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I. INTRODUCTION

A. About the role of self-evaluation in robotics

The proposed work raises the problem of autonomous

learnings in robotics. Whatever the morphology of the robots

and the various skills they could acquire according to their

morphology, robots need to be able to self-evaluate, not

only in order to guide their autonomous development trough

the vast sensory-motor space, but also in order to verify

that previous learning are still pertinent and to readapt

their knowledge when previous learnings becomes erroneous.

Such capabilities appear crucial in developmental robotics

and should largely enrich the possible manifolds of social and

physical interactions in which robots could be involved. As

a support to this assumption, the presentation will focus on a

mature bio-inspired neural network architecture, which uses

an autonomous, online, and interactive learning, allowing

a robot to achieve sensory-motor tasks and planning, in

the frame of navigation. The role of self-evaluation for

interactive learnings and self-development is highlighted.

B. Interactive learning of navigation tasks: a mature bio-

inspired architecture

For the last decade, we have developed a neural network

architecture, inspired from the brain functioning, efficient

for visual navigation and imitation tasks. This architecture

involves a model of the visual system, the temporal and

parietal cortices also called the what and where pathways,

the hippocampus, the prefrontal cortex, the basal ganglia,

the motor cortex and the cerebellum [1]. The use of a

robot standing for a simulation of an animal or a human

provides an efficient mean to validate our models and verify

if the global dynamics of the robot/environment interactions

corresponds to those observed by the neurobiologists and

the psychologists. As visual navigation is concerned, our

model enables a robot to learn visual landmarks, to associate

them to their spatial properties (azimuth and elevation) in
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Fig. 1. Interactive learning (proscriptive teaching) of a 200 meters path.
After two laps of training, the robot Pioneer AT III ActivMedia closes the
loop in 9 mn. The architecture is paralleled on four processors. The speed
of the robot is limited due to low level drivers of the Pioneer.

order to build a constellation of landmarks (a set of triplet

landmark-azimuth-elevation). The activity of the neurons

recognizing such a constellation is similar to the activity

of the large place cells recorded in the entorhinal cortex

of the rat [19]. A set of place-action associations, learned

in one-shot and adapted online, creates an attraction basin

enabling our robot to go back to a learned location or to

follow an arbitrary visual path in indoor environments [4].

The robustness of our visual place cells has recently been

optimized for outdoor environments [9], enabling the robot

to achieve sensory-motor tasks in indoor as well as in large

outdoor environments with a low computation load [7] (see

fig. 1). The behavior is also robust to kidnapping, to object

and landmark addition or removal, to the presence of mobile

obstacles and to severe visual field occlusions1.

More recently, we investigate how such sensory-motor

behaviors (place-action strategy) could be learned by inter-

acting with a naive human teacher (see fig. 1) [8]. We pointed

out that the richness of a real HRI (human-robot interaction),

as opposed to a pre-determined guidance strategy such as a

prescriptive guidance commonly referred as programming by

demonstration (which is in fact far from being an interactive

learning process since the behavior of the robot does not

1demonstrative movies are available on the web pages of the authors.
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modify the teacher behavior) or a proscriptive strategy con-

sisting of correcting the robot when it commits errors (which

is the first step toward an interactive learning, since the

behavior of the robot influences the teacher behavior, mod-

ifying the robot behavior, and so on and so on...), acts as a

cognitive catalyst, enhancing the precision of the reproduced

behavior as well as its functioning domain (size of the at-

traction basin) [8]. During such a HRI, a real communication

based on actions emerges [14]: the teacher communicates

by acting on the joystick, and the robot communicates by

behaving according to its learned sensory-motor dynamics.

The interaction is composed of three different phases which

alternate: prescriptive teaching phases, proscriptive teach-

ing phases and observation/demonstration phases. The three

phases alternate in time and space according to the evolution

of the teaching, defining an interaction rhythm.

II. LEARNING PROGRESS AND SELF-EVALUATION

CAPABILITIES

A. Related work and motivations

However, although the learning is autonomous, the prob-

lem of evaluating the robot learning early arises in the

context of a robot evolving in a human world. Reasonably,

it is impossible to test all the situations the robot will be

confronted to. Based on this remark, the idea that the robot

should self-evaluate becomes central. An intuitive starting

point for self-evaluation is to compute the learning progress.

