EUROPEAN JOURNAL OF NEUROSCIENCE

EJN

European Journal of Neuroscience, Vol. 28, pp. 1849-1866, 2008 doi:10.1111/j.1460-9568.2008.06480.x

BEHAVIORAL NEUROSCIENCE

Anticipatory reward signals in ventral striatal neurons
of behaving rats

Mehdi Khamassi,"*>* Antonius B. Mulder,"*" Eiichi Tabuchi,"* Vincent Douchamps' and Sidney I. Wiener'
"Laboratoire de Physiologie de la Perception et de I'’Action, Collége de France, CNRS, 11 pl. Marcelin Berthelot, 75231 Paris Cedex
05, France

2|SIR, Université Pierre et Marie Curie — Paris 6, 75016 Paris, France

Keywords: accumbens, Actor-Critic, reinforcement learning, striatum, TD learning

Abstract

It has been proposed that the striatum plays a crucial role in learning to select appropriate actions, optimizing rewards according to
the principles of ‘Actor—Critic’ models of trial-and-error learning. The ventral striatum (VS), as Critic, would employ a temporal
difference (TD) learning algorithm to predict rewards and drive dopaminergic neurons. This study examined this model’s adequacy
for VS responses to multiple rewards in rats. The respective arms of a plus-maze provided rewards of varying magnitudes; multiple
rewards were provided at 1-s intervals while the rat stood still. Neurons discharged phasically prior to each reward, during both initial
approach and immobile waiting, demonstrating that this signal is predictive and not simply motor-related. In different neurons,
responses could be greater for early, middle or late droplets in the sequence. Strikingly, this activity often reappeared after the final
reward, as if in anticipation of yet another. In contrast, previous TD learning models show decremental reward-prediction profiles
during reward consumption due to a temporal-order signal introduced to reproduce accurate timing in dopaminergic reward-prediction
error signals. To resolve this inconsistency in a biologically plausible manner, we adapted the TD learning model such that input
information is nonhomogeneously distributed among different neurons. By suppressing reward temporal-order signals and varying
richness of spatial and visual input information, the model reproduced the experimental data. This validates the feasibility of a TD-

learning architecture where different groups of neurons participate in solving the task based on varied input information.

Introduction

Prefrontal cortex—basal ganglia loops have been identified as instru-
mental in orchestrating behavior by linking past events and anticipat-
ing future events (Alexander et al., 1990; Fuster, 1997; Samejima &
Doya, 2007). Within these loops, it is proposed that the striatum
enables learning mechanisms for organizing action sequences, partic-
ularly those with time scales orders of magnitude greater than those of
postsynaptic events (Schultz et al., 1997; Graybiel, 1998; Hikosaka
et al., 1999). Indeed, some striatal neurons are selectively active in the
successive actions comprising goal-directed behaviors (Itoh et al.,
2003; Mulder et al., 2004; Schmitzer-Torbert & Redish, 2004), and yet
others fire in relation to (sometimes anticipating) rewards including
food, drink, habit-forming drugs and intracranial electrical stimula-
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tions (Hikosaka et al., 1989; Schultz et al., 1992; Wiener, 1993;
Lavoie & Mizumori, 1994; Miyazaki et al., 1998; Shibata et al., 2001;
Daw et al., 2002; Setlow et al., 2003; Nicola et al., 2004; Wilson &
Bowman, 2005).

The dichotomy between striatal neurons representing actions and
striatal neurons representing rewards led to the design of Actor—Critic
models of this brain area (Houk et al., 1995; see Joel et al., 2002;
Khamassi et al., 2005 for reviews). In such models, the Actor is a
‘memory structure’ which is responsible for selecting actions, whereas
the Critic evaluates the actions made by the Actor (Sutton & Barto,
1998). More precisely, the Critic learns to predict reward, and the
mismatch between consecutive reward-predictions and actual reward
occurrences is used as a temporal difference (TD) reinforcement signal
to update the Actor.

The existence of strong projections from the ventral striatum to the
dopaminergic ventral tegmental area (VTA) and substantia nigra pars
compacta (SNc; Haber et al, 2000; Joel & Weiner, 2000; Thierry
et al., 2000), and the discovery of the TD-like reward-prediction error
responses of these areas (Schultz et al., 1997), support the hypothesis
that the ventral striatum could play the role of a Critic (O’Doherty
et al., 2004). However, the suitability of ventral striatal signals for
elaborating such TD learning processes remains to be established.

In order to explain dopaminergic neurons’ depression in activity when
an expected reward is omitted (Schultz et al., 1997), the Montague et al.
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(1996) and Suri & Schultz (2001) models propose that the striatum
processes a time-based representation of stimuli. This ‘complete serial
compound stimulus’ component provides the Critic with temporal-order
information and enables it to ‘count’ the time bins between a conditioned
stimulus and a reward. One of the consequences of this component is a
linear decrease in amplitude of reward-prediction activity during the
reward delivery period, so that it becomes null at the end of reward
delivery (see Suri & Schultz, 2001; Figs 3-5).

To test this prediction, we recorded ventral striatal neurons in rats as
they approached goals in a plus maze and then stood still awaiting
successive rewards presented at 1-s intervals. The TD-learning model
was then adapted to reproduce the neural activity recorded.

Materials and methods
Animals and apparatus

Seven Long—Evans male adult rats (220240 g) were obtained (from
the Centre d’Elevage René Janvier, Le Genest-St-Isle, France) and
kept in clear plastic cages bedded with wood shavings. The rats were
housed in pairs while habituating to the animal facility environment.
They were weighed and handled each work day. Prior to training they
were placed in separate cages and access to water was restricted to
maintain body weight at not less than 85% of normal values (as

Video

camera \

Landmark

calculated for animals of the same age provided ad libitum food and
water). The rats were examined daily for their state of health and were
rehydrated at the end of each work week. This level of dehydration
was necessary to motivate performance in the behavioral tasks, and the
rats showed neither obvious signs of distress (excessive or insufficient
grooming, hyper- or hypoactivity, or aggressiveness) nor health
problems. The rats were kept in an approved (City of Paris Veterinary
Services) animal care facility in accordance with institutional (CNRS
Comité Opérationnel pour I’Ethique dans les Sciences de la Vie),
national (French Ministére de 1’Agriculture, de la Péche et de
I’Alimentation No. 7186) and international (US National Research
Council Guide for the Care and Use of Laboratory Animals, 1996)
guidelines. A 12-12 h light-dark cycle was applied.

Training and experiments took place in a four-arm plus maze. The
arms were 70 cm long and 30 cm wide with 40 cm high sloped black
walls while the center was a 30 x 30 cm square. This was placed in a
darkened square room (3 X 3 m) bordered by opaque black curtains
(Fig. 1). At the end of each of the four arms was an alcove
(30 x 30 x 30 cm) containing a water reservoir and a large, highly
contrasted, three-dimensional visual cue. The cues were identical in
each of the boxes but could be illuminated independently. Room cues
included a wide inverted-T shaped white poster board (185 X 60 cm)
as well as a white rectangular box (56 x 25 c¢m), each mounted 70 cm
from the platform on walls respectively opposite or adjacent to the
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FI1G. 1. The experimental apparatus. The rat performed the behavioral task on a 180-cm-diameter platform with a low border. Barriers placed on the platform
(broken lines) restricted the movements of the rats to four alleys. Four reward boxes (30 x 30 x 30 cm) were attached to the edge of the platform and were equally
spaced and oriented toward the corners of the experimental room. Each box contained identical, highly contrasted polyhedrons suspended in front of a striped
background. Each reward box could be illuminated independently under computer control. The main sources of illumination in the experimental room were the
lamps directed towards the salient cues in the reward boxes, the overhead lamp and two miniature lamps on the headstage of the rat (Adapted from Tabuchi et al.,

2000).
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entrance of the curtained area. The poster board was spotlit by a
ceiling-mounted incandescent lamp (60 W) during both training and
recording sessions.

