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Abstract. We modelled the cortical columnar organisation to design
a neuromimetic architecture for topological spatial learning and action
planning. Here, we first introduce the biological constraints and the hy-
potheses upon which our model was based. Then, we describe the learn-
ing architecture, and we provide a series of numerical simulation results.
The system was validated on a classical spatial learning task, the Tolman
& Honzik’s detour protocol, which enabled us to assess the ability of the
model to build topological representations suitable for spatial planning,
and to use them to perform flexible goal-directed behaviour (e.g., to pre-
dict the outcome of alternative trajectories avoiding dynamically blocked
pathways). We show that the model reproduced the navigation perfor-
mance of rodents in terms of goal-directed path selection. In addition,
we present a series of statistical and information theoretic analyses to
study the neural coding properties of the learnt space representations.

Key words: spatial navigation, topological map, trajectory planning,
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1 Introduction

Spatial cognition calls upon the ability to learn neural representations of the
spatio-temporal properties of the environment, and to employ them to achieve
goal-oriented navigation. Similar to other high-level functions, spatial cognition
involves parallel information processing mediated by a network of brain struc-
tures that interact to promote effective spatial behaviour [1, 2]. An extensive
body of experimental work has investigated the neural bases of spatial cogni-
tion, and a significant amount of evidence points towards a prominent role of
the hippocampal formation (see [1] for recent reviews). This limbic region has
been thought to mediate spatial learning functions ever since location-selective
neurones — namely hippocampal place cells [3], and entorhinal grid cells [4] —
and orientation-selective neurones — namely head-direction cells [5] — were
found by means of electrophysiological recordings from freely moving rats.

Hippocampal place cells, grid cells, and head-direction cells are likely to sub-
serve spatial representations in allocentric (i.e., world centred) coordinates, thus
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providing cognitive maps [3] to support spatial behaviour. Yet, to perform flexible
navigation (i.e., to plan detours and/or shortcuts) two other components are nec-
essary: goal representation, and target-dependent action sequence planning [6].
The role of the hippocampal formation in these two mechanisms remains unclear.
On the one hand, the hippocampus has been proposed to encode topological-like
representations suitable for action sequence learning [6]. This hypothesis mainly
relies on the recurrent dynamics generated by the CA3 collaterals of the hip-
pocampus [7]. On the other hand, the hippocampal space code is likely to be
highly redundant and distributed [8], which does not seem adequate for learning
compact topological representations of high-dimensional spatial contexts. Also,
the experimental evidence for high-level spatial representations mediated by a
network of neocortical areas (e.g., the posterior parietal cortex [9], and the pre-
frontal cortex [10]) suggests the existence of an extra-hippocampal action plan-
ning system shared among multiple brain regions [11]. This hypothesis postulates
a distributed spatial cognition system in which (i) the hippocampus would take
part to the action planning process by conveying redundant (and robust) spa-
tial representations to higher associative areas, (ii) a cortical network would
elaborate more abstract and compact representations of the spatial context (ac-
counting for motivation-dependent memories, action cost/risk constraints, and
temporal sequences of goal-directed behavioural responses). Among the corti-
cal areas involved in map building and action planning, the prefrontal cortex
(PFC) may play a central role, as suggested by anatomical PFC lesion studies
showing impaired navigation planning in rats [12]. Also, the anatomo-functional
properties of the PFC seem appropriate to encode abstract contextual memo-
ries not merely based on spatial correlates. The PFC receives direct projections
from sub-cortical structures (e.g., the hippocampus [13], the amygdala [14], and
the ventral tegmental area [15]), and indirect connections from the basal ganglia
through the basal ganglia - thalamocortical loops [16]. These projections provide
the PFC with a multidimensional context, including emotional and motivational
inputs [17], reward-dependent modulation [18], and action-related signals [16].
The PFC seems then well suited to (i) process manifold spatial information
[19], (ii) encode the motivational values associated to spatio-temporal events
[6], and (iii) perform supra-modal decisions [20]. Also, the PFC may be involved
in integrating events in the temporal domain at multiple time scales [21]. The
PFC recurrent dynamics regulated by the modulatory action of dopaminergic
afferents [22] may permit to maintain patterns of activity over long time scales.
Finally, the PFC is likely to be critical to detecting cross-temporal contingencies,
which is relevant to the temporal organisation of behavioural responses, and to
the encoding of retrospective and prospective memories [21].