In a developmental perspective, some authors proposed to use

the learning progress as a reward for a predictor, in order to

guide its exploration of the sensory-motor contingencies [13],

[17], [18]. The learning progress was classically computed as

the derivative of the mean prediction error. More precisely,

the authors proposed an ”mixture of expert” architecture

[22], which predicts the future sensory-motor state (s(t +
1), m(t + 1), r(t + 1)), knowing smr(t) (s: sensation, m:

motor, r: reward). The learning progress of the sensory

prediction defined as [em(t− τe)− em(t)]+ is then used as
a reward for the SMR predictor (τe being the delay between

the two mean errors (past error and current error), used to

compute the progress). The authors observed that performing

the action that maximizes the learning progress leads the

robot to focus on state in which progress is possible, and to

avoid unpredictable state as well as easily predictable state.

The robot exhibits the capability to self-develop its skills, by

analysing among all the sensory-motor associations, which

are known, which are unpredictable, and especially which

are sources of progress. The robot also exhibits a kind of

curiosity, speeding-up its development [20], since the robot

oscillate around the frontier that separates mastered know-

how from unmastered know-how [13]. The counterpart is that

the robot never try to become better in a given task but

always try to reach a unmastered state.

Yet, the learning progress appears as a rich signal that

could help to reliably trigger or suspend learning phases. We

defined the stagnation as the fact that the predictor no longer

progresses, thought it is learning. In such a case, learning can

be suspended and an evaluation measure of the predictor can

be estimated. As long as the accuracy remains constant, the

system does not need to learn. Changes in the accuracy of

the prediction are likely to be induced by a change in the

physical world, corresponding to novelty, and suggesting that

learning can be necessary.

Let us focus on the computation of the learning progress.

The following concepts can be applied to all prediction ma-

chines, able to generate an error e(t) between the prediction
and the reality (the mean error is noted ǫ(t) = ē(t) =
1

τ

∑τ−1

i=0
e(t − i)). The learning progress is generally defined

as:

Prog(t) =
[

−
∆ǫ(t)

∆t

]+

corresponding to the decrease of the mean static error. The

progress is positive when the current mean error is lower than

the past mean error. Otherwise, progress is null. Even if this

formulation of the progress is correct, it is not complete as

it will be explained.

A first observation is that error can reduce even in absence

of adaptation. This is not frequent, but this can happen.

This corresponds to the fact the real phenomenon converges

toward the learned phenomenon: occurrence of a progress

which does not result from the learning convergence, for

example when a teacher adapts its behavior to the difficulties

of its student (the error is decreasing because the difficulty is

decreasing). Except this particular case, since each predictor

has a built-in accuracy for the phenomenon it predicts, the

predictor should stabilize to provide a given mean error

with a given standard deviation. In this case, whatever the

phenomenon is, the progress and its mean value should

become null and oscillate around 0 after a given time.
Otherwise, it would correspond to a continuous progress

which is only possible in theoretical cases in which the signal

to predict is constant. Stabilization of the error is called

”stagnation”. Even if the predictor is not able to correctly

predict the phenomenon, we consider the predictor stagnates

when it is habituated2 to provide a particular error (ie: when

its mean progress has fallen under 0).

For a stagnating predictor, changes in the nature of the

phenomenon (which is called here ”novelty”) make the pre-

dictor produce a higher error than the current error (changes

that decrease the error has already been discussed). The

former definition of the progress as the positive decrease of

the mean error does not take into account that predictions

can become erroneous. Indeed, if the error increases due

to a novelty, the progress will become negative, whereas it

should become positive: reasonably, a novelty is likely to

imply something to learn, hence a positive progress. After

an erroneous prediction, even if the system is learning, the

progress as defined earlier will become negative during a

period that depends on τ and τe. Yet, it seems legitimate

to consider that the novelty detection should have a direct

impact of the estimated progress value.