Each reward box was equipped with automated water delivery and
infrared photo-emitter and detector systems. At the entry of each
reward alcove stood a short (3 cm high) cylindrical block (the ‘water
reservoir’). Tubing transported water from elevated bottles to com-
puter-controlled solenoid valves that in turn led to each water
reservoir. When the rat arrived at the water reservoir and blocked the
photobeam, the computer triggered release of the water reward(s)
there. The volume of the water droplets was calibrated to 30 pL by
regulating the time that the solenoid valves remained open. Multiple
droplets of water were provided at 1-s intervals. The solenoid valves
made an audible click when opening and closing. The times of the
photobeam occlusions as well as solenoid valve openings were
recorded as event flags in the data file. Photodetectors also registered
when the rat arrived at the center of the maze.

The differentially rewarded plus-maze task

Details of the task and training protocols may be found in Tabuchi
et al. (2000, 2003) and in Fig. 2. In each session the rats were trained
with a novel distribution of different reward volumes at the four
respective arms of the maze and then were required to recall the
sequence in order of decreasing volume. After this, the reward
distribution was changed and a second series of training and recall
trials were run while the same cells were recorded.

In the training phase, reward availability was successively signaled
by cue lamps in each of the reward boxes. The rat thus went to the
respective boxes that provided 7, 5, 3 and then 1 droplets of water.
Rats performed this sequence of visits 6—8 times to stimulate learning
the amount of water associated with each maze arm. For the multiple
rewards at each box, the successive droplets of water were delivered at
1-s intervals while the cue lamp remained lit. After the rat consumed
the water it returned to the center of the maze and the lamp on the next
arm was then lit automatically.

In the recall phase, all reward alcoves were illuminated at the
beginning of each trial and the lights were turned off successively as

Training trial: Rat goes to lit arm for rewards
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FIG. 2. The experimental task. First the rats performed a series of training trials
where the correct choice was guided by the lit cue lamp in the appropriate
reward box. Each trial comprised a sequence of visits to the four reward boxes
providing 7, 5, 3 and 1 droplets of water. During recall trials all cue lamps were
lit, then were turned off one by one as the rat visited the reward boxes in the
same order of descending reward value. Reward values were then reassigned
for the second half of the session, and were also changed daily (Adapted from
Tabuchi et al., 2000).

Reward anticipation in rat ventral striatum 1851

the rats visited them in order of descending reward value. The task
design exploited the tendency for rats to prefer locations with greater
rewards (e.g., Brown & Bowman, 1995; Albertin et al., 2000). If the
rat entered an arm out of sequence, all cue lamps were turned off and
the same lamps were lit again when the rat returned to the maze center.
The rats only very rarely continued to the end of the arm in these
cases, and thus there was insufficient data to analyze error trials (and
the goal here was only to analyze the dynamics of reward-anticipatory
responses).

Electrode implantation and recordings

Electrodes were surgically implanted after the performance level
exceeded 70% correct (rewarded) visits (usually after 4-6 weeks of
training). The rat was returned to ad libitum water, tranquillized with
0.1 mL of 2% xylazine (i.m.) and anesthetized with 40 mg/kg
pentobarbital intraperitoneally. Two bundles of eight 25-um formvar-
insulated nichrome wires with gold-plated tips (impedance 200—
500 kQ) were stereotaxically implanted. Each bundle was installed in
a guide tube (a 30-gauge stainless steel cannula) and mounted on one
of two independently advanceable assemblies on a single headstage
(Wiener, 1993). A ground screw was installed in the cranial bone. One
group of electrodes was placed above either the ventrolateral shell
region of the nucleus accumbens (Acb) (AP 10.7-11.2, ML 1.7-2.2) or
the medial shell of Acb (AP 11.2-11.6, ML 0.7-0.9). While the ventral
striatum was the target here, occasional neurons with reward-related
responses observed in adjacent structures such as ventral caudate are
also reported. The second bundle was placed above the hippocampus
(data reported in Tabuchi et al., 2000, 2003). About 1 week later, after
complete recovery from the surgery, water restriction and training were
resumed. The screws of the advanceable electrode drivers were
gradually rotated daily until neurons were isolated (the drivers
advanced 400 pm for each full rotation); then multiple single units
were recorded as the rat performed the tasks. The electrodes were
advanced at least 3 h prior to recording sessions to promote stability.

Electrode signals passed through FETs (field-effect transistors), then
were differentially amplified (10 000x) and filtered (300 Hz to 5 kHz,
notch at 50 Hz). Single-unit activity was discriminated post hoc with
Datawave® software, where single-unit isolation was performed using
eight waveform parameters (positive, negative and entire spike
amplitude, spike duration, amplitude windows immediately prior to
and after the initial negative-going peak, and time until maxima of
positive and negative peaks) on the filtered waveform signals.
Isolation was confirmed in interspike interval histograms which had,
on average, only 0.3% occupancy of the first three 1-ms bins
corresponding to the refractory period. Waveforms are presented in
Supporting information, Fig. S1 and as insets to raster and histogram
figures.

Two small lamps (10 cm separation) were mounted 10 cm above
the headstage. Reflectors were attached to the rostral lamp to aid the
tracking system in distinguishing it from the caudal lamp. The two
lamps were detected with a video camera mounted above the platform
and transmitted to a video tracking system (DataWave, Longmont,
CO, USA) and a video monitor. All of the action potential (digitized
waveforms and timing) and behavioral (position of the animal,
photobeam crossings and water delivery) data were simultaneously
acquired on a personal computer with software operating under DOS
(DataWave, Longmont, CO, USA).

In preparation for recording sessions, the rat was placed in a cage
with transparent plastic walls (and no wood shavings) then brought
into the experimental room. The recording cable was attached to the
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headstage and the rat was placed in a cubic cardboard box (with sides
~40 cm). Then the electrode recording channels were examined for
signs of discriminable neuronal activity. If this was successful, the data
acquisition system was initialized and the lamp assembly was
attached. The rat was then placed in the experimental apparatus
where the lamp at the first reward box was already lit. No attempts
were made to disorient the rat, and the lengthy training period assured
that the environment was familiar. The rats always immediately started
performing the task. Sessions usually lasted ~20 min.

Data analysis

Data from all recorded neurons with average firing rates > 0.1 im-
pulses/s during the experiment were submitted to statistical analyses
(11 neurons were excluded by this criterion). The synchronization
point for analyses of cell activity was selected as the instant that the
computer triggered the first droplet of water after the tip of the rat’s
muzzle blocked the photobeam at the reward boxes. In this
experimental design, ANOVA was selected for determining the
correlations of firing rate of the neurons with spatial position,
behavior and task phase. In order to better approximate a gaussian
distribution, spike count data were first transformed (the sum of the
square root of the spike count was summed with the square root of the
spike count incremented by one; Winer, 1971). ANOVA has been
shown to be robust even in cases where the underlying distribution is
not perfectly gaussian (Lindman, 1974).