1.1 Cortical Columnar Organisation: a Computational Principle?

The existence of cortical columns was first reported by Mountcastle [23], who
observed chains of cortical neurones reacting to the same external stimuli simul-
taneously. Cortical columns can be divided in six main layers including: layer I,
mostly containing axons and dendrites; layer IV, receiving sensory inputs from
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sub-cortical structures (mainly the thalamus); and layer VI, sending outputs to
sub-cortical brain areas (e.g., to the striatum and the thalamus). Layers II-III
and V-VI constitute the so called supragranular and infragranular layers, respec-
tively. The anatomo-functional properties of cortical columns have been widely
investigated [24]. Neuroanatomical findings have indicated that columns can be
divided into several minicolumns, each of which is composed of a population
of interconnected neurones [25]. Thus, a column can be seen as an ensemble of
interrelated minicolumns receiving inputs from cortical areas and other struc-
tures. It processes these afferent signals and projects the responses both within
and outside the cortical network. This twofold columnar organisation has been
suggested to subserve efficient computation and information processing [24].

1.2 Related Work

This paper presents a neuromimetic model of action planning inspired by the
columnar organisation of the mammalian neocortex. Planning is defined here as
the ability, given a state space S and an action space A, to “mentally” explore
the S × A space to infer an appropriate sequence of actions leading to a goal
state sg ∈ S. This definition calls upon the capability of (i) predicting the
consequences of actions, i.e. the most likely state s′ ∈ S to be reached when an
action a ∈ A is executed from a state s ∈ S, (ii) evaluating the effectiveness
of the selected plan on-line. The model generates a topological representation
of the environment, and it employs an activation-diffusion mechanism [26] to
plan goal-directed trajectories. The activation-diffusion process is based on the
propagation of a reward-dependent activity signal from the goal state sg through
the entire topological network. This propagation process enables the system to
generate action sequences (i.e., trajectories) from the current state s towards sg.

Topological map learning and path planning have been extensively studied in
biomimetic robotics (see [27] for a review). Here we focus on model architectures
that take inspiration from the anatomical organisation of the cortex, and imple-
ment an activation-diffusion planning principle. Burnod [28] proposed one of the
first models of the cortical column architecture, called “cortical automaton”. He
also described a “call tree” process that can be seen as a neuromimetic imple-
mentation of the activation-diffusion principle. Several action selection models
were inspired by Burnod’s hypothesis. Some of these works employed the cortical
automaton concept explicitly [29–31]. Others used either connectionist architec-
tures [32–34] or Markov decision processes [35]. Yet, none of these works took
into account the multilevel coding property offered by the possibility to refine
the cortical organisation by adding a sublevel to the column, i.e. the minicolumn.
The topological representation presented here exploits this idea by associating
the columnar level to a compact representation of the environment, and by em-
ploying the minicolumn level to characterise the agent behaviour. In order to
validate the model, we have implemented it on a simulated robotic platform,
and tested it on the classical Tolman & Honzik’s navigation task [36]. This
protocol allowed us to assess the ability of the system to learn topological repre-
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sentations, and to exploit them to perform flexible goal-directed behaviour (e.g.,
planning detours).

2 Methods

2.1 Single Neurone Model

The elementary computational units of the model are artificial firing-rate neu-
rones i, whose mean discharge ri ∈ [0, 1] is given by

ri(t) = f
(
Vi(t) · (1± η)

)
. (1)

where Vi(t) is the membrane potential at time t, f is the transfer function, and
η is a random noise uniformly drawn from [0, 0.01]. Vi varies according to

τi ·
dVi(t)
dt

= −Vi(t) + Ii(t) . (2)

where τi = 10 ms is the membrane time constant, and Ii(t) is the synaptic drive
generated by all the inputs. Eq. 2 is integrated by using a time step ∆t = 1 ms.
Both the synaptic drive Ii(t) and the transfer function f are characteristic of
the different types of model units, and they will be defined thereafter.