2We use the term ”stagnation rather than ”habituation” to not create a
confusion with the classical synaptic habituation.
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Fig. 2. Architecture for self-evaluation. The progress is computed as the difference between the learned error and the current error. The stagnation is
detected when the learned progress becomes negative which suspend the learning. If an abnormal error occurs, the progress changes and novelty is detected.
When novelty is detected, a signal allows to reset the learned error and the learned progress to the current error and progress value. The computed progress
becomes positive and the stagnation detector is inhibited. A new learning phase is triggered

B. Interaction progress/stagnation/novelty

Aware of these limitations, we propose a more precise

computational definition of the progress, illustrated by the

architecture of fig. 2: the progress is the difference between

the learned error ǫ̂(t) and the current error ǫ(t). A positive
progress pǫ

k corresponds to the fact that the mean error ǫk(t)
of the predictor for the state k is lower than the learned value

ǫ̂k(t):
pǫ

k(t) = ǫ̂k(t) − ǫk(t)

We assume here that when the learning is stabilized (corre-

sponding to stagnation phases), the mean progress will fall

under 0. Practically, when the learning has converged, ǫk(t)
stagnates, ǫ̂k(t) converges toward E[ǫk(t)], and the progress
becomes negative before oscillating around 0 (E[X ] and
V[X] are the expected value and the variance of X). The

progress appears as the centered version γ(0, σ2
ǫk

) of the
mean error γ(νǫk

, σ2
ǫk

). Indeed, pǫ
k oscillate around 0 with a

given standard deviation:

V [pǫ
k] = E

[

(E[pǫ
k] − pǫ

k)2
]

(1)

= E
[

(pǫ
k)2

]

(2)

= E
[

(E[ǫk] − ǫk)2
]

= V [ǫk] (3)

We deduce as foreseen that σ2
pǫ

k

= σ2
ǫk
. Between the

instant when pǫ
k(t) becomes negative and the instant when

p̂ǫ
k becomes negative (p̂

ǫ
k is the learned version of pǫ

k and

converges toward E[pǫ
k] = 0), the duration is long enough

for the estimator of the progress deviation (equivalent to the

estimator of the error deviation) to converge. The predictor

is said to stagnate, inducing the suspending of the learning

(of the predictor, of the mean error and of the progress),

in order to estimate in an invariant manner the predictor

accuracy: during stagnation, the mean error ǫ̂k (which is

fixed) and the deviation σ2
ǫk

= σ2
pǫ

k

(which is still online

computed) represents an interesting signals to measure the

accuracy of the predictor. When p̂ǫ
k becomes negative, a

first estimation of the progress deviation is available. Hence,

novelty can be detected when a prediction generates a non

conform error (the notion of conformity is the one classically

used in statistic). Since the law followed by the error sample

is unknown, the conformity of a sample will be accepted if

this sample is close enough from its mean value. The notion

of proximity to the mean value classically depends on the

estimated deviation: here, we impose |pǫ
k| < 3.σpǫ

k
:

If a novelty is detected by the non-conformity of the error

sample, it is legitimate to consider that the best estimation

of the learned error is the current error. The role of the

novelty detection is crucial in our definition since the novelty

detection triggers the reset of the learned error (which is no

longer pertinent) to the current error. This reset produces

a strongly positive progress, inciting the system to trigger

a new learning. A novelty also suggests that the learned

progress is erroneous, and that its best estimation is the

current progress value. Indeed, the stagnation detector is

directly inhibited by the reset of the learned progress. A

learning phase can then occur.

By an active analysis of the learning progress of a predic-

tor, it seems theoretically possible to detect stagnation and

novelty, in order to meta-control this predictor, by triggering

or suspending the learning phases. The whole system is able

to evaluate the pertinence of its learning, and to invalidate
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the learned associations when they are no longer pertinent.

In the presentation, some experiments of interactive learning

in a simulated environment will be presented, in order to

demonstrate the expected mechanics of the proposed meta-

controller. We will focus on the role of such a meta-controller

in the context of the interactive learning of a sensory-motor

task (ie: a navigation task, based on a place-action strategy).