Two different analyses of ANOVAs tested for the first two or all of
the following three factors: (i) behavioral correlates: comparisons of
firing rates during reward site approach, arrival and water consump-
tion (two 0.5-s periods prior to and after delivery of the first droplet of
water); (ii) position correlates: differences in firing rate when the rat
occupied the different maze arms; and (iii) comparisons between
phases of the experiment (training vs. recall phases and after changes
in the reward distribution). Data were also recombined from
recordings on different arms that provided the same reward volume
during the course of a session. Statistical results were considered
significant at P < 0.05. The Student-Newman—Keuls test was
employed for post hoc analyses. The above ANOVAs and post hoc
tests were performed with STATISTICA® (Statsoft, Tulsa, OK, USA).
A one-way ANOVA compared response amplitudes among successive
drops of water (measured in 1-s intervals between mean activity
minima) with the Tukey—Kramer post hoc test (Matlab®). The Pearson
correlation test (Matlab®) compared cells’ activity profiles and
the computational model’s profiles, where neural activity of indivi-
dual cells was averaged over trials in 250-ms bins during the
reward consumption period at the four maze boxes [windows
of (10s + 8s + 6s + 4s) x 4 = 112 values]. The chi-squared test
(Matlab®) was used for testing for difference in distributions of
respective cell response types among different striatal regions. Other
tests were performed with Microsoft Excel®.

Histology

After experiments were completed the rat was rehydrated for at least a
day, then deeply anesthetized with pentobarbital. A small electrolytic
lesion was made by passing DC current (20 pA, 10 s) through one of
the recording electrodes to mark the location of the electrode tip.
Intracardial perfusion with saline was followed by 10% formalin in
0.1 M phosphate buffer (pH 7.4). Serial frozen sections (50 pm
thickness) were stained with Cresyl violet. Recording sites were
reconstructed by detecting the small electrolytic lesion and the track

left by the guide tube, then taking into account the distance that the
microelectrode driver had been advanced from the point of stereotaxic
placement of the electrodes. The recording sites were calculated by
interpolating along the electrode track between the lesion site and the
implantation site.

Results
Task performance levels

In eight rats recordings were made in 35 experimental sessions. In all
cases performance was nearly perfect on light-cued training trials. As
withholding rewards can provoke rats toward disruptive behavior at
reward sites, erroneous arm entries were signalled by turning off lights
and rats often did not continue on to the end of the arm. In the sessions
described here, the mean percentage of correct visits was 80 = 11%,
ranging from 61 to 100%. The number of completely correct trials,
that is, four visits in sequence of descending reward volume, was
36 + 32% (mean = SEM) and ranged from 0 to 100% in individual
sessions. (Note that the probability of correctly performing a complete
trial by chance is ~4%, that is 0.25 x 0.33 x 0.50).

Cell localization

Electrode placements were intentionally made in different parts of the
ventral striatum in order to explore diverse subregions for possible
reward-associated responses. Figure 3 shows that recording sites were
distributed in the core of the nucleus accumbens, the medial shell of
the nucleus accumbens and the ventromedial part of the caudate
nucleus. There was no anatomical segregation of different response
types (32, P > 0.05).

Cell activity profiles

The ANOVAs revealed significant behavioral correlates in ~75% of the
neurons recorded in the nucleus accumbens core (33 of 43), the
accumbens shell (60 of 81) and the ventromedial part of the caudate
nucleus (53 of 68). The present study focuses only on those cells that
showed significant changes in firing rate when rewards were delivered
(n = 46; other neurons reported in Mulder et al., 2004 are discussed
below).

Among these 46 cells showing reward-related activity, we distin-
guishd phasically-firing neurons (PFNs) and tonically-firing neurons
(TFNs), following the terminology adopted by Schmitzer-Torbert &
Redish (2004) for rats. This is because it is not clear whether the
distinction between phasic vs. tonic neurons (TANs, tonically active
neurons) observed in primates (Apicella ez al., 1996) can be applied in
rats. The TFN group can include putative TANs (as will be seen in
Fig. 9), but other neurons in this group do not have qualifying
properties such as a very low firing rate, and thus may not be
cholinergic neurons (Graybiel & Kimura, 1995). As in previous work
(Mulder et al., 2005) TFNs were identified principally by (i) the
absence of ‘silent’ periods (when the firing rate was <1 impulse/s) of
2 s or longer along the course of a trial, and (ii) a significant decrease
or increase firing (relative to baseline) during a task event. In contrast,
PFNs had silent periods interspersed with brief bouts of behaviorally
correlated activity. This pattern of phasic activity superimposed upon
negligible background activity is consistent with identification as a
medium spiny principal neuron (see Mulder et al., 2005). While only
14 of the total 66 (21%) PFNs with significant behavioral correlates
fired during reward delivery, 32 of the 80 (41%) TFNs with behavioral
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F1G. 3. Reconstruction of recording sites on the basis of histological preparations. Animal identification numbers appear above respective electrode tracks.
Recording sites are marked by cross bars and numbers. Neurons are identified according to the following code: A, anticipatory responses for individual droplets of
water; E, uniform increase in firing rate during drinking; I, inhibition during drinking; +, excitatory response for first droplet only; +, Excitation and inhibition during
first droplet; L, lesion site. Multiple single neurons recorded at the same site are separated by commas. Histological analyses showed tracks in animal 6-2 were
indeed in ventral striatum but sites could not be reconstructed with precision (data not shown). (Figure templates adapted from Paxinos and Watson, 1998, with

permission).

correlates had these properties. No other behavioral correlates were
observed in these neurons.

Overview of cell response types

Three principal categories of reward-related responses were distin-
guished to classify the cell activity profiles (Table 1). In the first group,
there was a significant phasic firing rate increase prior to and during
delivery of the successive droplets of water (n = 14). The second

group showed a firing rate increase (n = 14) or mixed excitation and
inhibition (n = 7) during delivery of only the first droplet of water.
The latter responses do not anticipate later rewards at the same site and
thus may be more closely correlated with reward-approach behaviors.
Finally, there was a group of neurons with tonic firing rate increases
(n =15) or decreases (n = 6) throughout the period when multiple
droplets of water were delivered. Note that some of these behavioral
correlates could easily be confounded with one another if recorded in
experimental protocols providing only single rewards. Examples and
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TABLE 1. List of recorded cells with recording site and cell type categorized by
type of correlated activity

Session Cell no. PorT Anatomy
Peridrop excitation, all drops

522107 02 T MSh
523107 01 P MSh
542307 01 T (unclear)
540108 01 P MSh
621609 22 T Lateral core
631509 11 T MSh
631609 11 T MSh
632609 41 T MSh
632909 32 P VMSh
651509 21 P Core
651709 01 P Core
652109 02 T Core
652409 01 P Core
652909 01 P Vsh
First drop, excitatory response

