Wc is then
replaced by the set ofapplicable contact wrenchW c:

W c =
{

wc : wc = G fc; f c ∈ Fc1 ×·· ·×Fcm : χ
(

f c

)

= 1
}

(7)

whereχ
(

f c

)

=

{

1 if the additionnal constraints hold

0 otherwise
(8)

A common choice forχ is to limit the total normal contact force, because its ap-
proximation leads to the following convex hull:
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W
∗
c = α

{

w : w =
m

∑
i=1

p

∑
j=1

ai, jw
j
ci

;0≤ ai, j ≤ 1

}

= α conv
(

0,w1
c1

, . . . ,w j
ci
, . . . ,wp

cm

)

(9)

whereα ∈ R
+ is a scale factor. Mishra [6] proposed several other choicesfor χ .

2 Residual Ball and Radius

2.1 Definition

For a manipulation task,W c (orWc) is strongly related to the grasp quality: it can be
used to check whether some expected external wrenchwe (for instance the wrench
of gravity and inertial effects) is sustainable or not (simply check if we ∈ W c).
Moreover, the “further”we is from the boundary ofW c, the “more robust” is the
grasp. Kirkpatrick et al. [5] used theresidual radiusof W c (or Wc) as a quantitative
measure of this robustness.

Let us consider the largest hypersphere centered atwe and fully contained inside
W c. The hypersphere is called theresidual balland its radius theresidual radius.
Physically, the residual radius is the norm of the largest wrench which can be sus-
tained in any direction.

2.2 Implementation

Finding the largest hypersphere included in the polyhedronW ∗
c can be written as

the following linear program (LP): maximizer subject todr ≤ b−Ac
whereA, b areW ∗

c half-space representation,c is the hypersphere center andd is

computed fromA as follows:A = (ai j ) d = (di) di = ∑ j

√

a2
i j

In what follows, we make use of the polyhedral computation librarycddlibwrit-
ten by Fukuda [2] to compute the half-space representations(A andb).

The process of computing the residual radius can be summarized as follows:

1. for each contact, compute the verticesf j
ci ,

2. compute each vertice image in the wrench spacewj
ci ,

3. compute the half-space representation ofW ∗
C ,

4. compute the centerc of the sphere (which is given by the external wrenches),
5. solve the LP to compute the residual radius.
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3 Virtual Human Dynamics

Let us consider the problem of controlling a multi-legged system such as a human.
These systems are underactuated and thus rely on the contactforces to produce
motion. Therefore, the limitations holding on the contact forces reduce the range of
possible motions. We will show here how these limitations can be accounted for in
the configuration space and then generalize the residual radius measure.

3.1 Equations of Motion

We model the virtual human as set of rigid

Fig. 2 The virtual human with 36 ac-
tive dof and the homogeneous trans-
formation matrix accounting for the
position of the free floating reference
body (the pelvis).

bodies linked together by a tree-like structure.
The mechanism hasn = 36 degrees of freedom
(dof). Let us denoteq ∈ R

n the generalized co-
ordinates of these joints. The whole system can
be viewed as a free flying robot, whose configu-
ration is given by the vectorq and the pose of a
“reference” bodyHr (see figure 2). The general-
ized velocities and accelerations are then respec-

tively ν =
[ vr

q̇
]

andν̇ =
[

v̇r
q̈

]

.

Assuming that all the contacts occur with
static bodies, the condition of adhesion and non-
lifting are written as 3mkinematic constaints:

0 = Jc(q)ν̇ + J̇c(q, q̇)ν (10)

whereJc ∈ R
(3m×(n+6)) is the jacobian of all the contact points.

The Newton-Euler equations of motion are given by

M(q)ν̇ +N(q,ν)ν = g(Hr,q)+Sγ(t)+Jc(q)T f c (11)

whereM,N ∈ R
(n+6)×(n+6) are respectively the inertia and non-linear effects matri-

ces,g∈ R
n+6 is the vector of gravitational generalized forces, andγ (t) ∈ R

n are the

control input functions which are mapped with the constant matrix S=
[

06×6
In×n

]

into

the actively controlled joints. Eventually,f c accounts for the contact forces, which
can also be viewed as the Lagrangian multipliers of the contact-related kinematic
constraints.