C. Discussion in the field of neurobiology

Rather than addressing the problem of modeling particular

structures which could be involved in the self-evaluation

capabilities, we rather described a minimal set of states and

transitions between these state (progress, stagnation and self-

evaluation, novelty and re-adaptation) which could explain

theses capabilities of animals as well as in robots. Reason-

ably, the learning, the maintenance, and the use of a skill

implies neural loops and information transfers spread among

almost all the brain structure (imagine for example how a 20

years old soccer player, in spite of its growth and changes

of its muscular performance, has learned how to efficiently

shoot in the ball at the end of its run). We can nevertheless

introduce structures simply involved in error-prediction or

reward prediction, though neurobiologists still debate on

their interactions. Thus, it is commonly admitted that basal

ganglia, especially the nucleus accumbens, are involved not

only in reward prediction and error-reward prediction but

also in the salience and valence during incentive anticipation

[12]. Recently, other evidences have been given that other

structures are correlated with the prediction of reward. For

example, the hippocampus in able to predict the timing

of a reward at a goal location [11]; reward timing is also

observed in the primary visual cortex [21]; studies about the

schizofrenia has shown that the orbital and dorsal prefrontal

structures plays a critical role for the representation a value

of outcomes and plans [10].

Emotions appear also crucial in the meta-control of the

various learnings since one of its fundamental role is to

express a valence associated to a prediction. The emergence

of emotions within the numerous structures of the brain, and

even the computational definition of what is an emotion,

is far from being understood. To understand how self-

evaluation takes place in the brain, the ”reward pathway”

(midbrain, its projection to ventral striatum, dorsal striatum,

orbito-frontal cortex and other area of the mesial prefrontal

cortex) has to be better understood. We can reasonably

presuppose that the computational neuroscience and bio-

inspired robotics will provide, for the ongoing research in

neurobiology, an efficient tool to evaluate, confirm, and

especially infirm the proposed models in order to progress

in our interpretation of the brain functioning.

III. CONCLUSION AND PERSPECTIVES

In the context of the interactive learning for a navigation

task, if the robot is able to self-evaluate, it can inform its

teacher about its mastery of the task and/or its emotional

state, in order to enrich the interaction, by using facial

expression, for example [2]. In unmastered situations, the

Fig. 3. S. Boucenna interacting with an emotional robotics head. The
caregiver simply reproduces the facial expression of the robot, as a mother
does with its baby, enabling the robot to bind its emotional internal states
with expression of the caregiver. When the caregiver estimates the robot
recognizes facial expressions, he manually switches the role of both agent
to realize a qualitative post-analysis of the robot reaction (the robot becomes
the imitator). As in navigation, if the robot is able to self-evaluate, it would
autonomously switch its role and becomes the imitator. The use of self-
evaluation capability seems interesting for the emergence of a natural role
switching between the human and the robot.

robot could use repair strategies to get back the attention of

the teacher, by means of a particular behavior (oscillation,

stop, looking toward the teacher ...) [15], or by means of a

more understandable media as an expressive robot head [2],

[16]. In mastered states, the robot could become curious by

choosing to not realize the learned behavior and to disobey

its teacher in order to find less mastered states in which it can

still progress (a communication based on the expression of

emotional states could once again be very pertinent). Indeed,

this could lead the robot toward states it would not have

experimented if he had performed what it had learned, or if

it had perform the predictable actions imposed by its teacher.

Auto-evaluation capabilities could also help for the learn-

ing of emotional expression. The emotional binding being

an extremely difficult problem, self-evaluation capabilities

could be very useful to speed-up the emotional parenting

between a human and a robot as illustrated by the fig. 3).

In the actual state of our work, the robotics head is able to

learn the emotional expressions thanks to a novelty detector,

based on the rhythm of the interaction. The underlying

system learns the emotional expressions if and only if this

detector is constant and avoids learning if the detector fires

too frequently.

Future works also will focus on the comparison of sensory-

motor strategies versus planning strategies for the learning

of an arbitrary path and the control of its reproduction. In

our complete biological model, neurons in the hippocam-

pus proper (CA1/CA3 regions) learn and predict transitions

between successive multi-modal states [5], [3]. A cognitive

map computes a latent learning of the spatial topology of

the environment [23] and can be used to plan a sequence of

actions to reach an arbitrary goal [6]. The influence of our

progress-based meta-controller will be evaluated at all the

level of this architecture. We will also study how an agent

can autonomously detect it is not really doing what it aims

at doing (when the robot get lost).
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