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Abstract

This paper introduces a robust adaptive patches

sampling technique. The method does not rely on the

use of keypoints to extract local information but all in-

formation contained in images. It performs an optimal

multilayer quadtree decomposition of images driven by

the quantity and homogeneity of information. Extracted

patches will be of different sizes according to the cov-

ered zones in the image and the information they con-

tain. Experimental results carried out in localization,

including different cases of corrupted images, and im-

age topology. Finally to illustrate the technique pos-

sibilities, preliminary results in object recognition are

shown

1 Introduction

In the last few years, the problem of extracting fea-

tures from images has received growing attention. The

majority of existing methods use derivatives approaches

and rely on local image patches as basic features [1].

Recently, bag-of-features [8] representations have be-

come popular, they are geometry free, based purely on

characterizing the statistics of local patch appearances.

The idea behind the method is to extract a set of lo-

cal image patches which are sampled and assigned a

metric description. The resulting quantified descriptors

give an implicit distribution description space that can

be quantified using different methods. Most of the ex-

isting work differ mainly according to the way patches

are sampled and then described. They are generally

selected using keypoints SIFT [4] based approaches.

Codebooks [6, 7] are then produced using k-means and

agglomerative clustering. Most of the cited techniques

consider partial information from scenes mainly dis-

tributed around maximal gradient points, which limits

the robustness of visual loops. The presented method is

driven by the idea that all the information contained in

images is useful. The paper introduces a new technique

Figure 1. Examples of optimal sampling of

image(A). Each patch contains his mean

color in grey level.

of sampling images. It is based on a dense multilayer

decomposition of the image driven by the quantiy and

homogeneity of the information contained within sub-

patches. Extracted patches will be of different sizes ac-

cording to the covered zone in the image. The method

can be applied to any type of images, we will present

applications in both perspective and omnidirectionnal

cases.

2 Optimal decomposition of images.

An efficient decomposition must produce an optimal

and possibly a unique partitioning of images. In ad-

dition it would be interesting to produce less patches,

but of variable size so that they can cover homogeneous

texture zones. In order to achieve an optimal genera-

tion of patches, a recursive algorithm is set up. Classic

quadtree algorithm cut recursively images into subim-

ages and so on. Starting from the initial image, each

subimage is cut into four equal subimages. The idea is

to use the same principle, but at the contrary of the reg-

ular quad-tree approach, the division of subimages will

be driven by a measure of the information they contain.



The goal is to cut a subimage at the location were the

difference of the quantity of information between pos-

sible subimages is minimal. This information is given

for an image I by :

H(I) = −
c=255∑

c=0

Occ(I = c) log P (I = c)

with Occ(I = c) the number of times the pixel value
c appears in I , P (c) is the probability of appearance
of the grey value c within I . To estimate the opti-

mal point minimizing the variance of the distance be-

tween the information contained in the four subimages

of I , the principle of integral images introduced in [2]
is used. Let q(i, j) be the quantity of information of a
pixel I(i, j) with q(i, j) = log(P (I(i, j))). We set the
integral information of I(x, y) as :

QI(x, y) =
∑

i≤x,j≤y

q(i, j)

This sum is computed in one iteration on the whole im-

age or subimage considered. We set R(x, y − 1) the
integral quantity of information on the row x of height
y − 1. The principle of computation is presented in
figure.2(A).

R(x, y − 1) = QI(x, y − 1) − Q(x − 1, y − 1)

Finally the integral quantity of information for a (x, y)
(see figure.2(B)(C) is given by:

QI(x, y) = QI(x − 1, y) + R(x, y − 1) + q(i, j)

Once QI is computed the variance value within each

Figure 2. Computation of QI(x, y).

pixel becomes implicit. It is important to measure the

mean value of the quantity of information contained

within the four subimages. In the case where I is of size
m × n we have for a cutting position (x = m/2, y =
n/2) :

QIm = QI(m, n)/4

The quantity of information of each zone is :

QI11(x, y) = QI(x, y)

QI12(x, y) = QI(m, y) − QI(x, y)

QI21(x, y) = QI(x, n) − QI(x, y)

QI22(x, y) = QI(m, n) − QI21 − QI12 + QI11

Finally the optimal (x, y) position is the oneminimizing
the following sum of differences:

∃(x, y)/minx,y(
a=2,b=2∑

a=1,b=1

(QIm − QIab(x, y))2)

An example of an image decomposition is shown in

figure.1. In what follows the extracted patches are de-

scribed using two measures, their color mean value and

a texture description as defined in [3]. The comparison

of two images is performed by comparing their patches

according to their locations, descriptions and the level

at which they appear.