2.2 Encoding Space and Actions: Minicolumn and Column Model

The main inputs to the cortical model are the location- and orientation-selective
activities of hippocampal place and head-direction cells, respectively [3, 5]. The
hippocampal place field representation is built incrementally as the simulated
animal (i.e., the animat) explores the environment, and it provides the system
with a continuous distributed and redundant state representation S [37, 38].
A major objective of the cortical model was to build a compact state-action
representation S ×A suitable for topological map learning and action planning.

In the model, the basic component of the columnar organisation is the mini-
column (vertical grey regions in Fig. 1). An unsupervised learning scheme (Sec.
2.3) makes the activity of each minicolumn selective to a specific state-action
pair (s, a) ∈ S × A. Notice that a given action a ∈ A represents the allocentric
motion direction of the animat when it performs the transition between two
locations s, s′ ∈ S. According to the learning algorithm, all the minicolumns
selective for the same spatial location s ∈ S are grouped to form a higher-level
computational unit, i.e. the column (see c and c′ in Fig. 1A). This architecture is
inspired by biological data showing that minicolumns inside a column have simi-
lar selectivity properties [39]. Thus, columns consist of a set of minicolumns that
are incrementally recruited to encode all the state-action pairs (s, a1···N ) ∈ S×A
experienced by the animat at a location s. During planning (Sec. 2.4), all the
minicolumns of a column compete with each other to locally infer the most
appropriate goal-directed action.
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Fig. 1. The cortical model and the implementation of the activation-diffusion process.
(A) Columns (c and c′) consist of sets of minicolumns (vertical grey regions), each of
which contains a supragranular (SL) and an infragranular (IL) layer unit. (B) Top:
back-propagation of the motivational signal through the network of SL neurones. Bot-
tom: forward-propagation of the goal-directed action signal through the IL neurones.

Every minicolumn of the model consists of two computational units, repre-
senting supragranular layer (SL) and infragranular layer (IL) neurones (Fig. 1A).
The discharge of SL and IL units simulates the mean firing activity of a popula-
tion of cortical neurones in layers II-III, and V-VI, respectively. Each minicolumn
receives three different sets of afferent projections (Fig. 1A): (i) Hippocampal in-
puts conveying allocentric space coding signals converge onto IL neurones; these
connections are plastic, and their synaptic efficacy is determined by the weight
distribution wh (all the synaptic weights of the model are within the maximum
range of [0, 1]). (ii) Collateral afferents from adjacent cortical columns converge
onto SL and IL neurones via the projections wu and wl, respectively. These lat-
eral connections are learnt incrementally (Sec. 2.3), and play a prominent role
in both encoding the environment topology and implementing the activation-
diffusion planning mechanism. (iii) SL neurones receive projections wm convey-
ing motivation-dependent signals. As shown in Sec. 2.4, this input is employed
to relate the activity of a minicolumn to goal locations.

SL neurones discharge as a function of the motivational signals mediated by
the wu and wm projections. The synaptic drive Ii(t) depolarising a SL neurone
i that belongs to a column c is given by:

Ii(t) = max
i′∈c′ 6=c

{
wu

ii′ · ri′(t)
}

+ wm
i · rm . (3)

where i′ indexes other SL neurones of the cortical network; wm
i and rm are the

weight and the intensity of the motivational signal, respectively. In the current
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version of the model the motivational input is generated algorithmically, i.e.
wm

i = 1 if column c is associated to the goal location, wm
i = 0 otherwise, and the

motivational signal rm = 1. The membrane potential of unit i is then computed
according to Eq. 2, and its firing rate ri(t) is obtained by means of an identity
transfer function f .

Within each minicolumn, SL neurones project onto IL units by means of non-
plastic projections wc (Fig. 1A). Thus, IL neurones are driven by hippocampal
place (HP) cells h (via the projections wh), IL neurones belonging to adjacent
columns (via the collaterals wl), and SL units i (via wc). The synaptic drive of
a IL neurone j ∈ c is:

Ij(t) = max
{ ∑

h∈HP

wh
jh · rh(t) , max

j′∈c′ 6=c

{
wl

jj′ · rj′(t)
}}

+ wc
ji · ri(t) . (4)

where j′ indicates other IL neurones of the network; wc
ji = 1 if the SL neurone

i and the IL neurone j belong to the same minicolumn, wc
ji = 0 otherwise.