522107 21 T MSh
562307 21 T Septum
612009 11 T Core
620809 11 T VMC
620909 12 P VMC
620909 21 P VMC
620110a 02 P Lateral core
621109 11 P VMC
622609 01 P Lateral core
632909 42 T VMSh
651509 01 P Core
651609 11 T Core
652109 01 P Core
652109 03 P Core

First drop excitatory then inhibitory responses

622209 01 T Lateral core
631010 01 T VP

632909 01 T VMSh
651009 01 T Core
651709 21 T Core
651809 31 T Core
651909 11 T Core
General increased activity during drinking

522307 T MSh
522807 21 T MSh
550508 03 T Core/MSh
560708 11 T MSh
633009 23 T VMSh
General inhibition during drinking period

522807 01 T MSh
611209 01 T VMC
621909 02 T Lateral core
630810 21 T VP/ICj/MSh
631609 01 T MSh
632609 51 T MSh

Icj, interstitial n. Cajal; P, phasic; T, tonic; MSh, medial shell; VMC, ventro-
medial caudate; VMSh, ventromedial shell; VSh, ventral shell; VP, ventral
pallidum. A natomical location had unclear histological results.

analyses of these response types will be presented first. Then their
coherence with predictions of previous models will be evaluated and
an adaptation of the Actor—Critic model will be presented to resolve
observed inconsistencies.

Reward-anticipatory responses

Fourteen neurons showed a firing rate increase prior to each successive
droplet of water. This anticipatory activity occurred whether the

animal was running (prior to the first droplet) or was immobile and
waiting for subsequent droplets. Although the activity preceding the
first drop of water could be associated with sensory or motor events
(the looming image of the lit cue in the reward box, deceleration,
assuming an immobile stance), this explanation is not plausible for the
responses for the subsequent droplets as the rats invariably remained
stably positioned at the water trough. Thus this activity is independent
of locomotor behavior. (Simple motor correlates have not been
reported this ventral in the striatum; e.g., Shibata et al., 2001; Mulder
et al., 2004). The activity was not associated with licking as this
started after the solenoid valve clicked and water was released (not
shown). Hence, the time course of licking was distinct from the neuron
activity profile. Figure 4 shows an example of such activity in a PFN.
This nucleus accumbens core neuron started to discharge above
baseline 600—800 ms prior to each reward release, with peak activity
on average 100 ms before each droplet. Each peak was significantly
higher than the baseline activity computed between 2 s and 1 s before
the first droplet reward (one-way ANOVA, Fjgogg = 17.94,
P <0.00001; Student-Newman—Keuls post hoc test). The greatest
responses occurred for the first and last drops of water (post hoc
analyses for paired comparisons, P < 0.05). Interestingly, this neuron
fired again in the same time window 1 s after the final droplet was
delivered. This is consistent with a prediction of yet another reward
that was not provided. This anticipatory activity occurred on both
visually-guided training trials and memory-guided recall trials (data
from both are shown in the figures). This activity is surprising as it
occurred after the lamp signaling cue availability had been turned off.
Recall that in daily training trials the rats reliably used these same
lights to locate the current reward site. This indicates that the neuron
did not have access to full information concerning the environment, a
point that an accurate model must take into account. Note that in the
present case this ‘erroneously predictive’ activity occurred on fewer
than half of the trials, yielding smaller histogram peaks than observed
for the preceding reward (post hoc analyses for paired comparisons,
P < 0.05). The rat did not consistently depart later from the reward site
on trials with the anticipatory responses. Thus this erroneously
predictive activity at the level of the single neuron is not necessarily
indicative of the expectations of the animal. There was no clear
correlation between the appearance of this activity on a given trial and
whether there were erroneous visits to other arms immediately prior.
There was also no relation between the daily performance level of the
rat and the incidence of erroneously predictive activity; the latter
appeared even in sessions in which the rat made 90% correct visits.
Furthermore, this activity always occurred while the animal still
blocked the photobeam at the reward trough. Thus it is parsimonious
to consider this activity to be associated with signalling the episodic
anticipation of another droplet of water rather than motor preparation
of the subsequent departure (as movement timing was the same on
trials with and without the predictive activity). Activity in these
neurons was not correlated with departures (not shown).

Figure 5 demonstrates this type of response in a ventromedial
caudate TFN with a higher firing rate. This neuron started to fire above
the background rate at 200 ms prior to the first reward trigger and
continued until 300-500 ms afterwards. Similar to Fig. 4, maximal
responses occurred at the first reward (one-way ANOVA,
Fgo16 = 15.96, P <0.01; post hoc test for paired comparisons,
P < 0.05). However, in contrast to Fig. 4, the peak for the erroneous
reward prediction at the end was not significantly smaller than
previous peaks (post hoc test for paired comparisons, P > 0.05). The
timing of this final response resembles the preceding ones. The
persistence of this activity in the 300-500 ms following the reward is
independent of the presence or absence of reward. While not
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FIG. 4. Phasic excitatory activity predicting reward delivery in a nucleus accumbens core neuron. Raster displays and corresponding histograms (50 ms binwidth) are
synchronized with the onset of reward delivery (arrows above). As the reward value distribution was changed in the middle of the session, data have been regrouped from
the cups to combine data corresponding to 1, 3, 5 and 7 droplets of water respectively. Arrows at the left in the raster displays separate data acquired at the respective cups.
The discharge activity began as early as 800 ms prior to the reward delivery. Stars above histograms indicate peaks significantly higher than the baseline activity. Note that
in the lower left panel there is a fourth peak in the histogram at time 3 s, even though no fourth reward was delivered then. The same inaccurate predictive activity also
appears in the right panels corresponding to 5 and 7 droplets. Filled squares at the right of the raster displays indicate the animal’s departure from the water reservoir. Note
that departures are not consistently earlier for trials with no erroneously predictive activity (best visible in lower right panel). Activity at the right border of the panels
corresponds to arrivals at the next reward site. At lower left, lower horizontal line indicates mean firing rate from 2 to 1 s prior to reward trigger. Upper horizontal line
indicates three times this value. Waveform average is displayed in inset above (rat 6-5, session 2409, unit 0-1); scale bars, 50 1V vertical, 1 ms horizontal.

significant, in the histograms the first peak appeared to be wider while
later peaks at the same site appeared to be narrower and more clearly
defined. This is consistent with the possibility that the initial peak
could also be associated with the approach behavior.

Ten of the 14 neurons with anticipatory activity showed significant
peaks for this ‘erroneous prediction’ (see supporting Fig. S2 for more

examples). Of these, eight neurons were TFNs (as in Fig. 5) while the
remaining six were PFNs (as shown in Fig. 4). These neurons were found
with similar incidence in the accumbens core (n = 5) and shell (n = §;
P=041, df =1, xz test; for one neuron the histology was unclear).
While no such cells were found in the caudate, electrode placements
often bypassed this area as ventral striatum was the target of this study.
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F1G. 6. Phasic excitatory activity anticipating reward delivery in a nucleus accumbens core neuron. This neuron discharged little for the first two droplets of water.
The activity was greatest for the final droplet of water and for the corresponding period 1 s after the final droplet (corresponding to inappropriate anticipation of
another reward). This neuron was distinguished from others in this group by a rather low firing rate. Discharges started during the 800 ms preceding water rewards.

Format is same as that in Fig. 4. Waveform average is shown in inset above (rat 6-5, session 1709, unit 0-1). Scales bars, 50 puV vertical, 1 ms horizontal.