3.2 Resistable Generalized Contact Force

When considering the virtual human equilibrium, we are interested in the impact
of the contact force limitations on the set of admissible generalized forces. In the
section 1, we mapped the Coulomb cones through the grasp matrix into the resistable
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contact wrench, we may extend this method by mapping the friction cone through
the transposed contact point jacobian into the generalizedforce spaceTc. Its linear
approximationF ∗

cm
is given by:

T
∗

c =
{

τ : τ = Jc(q)T f c : f c ∈ F
∗
ci
× . . .×F

∗
cm

}

(12)

= pos
(

τ1
c1

, . . . ,τ j
ci
, . . . ,τ p

cm

)

whereτ j
ci

= Jci (q)T f j
ci

(13)

T ∗
c is a polyhedron intoR(n+6) which represents the set of generalized contact

forces which can be sustained by the contact forces. One can compute its residual
radius as in section 2.2. However, it is harder to give a physical meaning to the radius
in this space. Moreover, computing the half-space representation of this polyhedron
in this high-dimensionnal space is time consuming. Therefore, we will only con-
sider a subset of the generalized forces. As the ground forcelimitations are much
more restrictive for the unactuaded DOFs than for the actuated ones (because in the
latter case, the actuators can compensate for the restrictions), we choose to consider
the generalized forces corresponding to the unactuated DOFs. In the case of a vir-
tual human, the only unactuated DOFs are the ones positionning the root body (the
bust), therefore the 6 corresponding generalized forces consist of a wrench and the
measure developped for the grasping can be applied directlyby replacingG with
the 6 first lines ofJc(q)T.

Let us multiply the dynamic equilibrium equation withP⊥ = [ I6×6 036×36], it
comes:

P⊥ (M(q)ν̇ +N(q,ν)ν −g(Hr,q)) = P⊥Jc(q)T f c (14)

One can then compute the residual radius measure on the resulting 6 dimension-
nal space as follow:

1. for each contact, compute the verticesf j
ci ,

2. compute each vertice image throughP⊥JT
c ,

3. compute the half-space representation of the polyhedron,
4. compute the centerc = P⊥ (M(q)ν̇ +N(q,ν)ν −g(Hr,q)), of the sphere,
5. solve the LP to compute the residual radius.

3.3 Evaluation on Human Motion

In order to evaluate the relevance of this measure, we computed it on a sit-to-stand
motion recorded with an optical motion tracking system.

The subjet is initially sitting on a stool, with its bottom incontact with the stool
and each foot in contact with the ground. We modeled the contact between each foot
and the ground as well as between each thick and the stool withrespectively 4 and
1 punctual with friction contacts (see figure 3).

We computed the measure as detailed in the section 3.2, usingthe captured mo-
tion as input. We choose the frame{b} to be parallel to the inertial frame with
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Fig. 3 (right) The virtual human at the beginning of the sit-to-stand motion, in contact with the
ground and the seat. The linearized friction cones appear inyellow. (top left) Resistable contact
moment (numerical values in Nm). (bottom left) Resistable contact force (numerical values in N).

its origin at the virtual human center of mass. The corresponding set of resistable
generalized contact force space at the beginning of the motion is showed figure 3
together with the residual ball.

Fig. 4 Residual radii of the contact wrench (force and torque) evaluated over the time during a
sit-to-stand motion. The origin of time is chosen at the lift-off.

Figure 4 shows the evolution of the residual radii of both torque and force com-
ponents during the motion. One can notice that:

• there is a discontinuity when the seat contacts lift off,
• the radii present a maximum when the normal force is the highest, that is when

the vertical acceleration is maximal ;
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• the radii reach low level, indicating that the system is really near to tip.

This evolution is very conform to expectations and suggeststhat the proposed mea-
sure can be successfully used to monitor the equilibrium stablility during a motion.

Conclusion and perspectives

We defined a measure of dynamic equilibrium robustness and showed its relevance
on a sit-to-stand motion. Further work is needed to study howsensitive the mea-
sure is to errors in contact parameters estimation. Checking the measure behaviour
against other human motions, typically involving contactsbetween the upper limbs
and the environment would also be usefull. Eventually, we could use the measure to
adjust a virtual human posture in order to improve its equilibrium robustness.
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