The membrane potential Vj(t) is computed by Eq. 2, and a sigmoidal transfer
function f is employed to calculate rj(t). The parameters of the transfer function
change online to adapt the electroresponsiveness properties of IL neurones j to
the strength of their inputs [40].

2.3 Unsupervised Growing Network Scheme for Topological Map
Learning

The topological representation is built incrementally as the animat explores the
environment. At each location visited by the agent at time t the cortical network
is updated if-and-only-if the infragranular layers of all existing minicolumns re-
main silent, i.e.

∑
j H(rj(t) − ρ) = 0, where j indexes all the IL neurones, H

is the Heaviside function (i.e., H(x) = 1 if x ≥ 0, H(x) = 0 otherwise), and
ρ = 0.1 (see [38] for a similar algorithmic implementation of novelty detection
in the hippocampal activity space). If at time t the novelty condition holds, a
new group of minicolumns (i.e., a new column c) is recruited to become selective
to the new place. Then, all the simultaneously active place cells h ∈ HP are
connected to the new IL units j ∈ c. Weights wh

jh are initialised according to

wh
jh = H(rh − ρ) · rh . (5)

For t′ > t, the synaptic strength of these connections is changed by unsupervised
Hebbian learning combined to a winner-take-all scheme. Let c be the column
selective for the position visited by the animat at time t′, i.e. let all the j ∈ c be
the most active IL units of the network at time t′. Then:

∆wh
jh = α · rh · (rj − wh

jh) . (6)

with α = 0.005. Whenever a state transition occurs, the collateral projections
wl and wu are updated to relate the minicolumn activity to the state-action
space S × A. For instance, let columns c and c′ denote the animat position
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before and after a state transition, respectively (Fig. 1A). A minicolumn θ ∈ c
becomes selective for the locomotion orientation taken by the animat to perform
the transition. A new set of projections wl

j′j is then established from the IL unit
j ∈ θ of column c to all the IL units j′ of the column c′. In addition, at the
supragranular level, a new set of connections wu

ii′ is learnt to connect all the SL
units of column c′, i.e. i′ ∈ c′, to the SL unit i of the minicolumn θ ∈ c. The
strengths of the lateral projections are initialised as:

wl
j′j = wu

ii′ = βLT P ∀i′, j′ ∈ c′ . (7)

with βLT P = 0.9. Finally, in order to adapt the topological representation online,
a synaptic potentiation-depression mechanism can modify the lateral projections
wl and wu. For example, if a new obstacle prevents the animat from achieving
a previously learnt transition from column c to c′ (i.e., if the activation of the
IL unit j ∈ θ ∈ c is not followed in the time by the activation of all IL units
j′ ∈ c′), then a depression of the wl

j′j synaptic efficacy occurs:

∆wl
j′j = −βLT D · wl

j′j ∀j′ ∈ c′ . (8)

where βLT D = 0.5. The projections wu
ii′ are updated in a similar manner. A

compensatory potentiation mechanism reinforces both wl and wu connections
whenever a previously experienced transition is performed successfully:

∆wl
j′j = βLT P − wl

j′j ∀j′ ∈ c′ . (9)

wu
ii′ are updated similarly. Notice that wl,wu ∈ [0, βLT P ].

2.4 Action Planning

The model presented here aims at developing a high-level controller determin-
ing the spatial behaviour based on action planning. Yet, a low-level reactive
module subserves the obstacle-avoidance behaviour. Whenever the proximity
sensors detect an obstacle, the reactive module takes control and prevents col-
lisions. Also, the simulated animal behaves in order to either follow planned
pathways (i.e., exploitation) or improve the topological map (i.e., exploration).
This exploitation-exploration tradeoff is governed by an ε-greedy selection mech-
anism, with ε ∈ [0, 1] decreasing exponentially over time [38].