Neurons in this group had particular preferential selectivities for the
order of presentation of water droplets: early, in the middle or late in
the sequence. However, none of these neurons showed the decremen-
tal activity predicted by the models of Montague et al. (1996) and Suri &
Schultz (2001). Figure 6 is an example of a PFN that had only minor
responses anticipating the first and second droplets of water (one-way
ANOVA, F, g1 = 2.49, P > 0.05), but significant activity for the final of
multiple rewards (one-way ANOVA, Fj s = 9.0, P < 0.01). Another
pattern appeared in two neurons which fired maximally prior to and

during delivery of the fourth droplet of water (cells 631509 and
631609 in supporting Fig. S2) exceeding the responses for the first or
last droplets (one-way ANOVAs, F3;q, =5.33, P<0.01 and
F3.100 = 2.76, P < 0.05 respectively; post hoc paired comparisons,
P < 0.05).This variability demonstrates an uncoupling between pre-
sumed level of behavioral anticipation or expectation and the activity
of individual neurons. The first drop of water should have been
anticipated with a very high degree of certainty, yet there is little such
anticipatory activity in the neuron of Fig. 6. Yet other neurons had

FI1G. 5. Atonically active ventromedial caudate neuron with phasic excitatory activity predicting and following rewards. The response was greatest for the first droplet of
water and lower for the final droplets, but the weakest responses were found for intermediate droplets. Moderately high activity also appeared | s after the final droplet was
delivered. The neuron discharged from ~200 ms prior to reward trigger until 300 ms afterwards. Only data from the first half of the session are shown here; the remaining
data show similar properties. (Lower panel) Data from all reward sites for the entire session are displayed at an expanded time scale to demonstrate the fine structure of the
activity during delivery of'the first droplet of water. Four peaks appear centered on —180, 0,200 and 520 ms relative to the instant the first droplet of water was released. In
contrast, such fine structure was not discernible for later droplets of water (in the upper panels where the activity is a broad peak centered about the water delivery). Format
is same as that in Fig. 4. Waveform average is shown in inset at top (rat 6-2, session 1609, unit 2-2); scale bars, 50 puV vertical, 1 ms horizontal.
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F1G. 7. Averaged activity of the fourteen ventral striatal reward-predicting
neurons recorded (bins of 50 ms). The resulting trace shows characteristics
similar to the pattern of individual neurons: a peak with a smaller amplitude in
anticipation of a reward after the final one, and the absence of a decrement in
response amplitude during the reward delivery period. The trace shows a peak
with a smaller amplitude before the second droplet reward.

different order preferences while others showed no demonstrable
preference for any of the droplets (cells 542307 and 652109 in
supporting Fig. S2; one-way ANOVAS, F;,s3 = 0.35, P> 0.05 and
F7160 = 1.20, P> 0.05 respectively). Figure 7 shows the averaged
activity of the fourteen ventral striatal reward-anticipatory neurons
reported here. Interestingly, in the averaged signal the peak for the
second droplet reward had a smaller amplitude than those for previous
and succeeding droplets, and also a peak for the erroneous reward
prediction (post hoc paired comparisons, P < 0.05). The following
section presents the other type of reward-related activities recorded in
the ventral striatum in this task, then we will adapt a TD learning
model to be compatible with these observations in a biologically
plausible manner.

Activity increase during release of only the first droplet
of water

In the neuron of Fig. 8 (top), the firing rate started to increase 100 ms
prior to when the rat blocked the photodetector at the reward site and
the activity peaked at ~150 ms afterwards. No further activity was
observed for the following droplets of water at the same site (data are
shown for all trials of the session). While neurons in this group varied
in the onset time (from 1 s prior to arrival until slightly after arrival)
and the offset time, the activity was only observed for the first droplet
of water. These neurons thus would not provide a reliable signal for
reward anticipation. However, in the case of single rewards this type
of response would probably be confounded with those in the previous
section. Interestingly, a higher proportion of such neurons were found
in the accumbens core (n = 12) than in the medial shell (n = 3) and
ventromedial caudate (n = 4; P < 0.05, df = 1, y” test).

Uniform increase or decrease in firing rate while multiple
droplets of water were delivered.

Figure 9 is taken from a TFN with inhibited activity while the rat
consumed rewards. This response profile strikingly resembles tonically

active neurons (TANs) reported in the monkey striatum (see e.g.,
Apicella et al, 1996). In contrast with neurons of the first group
presented above, here inhibition persisted during only 1 s after the final
droplet was delivered and did not continue for an additional ‘erroneous’
second. While this suggests that the response is correlated with the
actual presence of reward, it must be noted that the onset of the inhibition
began the instant the reward delivery was triggered, immediately prior to
when the water would have entered the rat’s mouth.

The autocorrelation analysis of this neuron’s activity at the bottom
of Fig. 9 demonstrates a strikingly regular timing. Note that the
principal peak occurred at 0.2 s, corresponding to a frequency of
5 Hz. Other TFNs with inhibition during reward had irregularly timed
and bursty activity as shown in Fig. 5. All neurons in this third group
were TFNs. Most of these cells were found in the medial shell (n = 7),
while only one such cell was found in the core and in the ventromedial
caudate (y” test, df = 1, P < 0.05).

Reproducing these reward-anticipatory responses with TD
learning

This study aimed to determine whether reward-predictive activity in
the rat ventral striatum is compatible with the role of this structure
in TD-learning models (Sutton & Barto, 1998; see Appendix) wherein
reward signals reinforce neural circuits mediating action selection. The
TD learning algorithm is usually implemented within an Actor—Critic
architecture, where the Actor represents a neural network that learns to
select actions, while the Critic is a network that learns to compute
predictions of reward. The latter reward predictions are then compared
to actual rewards so that appropriate actions are reinforced, and so that
the Critic’s reward predictions become more accurate.

While existing models were effective for cases of single rewards,
multiple rewards are more challenging as, in an ensemble of models,
the striatal reward-prediction signal drops to zero the instant the first
reward arrives (Barto, 1995; Foster et al., 2000; Baldassarre, 2003).
The few models that were tested with a temporally prolonged, but
single, reward (Montague et al., 1996; Suri & Schultz, 2001) hold that
reward-prediction signals should progressively decrease while the
animal consumes successive rewards and then finally disappear at the
final reward (similar to the black trace in Fig. 10A). Whereas some
cells in the monkey striatum have been found with such a decrease in
activity during reward delivery (Suri & Schultz, 2001), none of the rat
ventral striatal neurons that we recorded had this response pattern.