3 Localization

An autonomous differential drive robot equipped

with an omnidirectional catadioptric sensor mounted on

top is used [3]. Omnidirectional catadioptric sensors

images are variant scale sensors. Pixels do not have

the same resolution, the notion of neighborhood is then

lost. Differential methods are no longer adapted to the

geometry of images [10], most existing methods are

not meant to be used on such cases. The position of

the robot is constantly estimated by a camera network

mounted on top, it provides a ground truth measure of

the estimated positions given by the navigation system

of the robot. The robot explores randomly its environ-

ment, and creates a dense topologicmap. Nodes are cre-

ated every 20cm as shown by figure 3, they store the op-

timal sampling of its correspondingomnidirectional im-

age and its location within the map. The optimal sam-

pling is compared to a localization method using SIFT,

the database has a total of 195 locations. The indoor
arena used has a size of 4m×4m, the distance between
two nodes is 20cm (figure 3). The optimal sampling

is applied on raw images, two spatially close positions

generate two images which optimal sampling provides

very close decompositions. In order to test different sce-

narios, the content of acquired omnidirectional images



ref. w. noise occl.

SIFT 0.586 0.591 0.558
opt. sampling 0.758 0.781 0.746

Table 1. Indoor localization rates.

are modified in the three following manner. Virtual oc-

clusions are added (from 1 to 10 squares) at random po-
sitions, their individual size never exceeding 10% of the

size of the original image. White noise is added having

a uniform distribution between 0 and 255 concerning

10% of the maximum number of pixels.

Figure 3. Activity of the current position

compared to known locations.

The localization results are shown in Table 1 It inter-

esting to notice that the optimal sampling produces bet-

ter results than SIFT this due to two main reasons. The

first one is connected to the geometry of images, SIFT

can not extract reliable corner points due to the non lin-

ear resolution. The second reason is linked to the fact

that the optimal sampling uses the whole image to local-

ize, some indoor scenes do not contain sufficient corner

points, thus SIFT fails to extract sufficient features to

ensure localization. We have performed the same exper-

iments with a perspective cameras and the two methods

provided similar results due to the same reason. The

trajectory of the robot is shown in figure 4, it appears

that the robots succeds in locating itself within the scene

as both the estimated and ground truth trajectories are

close. The location is estimated using a weighted trian-

gulation of most active nodes and provides a mean error

of 9cm.

Figure 4. (a) Upper view of the arena

showing the estimated trajectory (white)
of the real tracked positions (black).

4 Objects recognition

The initial aim of the method being extracting fea-

tures for localization, we carried out in a second stage

preliminary experiments of the optimal sampling in the

context of object recognition. In order to recognize ob-

jects their must be a stabilty of decomposition so that

the object can be described in a unique manner. Exper-

iments are carried out using COIL-100. Each object is

characterized by 72 images, 8 are used for generating
codebooks corresponding to a sampling of 1/40 . The
codebook is generated using the selected images and is

set to a maximal size of 32 patches. Images were arti-

ficially corrupted, the recognition rate for each case is :

(a) objects where randomly translated within the image

:0.963, (b) white noise is added around objects up to 25
dilatations of the shape of the object :0.954, (c) the scale
of the objects is modified with a uniform probabilistic

distribution of scales between 0.3 and 1.9 of the original
size :0.853, (d) all corruptions simultaniously: 0.846.
These results are due to the fact that decomposition of

the objects is very stable, as shown in by figure 5, the

vocabulary associated with recognized patches is very

stable, even in case of severe corruption of the original

image. Objects that are poorly textured tend to produce

the worste results which is an expected result as the

description function is texture. We compared the op-

timal sampling to the methods described in [9, 11] and

SIFT. Results are presented in Table 2, they correspond

to the recognition rate per number of learned images

of each object, corresponding respectively to an image

each 20˚, 40˚ and 90˚. The optimal sampling used
several patch description, the best results were given by

color that achieves recognition rates very close to those

given by [9]. One major additional advantage is the



learning size 18 im. 8 im. 4 im.
LAFs [9] 0.999 0.994 0.947

SNoW/edges [11] 0.941 0.892 0.883

SIFT - 0.9656 -

opt. sampling - texture 0.991 0.953 0.833

opt. sampling - color 0.995 0.974 0.886

Table 2. Recognition rates on COIL-100.

memory load to store the extracted features to index the

database COIL-100, SIFT used 130Mb whereas the op-
timal sampling needed only 2Mb.

Figure 5. Rate of patch stability for each
object, for different image corruptions’.

5 Conclusion

This paper introduced a robust adaptive sampling

method to extract patches from perspective and omnidi-

rectional images. All the content of the images is used.

We have shown that the presented sampling performs

robust localization, which is the initial aim of the ap-

proach. Preliminary results showed that the technique

can be applied to object recognition, it provided similar

results to most used techniques with a very low memory

load. Current work is adding new strategies of sampling

using gradient information, to ensure a better stability

and extend the method to detect objects within unkown

scenes.
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