Fig. 1B shows an example of activation-diffusion process mediated by the
columnar network. During trajectory planning, the SL neurones of the column
corresponding to the goal location sg are activated via a motivational signal rm
(Eq. 3). Then, the SL activity is back-propagated through the network by means
of the lateral projections wu (Fig. 1B, top). During planning, the responsiveness
of IL neurones (Eq. 4) is decreased to detect coincident inputs. In particular, the
occurrence of the SL input ri is a necessary condition for a IL neurone j to fire.
In the presence of the SL input ri, either the hippocampal signal rh or the inter-
column signal r′j is sufficient to activate the IL unit j. When the back-propagated
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Fig. 2. (A) Tolman & Honzik’s maze (adapted from [36]). The gate near the second
intersection prevented rats from going from right to left. (B) The simulated maze
and robot. The dimensions of the simulated maze were taken so as to maintain the
proportions of the Tolman & Honzik’s setup. Bottom-left inset: the real e-puck mobile
robot has a diameter of 70 mm and is 55 mm tall.

goal signal reaches the minicolumns selective for the current position s this coin-
cidence event occurs, which triggers the forward propagation of a goal-directed
path signal through the projections wl (Fig. 1B, bottom). Goal-directed trajec-
tories are generated by reading out the successive activations of IL neurones.
Action selection calls upon a competition between the minicolumns encoding
the (s, a1···N ) ∈ S × A pairs, where s is the current location, and a1···N are the
transitions from s to adjacent positions s′. For sake of robustness, competition
occurs over a 10-timestep cycle. Notice that each SL synaptic relay attenuates
the goal signal by a factor wu

ii′ (Eq. 3). Thus, the smaller the number of synaptic
relays, the stronger the goal signal received by the SL neurone corresponding to
the current location s. As a consequence, because the model column receptive
fields are distributed rather uniformly over the environment, the intensity of the
goal signal at a given location s is correlated to the distance between s and the
target position sg.

2.5 Behavioural Task and Simulated Agent

In order to validate our navigation planning system, we chose the classical ex-
perimental task proposed by Tolman & Honzik [36]. The main objective of this
behavioural protocol was to demonstrate that rodents undergoing a navigation
test were able to show some “insights”, e.g. to predict the outcome of alterna-
tive trajectories leading to a goal location in the presence of blocked pathways.
The original Tolman & Honzik’s maze is shown in Fig. 2A. It consisted of three
narrow alleys of different lengths (Paths 1, 2, and 3) guiding the animals from a
starting position (bottom) to a feeder location (top).
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Fig. 2B shows a simulated version of the Tolman & Honzik’s apparatus,
and the simulated robot4. We emulated the experimental protocol designed by
Tolman & Honzik to assess the animats’ navigation performance. The overall
protocol consisted of a training period followed by a probe test. Both training
and probe trials were stopped when the animat had found the goal.
Training period: it lasted 14 days with 12 trials per day. The animats could
explore the maze and learn their navigation policy.
– During Day 1, a series of 3 forced runs was carried out, in which additional

doors were used to force the animats to go successively through P1, P2, and
P3. Then, during the remaining 9 runs, all additional doors were removed,
and the subjects could explore the maze freely. At the end of the first training
day, a preference for P1 was expected to be already developed [36].

– From Day 2 to 14, a block was introduced at place A (Fig. 2B) to require
a choice between P2 and P3. In fact, additional doors were used to close
the entrances to P2 and P3 to force the animats to go first to the Block A.
Then, doors were removed, and the subjects were forced to decide between
P2 and P3 on their way back to the first intersection. Each day, there were
10 “Block at A” runs that were mixed with 2 non-successive free runs to
maintain the preference for P1.

Probe test period: it lasted 1 day (Day 15), and it involved 7 runs with a block at
position B to interrupt the common section (Fig. 2B). The animats were forced
to decide between P2 and P3 when returning to the first intersection point.

For these experiments, Tolman & Honzik used 10 rats with no previous train-
ing. In our simulations, we used a population of 100 animats, and we assessed
the statistical significance of the results by means of an ANOVA analysis (the
significant threshold was set at 10−2, i.e. p < 0.01 was considered significant).

2.6 Theoretical Analysis

A series of analyses was done to characterise the neural activities subserving
the behavioural responses of the system. We recall that one of the aims of the
cortical column model was to build a spatial code less redundant than the hip-
pocampal place (HP) field representation. Yet, it is relevant to show that the
spatial properties (e.g., spatial information content) of the neural responses were
preserved in the cortical network.