In order to replicate the absence of diminishing responses
to successive rewards, the present modelling work uses the same
TD-learning model while changing the model’s input information.
Here there is no access to the ‘complete serial compound stimulus’,
and hence the Actor—Critic model cannot discriminate between the
consecutive states that precede each successive reward. Moreover, in
order to reproduce the erroneously predictive activity and variations in
responses to the successive rewards, we adopt here a model composed
of multiple modules of Actor—Critics which have different levels of
access to precise visual and spatial input information. This is
consistent with previous approaches employing multiple-module
reinforcement learning models where each neuron does not encode
the whole reward value function by itself (Doya et al, 2002;
Baldassarre, 2002; Khamassi et al., 2006). This seemed to be a
biologically plausible solution as it depends on the intuitive assumption
that all striatal neurons do not have complete access to all spatial,
temporal and visual information. This is supported by neuroanatom-
ical studies showing inhomogeneities of terminals of corticostriatal
projections, albeit within topographical delimited zones (Selemon &

© The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd

European Journal of Neuroscience, 28, 1849—1866



Reward anticipation in rat ventral striatum 1859

Reward delivery

o
oyl gl

15Hz

0
Time (sec)

Departure

15Hz

-1 0 1 2 3 4
Time (sec)

Fi1G. 8. This ventromedial caudate neuron discharged prior to and after delivery of the first droplet of water, but had no response to any other successive droplets.
Data are shown for the whole session — only the first reward is indicated. At least two peaks are discernible here, centered on 100 and 350 ms following reward
delivery. This neuron was exceptional in that it showed an increase in firing rate to ~8 Hz prior to and during departures from the water troughs (shown below).
Average waveform is shown in inset at the top (rat 6-2, session 0809, unit 1-1). Bin width 20 ms; scale bars, 50 uV vertical, 1 ms horizontal.
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F1G. 9. Inhibition during rewards in a tonically firing neuron. The tonic activity at ~8 Hz diminished to ~3 Hz while the rat was at the reward trough consuming
and waiting for more water droplets. Unlike the neurons described above, the activity resumed during the second following the final droplet of water and there was no
prolongation for an additional second. Below, the interspike interval histogram has a peak at 0.2 s, corresponding to regular firing at 5 Hz. Waveform average
appears in inset at the top (rat 6-1, session 1209, unit 0-1); scale bars, 50 pV vertical, 1 ms horizontal.
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F1G. 10. Simulations of cell activity in four different versions of the TD learning model with varied inputs concerning state (spatial and sensory information),
temporal-order inputs and discount factor (related to how far in the future predictions are made). The ordinate indicates average firing rate and the abscissa is time.
The vertical dashed gray lines indicate the onset of rewards and the displays show successive visits to reward sites on the four arms in order of descending reward
volume. The black traces show the reward-prediction signal produced by each version of the model after 25 trials of training. The gray traces show the post-training
reward-prediction error signal (i.e. the TD error) associated with each reward prediction. (A) These parameters permit the model to replicate the results of Suri and
Schultz (2001). (B-D) Reducing the discount factor and changing state and temporal-order inputs reproduces several of the activation patterns recorded in ventral
striatal neurons. In simulations A and B the post-training TD error signal is null, consistent with recordings of dopaminergic neurons in monkeys (Schultz ez al.,
1997). In contrast, simulations C and D show non-null TD errors due to reward predictions based on incomplete task-related input information.
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Goldman-Rakic, 1985; Groenewegen et al, 1987; Pennartz et al.,
1994). Hence, neurons could belong to different ‘modules’ dedicated
to learning part of the reward value based on different input
information (Chavarriaga et al., 2005; Uchibe & Doya, 2005).

The present TD-learning model has three Actor—Critic modules (it
is possible to have more, but this will be sufficient to resolve the
present issues). Each module independently processes the same TD-
learning algorithm based upon a different mix of spatial and visual
inputs. The spatial information here, that is, the state S of the animal,
consists of its position (i.e., location of the respective maze arms
relative to one another and the room) and sensory cues such as cue
lights at reward sites. All model variants had full access to signals
concerning position along the path between the maze center and the
ends of the arms.

We simulated each module on 25 trials where the rats visited each of
the four maze arms (actual training of the rats required many more
trials). For each trial, the TD-learning algorithm was computed once
every 250 ms and was simulated over the four reward sites successively.
For each water reservoir, the simulation started 5 s before the first
droplet reward and ended 2 s after the last. We do not address the issue
of how the Actor part of the model helps to build appropriate behavior
for task resolution, as this was done in a previous robotics simulation
(Khamassi et al., 2006). Note that the ventral striatum projects to the
VTA (Thierry et al., 2000) where these signals would presumably
influence dopaminergic neurons, an output process out of the scope of
the present modelling work. However, we will keep track of temporal-
difference errors produced in the model as they constitute an
experimental prediction of how dopaminergic neurons should respond
in this task. Nevertheless, the goal here is mainly to study whether and
how the Critic could learn to anticipate rewards in a manner similar to
ventral striatal neurons, in conditions like those confronted by the rats in
our task: facing the reservoir and waiting for successive rewards while a
light stimulus was maintained on until the last droplet of water. As this
happened only during correct trials in the real experiment (error trials
were aborted to encourage the trial-and-error learning), in the simula-
tions, the Actor part of the model had a fixed repetitive behavior.

For comparison, we reproduce the prediction of Suri & Schultz
(2001) model in our task by adding the ‘complete serial compound
stimulus’ component (Montague et al., 1996). Similarly to Suri &
Schultz’s (2001), the discount factor vy, which indicates the capacity to
take future rewards into account (cf. Appendix), was set to a high
value (close to 1; here 0.85) so that the model can predict reward
several seconds in the future. Figure 10A shows the resulting trace of
this simulation. The long lead in initial reward-predictive activity
reflects the elevated discount factor, and the gradual decrement of
response strength results from the accuracy of the temporal-order
signal provided by the ‘complete serial compound stimulus’. In
contrast, our model’s first module (Fig. 10B) has no temporal-order
inputs but has precise state information. This results in a series of
activity peaks with identical amplitudes before each reward, and no
prediction of a reward after the final one. The discount factor is set to
0.40 in order to better resemble the neural activity reported here,
which commonly started ~200-800 ms before the first reward droplet.
(The process of resetting discount factors could be a result of learning
in the cortical-striatal-tegmental loops and is not dealt with in the
model.) This results in an initial onset of predictive activity that starts
later than in the previous model. The activity profile produced by this
module does not have any ‘erroneously predictive’ activity increase
after the final water droplet (similar to cell 651509-21 in supporting
Fig. S2; Pearson correlation test, n = 112, ?=0.50,P< 0.001). This
type of activity could be reproduced by instantiating a second module
that processes highly ambiguous state information which renders it

incapable of discriminating the consecutive states following each
reward droplet. As a consequence the state does not change when the
light goes off in the reward alcove at the end of reward delivery while
the rat remains immobile. Figure 10C shows the erroneous reward-
prediction signal produced by this module (which also maintains the
discount factor at 0.40). Interestingly, in some recordings, erroneously
predictive activity occurred on only a fraction of trials, suggesting that
such processing could be subject to gating or other modulation. The
model’s erroneous reward-prediction results in a non-null TD error
(grey trace in Fig. 10C). This contrasts with simulations shown in
Fig. 10A and B where the TD error remains null during the whole
reward consumption period. Finally, Fig. 10D demonstrates how
variations in selective activity among successive droplets can appear
by varying spatial inputs. In this module, there is still ambiguous state
information (and thus imprecise spatial information), and again the
discount factor y = 0.40. This module cannot discriminate in which of
the four maze reward boxes the rat is. As a consequence, during the
simulation of the model, when experiencing the water reservoir with
only a single droplet reward (at time 50 s on Fig. 10D), the model
learns to predict a single reward. Then, at the next trial, as the task
presents successive rewards in decreasing volumes, the model
experiences the water reservoir with seven droplet rewards (time 5 s
in Fig. 10D). The model confounds the maze boxes (due to the
absence of spatial information in the model) and predicts only a single
reward. This results in an absence of peak anticipating the second
droplet (time 6 s in Fig. 10D) and results in a prediction error signal at
the level of ‘dopaminergic neurons’ in the model (grey line in
Fig. 10D). We observed some ventral striatal cells with a profile of
activity similar to this third module (e.g. in supporting Fig. S2 cell
523107-01, Pearson correlation test, n = 112, 7% = 0.59, P < 0.001;
and cell 631509-11, Pearson correlation test, n = 112, * = 0.59,
P < 0.0001). Thus these modelling results suggest that the fluctuation
in the peaks’ amplitude at middle droplets is due to an absence of
information in these cells concerning the animal’s position (this could
be confirmed by analyzing whether such cells’ activity is locked with
hippocampal activity). Interestingly, the reward-prediction signal
produced by the third module also strongly resembles the profile of
the estimated population activity derived from the average over the 14
reward-predicting cells (Fig. 7; Pearson correlation test, n = 40,
= 0.7, P < 0.000001).