The set of stimuli S consisted of the places visited by the animat. For the
analyses, the continuous two-dimensional input space was discretized, with each
location s ∈ S defined as a 5 x 5 cm square region of the environment. The size
of the receptive field of a neurone j was taken as 2·σS(j), with σS(j) denoting
the standard deviation around the mean of the response tuning curve.

A spatial density measure was used to assess the level of redundancy of a
neural spatial code, i.e. the average number of units necessary to encode a place:

D = 〈
∑
j∈J

H(rj(s)− σJ(s)) 〉s∈S . (10)

4 The model was implemented by means of the Webots c© robotics simulation software.



10 L.-E. Martinet, J.-B. Passot, B. Fouque, J.-A. Meyer, A. Arleo

with rj(s) being the response of the neurone j when the animat is visiting the
location s ∈ S, and σJ(s) representing the standard deviation of the population
activity distribution for a given stimulus s.

Another measure was used to analyse the neural responses, the kurtosis func-
tion. This measure is defined as the normalised fourth central moment of a prob-
ability distribution, and estimates its degree of peakedness. If applied to a neural
response distribution, the kurtosis can be used to measure its degree of sparse-
ness across both population and time [41]. We employed an average population
kurtosis measure k̄1 = 〈k1(s)〉s∈S to estimate how many neurones j of a popu-
lation J were, on average, responding to a given stimulus s simultaneously. The
kurtosis k1(s) was taken as:

k1(s) = 〈 [rj(s)− r̄J(s))/σJ(s)]4 〉j∈J . (11)

with r̄J(s) = 〈rj(s)〉j∈J . Similarly, an average lifetime kurtosis k̄2 = 〈k2(j)〉j∈J

was employed to assess how rarely a neurone j responded across time. The k2(j)
function was given by:

k2(j) = 〈 [rj(s)− r̄j)/σj ]4 〉s∈S (12)

with r̄j = 〈rj(s)〉s∈S , and σj being the standard deviation of the cell activity rj .
Finally, we used an information theoretic analysis [42] to characterise the neu-

ral codes of our cortical and hippocampal populations. The mutual information
MI(S;R) between neural responses R and spatial locations S was computed:

MI(S;R) =
∑
s∈S

∑
r∈R

P (r, s) log2

(
P (r, s)
P (r)P (s)

)
(13)

where r ∈ R indicated firing rates, P (r, s) the joint probability of having the
animat visiting a region s ∈ S while recording a response r, P (s) the a priori
probability computed as the ratio between time spent at place s and the total
time, and P (r) =

∑
s∈S P (r, s) the probability of observing a neural response r.

The continuous output space of a neurone, i.e. R = [0, 1], was discretized via a
binning procedure (bin-width equal to 0.1). The MI(S;R) measure allowed us
to quantify the spatial information content of a neural code, i.e. how much could
be learnt about the animat’s position s by observing the neural responses r.

3 Results

3.1 Spatial Behaviour

Day 1. During the first 12 training trials, the animats learnt the topology of
the maze and planned their navigation trajectory in the absence of both block
A and B. Similar to Tolman & Honzik’s findings, our results show that the
model learnt to select the shortest goal-directed pathway P1 significantly more
frequently than the alternative trajectories P2, P3 (ANOVA, F2,297 = 168.249,



Map-based Navigation: A Cortical Model for Action Planning 11

1

0

0.5

1

0

0.5

1

0

P1 P2 P3

N
um

be
r 

of
 o

cc
ur

en
ce

s

0

50

100

150

P1 P2 P3

N
um

be
r 

of
 o

cc
ur

en
ce

s

0

2

5

7

3

1

4

6

2

4

6

8

P1

N
um

be
r 

of
 o

cc
ur

en
ce

s

P2 P3

5

7

3

0.5

(B)(A) (C)

Fig. 3. Behavioural results. Top row: mean number of transits through P1, P2, and
P3 (averaged over 100 animats). Bottom row: occupancy grid maps. (A) During the
first 12 training trials (day 1) the simulated animals developed a significant preference
for P1 (no significant difference was observed between P2 and P3). (B) During the
following 156 training trials (days 2-14, in the presence of block A, Fig. 2B) P2 was
selected significantly more frequently than P3. (C) During the last 7 trials (day 15, test
phase), the block A was removed whereas the block B was introduced. The animats
exhibited a significant preference for P3 compared to P2.

p < 0.0001). The quantitative and qualitative analyses reported on Fig. 3A de-
scribe the path selection performance averaged over 100 animats.

Days 2-14. During this training phase (consisting of 156 trials), a block was
introduced at location A, which forced the animats to update their topological
maps dynamically, and to plan a detour to the goal. The results reported by Tol-
man & Honzik provided strong evidence for a preference for the shortest detour
path P2. Consistently, in our simulations (Fig. 3B) we observed a significantly
larger number of transits through P2 compared to P3 (ANOVA, F1,198 = 383.068
p < 0.0001), P1 being ignored in this analysis (similar to Tolman & Honzik’s
analysis) because blocked.

Day 15. Seven probe trials were performed during the 15th day of the simu-
lated protocol, by removing the block A and adding a new block at location B.
This manipulation aimed at testing the “insight” working hypothesis: after a first
run through the shortest path P1 and after having encountered the unexpected
block B, will animats try P2 (wrong behaviour) or will they go directly through
P3 (correct behaviour)? According to Tolman & Honzik’s results, rats behaved
as predicted by the insight hypothesis, i.e. they tended to select the longer but
effective P3. The authors concluded that rats were able to inhibit the previously
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Fig. 4. Comparison between a learning and a randomly behaving agent. (A) Error
distribution of learning (black histogram) versus random (grey line) animats. (B) Mean
number of errors made by the model and by a randomly behaving agent.

learnt policy (i.e., the “habit behaviour” consisting of selecting P2 after a fail-
ure of P1 during the 156 previous training trials). Our probe test simulation
results are shown in Fig. 3C. Similar to rats, the animats exhibited a signifi-
cant preference for P3 compared to P2 (ANOVA, F1,198 = 130.15, p < 0.0001).
Finally, in order to further assess the mean performance of the system during
the probe trials, we compared the action selection policy of learning animats
with that of randomly behaving (theoretical) animats. Fig. 4A provides the re-
sults of this comparison by showing the error distribution over the population of
learning agents (black histogram) and randomly behaving agents (grey curve).
The number of errors per individual are displayed in the boxplot of Fig. 4B.
These findings indicate a significantly better performance of learning animats
compared to random agents (ANOVA, F1,196 = 7.4432, p < 0.01).

3.2 Analysis of Neural Activities

Fig. 5A contrasts the mean spatial density (Eq. 10) of the HP receptive fields
with that of cortical column receptive fields. It is shown that, compared to
the upstream hippocampal space code, the cortical column model reduced the
redundancy of the learnt spatial code significantly (ANOVA, F1,316 = 739.2,
p < 0.0001). Fig. 5B shows the probability distribution representing the number
of active column units (solid curve) and active HP cells (dashed line) per spatial
location s ∈ S. As shown by the inset boxplots, the distribution kurtosis was
significantly higher for column units than for HP cells (ANOVA, F1,198 = 6057,
p < 0.0001). To further investigate this property, we assessed the average pop-
ulation kurtosis k̄1 (Eq. 11) of both columnar and HP cell activities (Fig. 5C).
Again, the columnar population activity exhibited a significantly higher kurtosis
than the HP cell activity (ANOVA, F1,3128 = 14901, p < 0.0001). These results
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Fig. 5. (A) Spatial density of the receptive fields of HP cells and cortical column units.
(B) Probability distribution of the number of active column units (solid line) and ac-
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for the two distributions. (C) Population kurtosis of columnar and hippocampal as-
semblies.

suggest that, in the model, the cortical column network was able to provide a
sparser state-space population coding than HP units.