Discussion

Here striatal neurons were recorded in rats as they received multiple
rewards at 1-s intervals on the respective arms of a plus-maze. The
experimental design aimed to disambiguate activity associated with
reward-directed behaviors from actual anticipatory activity predicted
by Actor—Critic models of TD learning. We found the latter in the
form of phasic increases in firing rate anticipating and accompanying
delivery of individual droplets of water, a novel finding in the rat
striatum. This contrasted with other responses more probably
associated with reward site approach behaviors and associated
sensations, which took the form of phasic increases (sometimes
coupled with decreases) in firing rate for the first droplet of water
only.

The anticipatory lag varied among individual neurons, commencing
from 800 up to 200 ms prior to the reward. Previous studies have
generally shown accumbens responses that begin immediately after
reward delivery (Lavoie & Mizumori, 1994; Martin & Ono, 2000;
Wilson & Bowman, 2004), but in some cases precede rewards by 300
to 500 ms (Nicola et al., 2004; Taha & Fields, 2005), and even as
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much as 1-2 s (Schultz et al., 1992; Tremblay et al., 1998; Shibata
et al., 2001; Janak et al., 2004). However, as only single rewards were
provided in those experiments it is not clear whether this activity in
rats might be associated with sensory cues or behaviors preceding
reward acquisition, or rather are actually associated with reward-
anticipation only. In the immobile awake monkey preparation
(Cromwell & Schultz, 2003) and in humans (O’Doherty et al.,
2004), however, it has been easier to reduce the risk of such
confounds.

The regular timing of these anticipatory reward responses in the
absence of any explicit trigger stimulus suggests that these neurons
have access to some kind of timing signals (that can be reflected by the
discount factor in the model). One possible source for this would be
TFNs such as the one shown in Fig. 9. The highly regular 5-Hz
discharges could provide a reliable basis for such timing. In this
neuron the interspike interval histogram had a peak at 0.23 + 0.10 s
during the animal’s running period, and this broadened and shifted to
0.29 + 0.14 s during the reward consumption period. Interestingly,
three of the peaks observed for the first droplet of water in the neuron
of Fig. 5 (bottom) also had 200-ms intervals (5 Hz) between them.

Implications for models of reinforcement learning

The present results bear on recent theories and models of
mechanisms of goal-directed learning engaging basal ganglia
activity (Schultz et al., 1997; Graybiel, 1998). The TD-learning
algorithm (Sutton & Barto, 1998) has been successfully employed in
neuromimetic Actor—Critic architectures to endow robots with
reinforcement learning capacities (see Khamassi et al, 2005 for a
review). In the original formulation, the striatum makes successive
predictions of reward, whose accuracy is used to compute an error
prediction signal at the level of striatal-afferent dopaminergic
neurons (Houk ef al., 1995). This prediction error, combined with
signals of the presence or absence of reward, would then enable
dopaminergic neurons to emit reinforcement signals that in turn
modify corticostriatal synaptic plasticity. Such modifications would
lead to learning by increasing the probability of selecting an action
that previously led to a reward. Modification of behavior following
TD-learning rules has already been observed in rats (see Daw et al.,
2005 for a review) and monkeys (Samejima et al, 2005) during
reward-based habit-learning tasks, and reward-anticipatory activity
has been reported in the striatum (Kawagoe et al., 1998; Miyazaki
et al., 1998; Daw et al., 2002; Cromwell & Schultz, 2003; Setlow
et al., 2003). The present results extend this by showing that the
rat’s ventral striatal activity reflects inaccurate temporal-order
information, whereas classical TD-learning models predicted that
reward-prediction signals should be anchored on a precise estima-
tion of timebins order between stimuli and rewards in order to
explain dopaminergic neurons’ activity (Montague et al, 1996;
Schultz et al., 1997; Suri & Schultz, 2001). The most dramatic
consequence of the present model is that it avoids making such
expensive computations. Interestingly, it has been shown recently
that multiple-module TD-learning models without precise temporal-
order information concerning the task and with limited afferent
sensory processing could still enable learning of appropriate
behaviors in a simple food-searching task (Baldassarre & Parisi,
2000) and in a plus-maze task equivalent to this study (Khamassi
et al., 2005, 2006). This approach demonstrates the utility of models
which take into account the assertion that each neuron does not
have complete access to all spatial, temporal and visual information.
Although the resulting multiple-module view of striatal function is
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structurally more complex, it is in harmony with neuroanatomical
and neurophysiological data.

The present work also confirms that the diverse striatal phasic
responses anticipating multiple consecutive rewards are coherent with
TD learning. Striatal responses ‘erroneously’ predicting another
droplet of water after the last one can be accounted for in the
simulations as reflecting different mixes of spatial and visual
information. As a consequence, ventral striatal activity is consistent
with parallel reinforcement learning systems processing varying input
signals (Chavarriaga et al., 2005; Uchibe & Doya, 2005). The notion
that different neurons receive different mixes of input information of
varying levels of accuracy is consistent with known patterns of input
projections to the ventral striatum (McGeorge & Faull, 1989;
Groenewegen et al., 1996; Mulder et al., 1998).

Different striatal neurons might also process reward information at
different time scales. Additional modules could vary in the value of
the discount factor y, which indicates the capacity to take future
rewards into account (cf. Appendix). This reflects the observation of
the variation in lag in the predictive activity from 200 to more then
800 ms and could correspond to local differences in afferent
projections or local circuitry. The present discount factor of 0.4 was
selected to reproduce the mean lag observed. Interestingly, in a recent
brain imaging study of humans performing a reward-motivated task,
different striatal subregions were selectively active according to the
discount factor that best modelled the subjects’ strategy concerning
short- or long-term gain (Tanaka et al., 2004).

Integration of multiple modules’ activities

It is still an open question as to how (and where in the brain) the
activity of different reward-anticipatory neurons is integrated and
combined into a single reward prediction that can be used to trigger
dopaminergic neurons’ unitary reward-prediction error signal, i.e. the
TD-error signal (Schultz ez al., 1997).