In a second series of analyses, we focused on the activity of single cells,
and we compared the average lifetime kurtosis k̄2 (Eq. 12) of cortical and HP
units. As reported on Fig. 6A, we found that the kurtosis across time did not
differ significantly between cortical and HP units (ANOVA, F1,2356 = 2.2699,
p < 0.13). This result suggests that, on average, single cortical and HP units
tended to respond to a comparable number of stimuli (i.e., spatial locations)
over their lifetimes. Along the same line, we recorded the receptive fields of the
two types of units. Figs. 6B,C display some samples of place fields of cortical
and HP cells, respectively. As expected, we found a statistical anticorrelation
between the lifetime kurtosis and the size of the receptive fields. The example
of Fig. 6D shows that, for a randomly chosen animat performing the whole
experimental protocol (15 days), the size of hippocampal place fields was highly
anticorrelated to the HP cells’ lifetime kurtosis (correlation coefficient = −0.94).
These results add to those depicted in Fig. 5 in that the increase of sparseness
at the level of the cortical population (compared to HP cells) was not merely
due to an enlargement of the receptive fields (or, equivalently, to a decrease of
the lifetime stimulus-dependent activity).

Despite their less redundant code, were cortical columns able to provide a
representation comparable to that of HP cells in terms of spatial information
content? The results of our information theoretic analysis (Eq. 13) suggest that
this was indeed the case. Fig. 6E shows that, for a randomly chosen animat,
the average amount of spatial information conveyed by cortical units was not
significantly lower than that of HP cells (ANOVA, F1,140 = 0.8034, P < 0.3716).
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4 Discussion

We presented a navigation model that builds a topological map of the environ-
ment incrementally, and uses it to plan a course of actions leading to a goal
location. The model was employed to solve the classical Tolman & Honzik’s task
[36]. As aforementioned, other models have been proposed to solve goal-directed
navigation tasks. They are mainly based on the properties of hippocampal (e.g.,
[43]), and prefrontal cortex (e.g., [31]) neural assemblies. However, most of these
models do not perform action planning as defined in this paper (Sec. 1). Sam-
sonovich and Ascoli [43] implement a local path finding mechanism to select the
most suitable orientation leading to the goal. Similarly, Hasselmo’s model [31]
does not plan a sequence of actions from the current location to the goal but
it rather infers the first local action to be taken, based upon a back-propagated
goal signal. Yet, these two models rely on discretized state spaces (with prede-
fined grid units coding for places), whereas our model uses a place field popu-
lation providing a continuous representation of the environment [38]. Also, our
model learns topological maps coding for the state-action space simultaneously.
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In the model by Samsonovich and Ascoli [43] no topological information is rep-
resented, but only a distance measure between each visited place and a set of
potential goals. Likewise, in Hasselmo’s model states and actions are not jointly
represented, which generates a route-based rather than a map-based navigation
system [1].

We adopted a three-fold working hypothesis according to which (i) the hip-
pocampus would play a prominent role in encoding spatial information; (ii)
higher-level cortical areas, particularly the PFC, would mediate multidimen-
sional contextual representations (e.g., coding for motivation-dependent memo-
ries and action cost/risk constraints) grounded on the hippocampal spatial code;
(iii) neocortical representations would facilitate the temporal linking of multi-
ple contexts, and the sequential organisation (e.g., planning) of behavioural re-
sponses. The preliminary version of the model presented here enabled us to focus
on some basic computational properties, such as the ability of the columnar or-
ganisation to learn a compact topological representation, and the efficiency of the
activation-diffusion planning mechanism. Further efforts will be put to integrate
multiple sources of information. For example, the animat should be able to learn
maps that encode reward (subjective) values, and action-cost constraints. Also,
these maps should be suitable to represent multiple spatio-temporal scales to
overcome the intrinsic limitation of the activation-diffusion mechanism in large
scale environments. Additionally, these multiscale maps should allow the model
to infer high-level shortcuts to bypass low-level environmental constraints.

The neurocomputational approach presented here aims at generating cross-
disciplinary insights that may help to systematically explore potential connec-
tions between findings on the neuronal level (e.g., single-cell discharge patterns),
and observations on the behavioural level (e.g., spatial navigation). Mathemat-
ical representations permit to describe both the space and time components
characterising the couplings between neurobiological processes. Models can help
to scale up from single cell properties to the dynamics of neural populations,
and generate novel hypotheses about their interactions to produce complex be-
haviour.

Acknowledgments. Granted by the EC Project ICEA (Integrating Cognition,
Emotion and Autonomy), IST-027819-IP.
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