As different simulated modules reproduced the activity of different
VS neurons, it is possible that each module could be considered to
represent distinct groups of cells within the striatum. As a conse-
quence, components of reward prediction would remain segregated
within the striatum while the integration could be computed thanks to
converging projections from the striatum to dopaminergic neurons
(Joel & Weiner, 2000). Alternatively, as our third Actor—Critic module
could represent the reward-prediction signal averaged over the
ensemble of ventral striatal anticipatory neurons reported here, it
could be possible that individual neurons’ predictive activity is
integrated locally, within the striatum, based on collateral connectivity
(Gerfen & Wilson, 1996). In both interpretations, our modeling results
confirm that the anticipatory activity for multiple successive rewards is
consistent with participation of the rat ventral striatum in the function
of a Critic that influences dopaminergic neurons’ reward-prediction
error signals by means of a TD learning algorithm (Joel et al., 2002;
O’Doherty et al., 2004).

Moreover, whereas a unitary TD-error signal is commonly used in
models to train an Actor to build task-relevant behaviors, there is also a
specific TD-error signal that trains each module (Doya et al., 2002;
Baldassarre, 2003). Our model shows the TD-error signals that are
expected to be associated with each module, and these would train
reward prediction in specific subgroups of VS neurons. This consti-
tutes an experimental prediction that could be tested by recording
dopaminergic neurons with varying multiple successive rewards. The
ventral striatal areas recorded here send projections to the SNc and to
the VTA (Haber et al., 2000; Thierry et al., 2000; Ikemoto, 2002). Our
model predicts that subgroups of brainstem dopaminergic neurons
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would be associated with different TD-learning modules and would, in
the same plus-maze task, exhibit differential TD-error signals in
response to reward (see Fig. 10): some dopamine neurons’ responses to
reward should have disappeared after learning, as in the seminal study
of Mirenowicz & Schultz (1994). Other dopamine neurons receiving
inputs from the TD-learning module which erroneously anticipates an
additional droplet of water should then have inhibitory responses
reflecting a reward-prediction error. If such patterns of activity are
found in dopaminergic neurons, our model shows that they would still
be sufficient for reinforcement learning while being consistent with the
consideration that dopaminergic responses to reward should be
anchored on limited information concerning the task (Redgrave
et al., 1999b; Redgrave & Gurney, 2000).

Daw et al. (2005) have recently argued that anticipatory activity
for motivated behavior in rats cannot be completely explained with TD-
learning models. Thus their model employs a TD module to drive
habitual behavior, and this competes with a higher level tree-search
module dedicated to goal-directed behavior. The present work shows
that a TD-learning-based mechanism is computationally sufficient to
model the diverse anticipatory responses of the neurons reported here.
However, other ventral striatal neurons recorded with the present
protocol (reported in Mulder ef al., 2004) were active from initiation to
completion of goal approach behaviors. These could be embodiments
of the tree-search model as they group, or ‘chunk’ (cf. Graybiel, 1998),
behavioral sequences from departure until the arrival at the maze
center, then to the next reward site. In the present work, we did not find
significant differences in the number of shell and core neurons
anticipating each droplet reward, as might be expected from studies
demonstrating functional differences between shell and core (Pothu-
izen et al., 2005). This is probably due to the small sample size and that
many of our recording sites were near the border of these zones where
fewer functional differences may be expected (Voorn et al., 2004).
However, the dichotomy in reward anticipation and goal approach
correlates is consistent with the hypothesis that functionally distinct
groups of rat nucleus accumbens neurons could be differentially
involved in TD-learning or in goal-directed behavior (Dayan, 2001).

The reward-related activity observed here could serve as a Critic
signal to help establish functional circuits (by a loop through VTA) for
sequencing the activity of the ‘goal appproach neurons’ (Mulder et al.,
2004), first orchestrating then automating the sequence of successive
steps to satisfy task exigencies. Dopaminergic neurons within this
system would also transmit reward signals to more dorsal striatal
regions implicated in habit learning (Haber et al., 2000). Selection
among alternative goal choices or even among cognitive strategies
would thus be carried out in associative and limbic regions situated
more ventrally in the striatum (Shibata et al., 2001). This could lead to
a hierarchy of behavioral control which might lead to cognitive
correlates, for example, context- or reward-dependence in the more
dorsal basal ganglia responses, thus participating in the translation of
motivational signals into motor outputs (Mogenson et al., 1980;
Hikosaka et al., 1989; Redgrave et al., 1999a; Yin & Knowlton, 2006).

Supporting information

Additional supporting information may be found in the online version
of this article:

Fig. S1. Average waveforms for each of the neurons described here.
Fig. S2. Further examples of neurons with reward anticipatory activity.
Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors. Any
queries (other than missing material) should be directed to the
corresponding author for the article.
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Appendix

The TD learning algorithm was developed in the field of optimal control
theory and provides an efficient method for an embedded agent (animat, robot
or other artifact) to learn to assemble a sequence of actions enabling it to
optimize reinforcement (e.g. reward) in a given environment (Sutton & Barto,
1998). This approach addressed the problem that rewards may arrive
considerably later than the initial neural activity, too late to modify the
appropriate synapses (the ‘credit assignment problem’). TD learning has since
been successfully used to describe reinforcement learning mechanisms in basal
ganglia networks, but mainly for single rewards. It has been implemented in
simulations where dopaminergic neurons compute reinforcement signals
(Schultz et al., 1997), while striatal neurons compute reward anticipation
(Suri & Schultz, 2001). A given task is represented as a discretized series of
timesteps. At each timestep, the agent occupies a particular position (or state)
in the environment, perceives a set of signals (e.g., internal signals about
motivation, or visual information about the environment), and selects an
action. When the agent reaches a reward location and selects an appropriate
action, it receives a reward and strengthens the neural connections leading to
this state.

Instead of requiring memorization of a lengthy sequence of actions to
eventually be reinforced when a reward is achieved, which is costly in terms of
numbers of computations and memory requirements, the TD algorithm
proposes an efficient and elegant method for reinforcing appropriate state-
and signal-prompted actions towards a reward. The reinforcement signal is
computed on the basis of the difference between the value of the states at two
consecutive timesteps (hence the name ‘temporal-difference learning’). The
value of a given state S is considered to be the value of reward which is
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expected (or predicted) to be received in the future, starting from this state, and
is noted V(). If the action 4,_, is performed in state S,_;, and then at time ¢, the
expected reward value V7 in state S, is higher than that of S, ; [i.e.
V:(S;) > Vi—1(S,=1)], then action 4, is reinforced and the value of state S,_;
is increased. The effective reinforcement signal that drives this learning process
is given by the following equation:

Or =1 +9Vi(St) — Vie1 (Si—1) (1)

where r, is the reward achieved at time 7, and y is a discount factor (0 <y < 1)
which limits the capacity to take into account rewards in the far future. At each
time step ¢, this reinforcement signal is used to update the probability of
choosing action 4 in state S, and to update the amount of reward that state S
‘predicts’ according to the following equations:

P(A;-1/Si-1)+ = o, (2)
and V(S;-1)+ = o, (3)

where += means ‘is incremented by’.

It remains to be verified whether an algorithm of this type is actually
implemented in the vertebrate brain. Nevertheless, it provides an initial
intelligible framework for understanding a possible way to learn a sequence
of actions towards a reward. Its simplicity and efficiency support its
compatibility with the constraints of natural selection.
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