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Abstract. We present a neuromimetic navigation system modelling the colum-
nar structure of the cortex to mediate spatial learning and action planning. The
model has been validated on a spatial behavioural task, namely the Tolman &
Honzik’s detour protocol, which allowed us to test the ability of the system to
build a topological representation of the environment, and to use it to exhibit
flexible goal-directed behaviour (i.e., to predict the outcome of alternative trajec-
tories to avoid blocked pathways). First, it is shown that the model successfully
reproduces the navigation performance of rodents in terms of goal-directed path
selection. Second, we report on the neural response patterns characterising the
learnt columnar space representation.

1 Introduction
This paper presents a biomimetic model of action planning inspired by the columnar
organisation of the mammalian neocortex. Planning is defined here as the ability, given
a state space S and an action space A, to “mentally” explore the S × A space to infer
an appropriate sequence of actions leading to a goal state sg ∈ S. This definition calls
upon the capability of (i) predicting the consequences of actions, i.e. the most likely
state s′ ∈ S to be reached when an action a ∈ A is executed from a state s ∈ S,
(ii) evaluating the effectiveness of the selected plan on-line. The model generates a
topological representation of the environment, and it employs an activation-diffusion
mechanism to plan goal-directed trajectories. The activation-diffusion process is based
on the propagation of a reward-dependent activity signal from the goal state sg through
the entire topological network. This propagation process enables the system to generate
sequences of actions (i.e., trajectories) from the current state s towards sg .

Topological map learning and path planning have extensively been studied in biomi-
metic robotics [1]. We focus on models inspired by the anatomical organisation of the
cortex, and implementing an activation-diffusion planning principle. The existence of
cortical columns was first reported by Mountcastle [2], who observed vertical groups
of neurones responding to the same external stimuli simultaneously. Neuroanatomical
findings suggest that these “functional columns” can be further divided into several
“minicolumns”, i.e. vertical bundles of neurones across the layers of the cortex sepa-
rated from each other by a cell-poor area [3].
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Burnod [4] proposed one of the first models of the cortical column architecture,
called “cortical automaton”. He also described a “call tree” process that can be seen
as a neuromimetic implementation of the activation-diffusion principle. Several action
selection models were inspired by Burnod’s hypothesis. Some of these works employed
the cortical automaton concept explicitly [5–7]. Others used either more classical con-
nectionist architectures [8–10] or Markov decision processes [11]. Yet, none of these
works took into account the multilevel coding property offered by the possibility to
refine the cortical organisation by adding a sublevel to the column, i.e. the minicol-
umn. The topological representation presented here exploits this idea by associating the
columnar level to a compact representation of the environment, and by employing the
minicolumn level to characterise the agent’s behaviour.

In order to validate the preliminary version of the model, we have implemented it
on a simulated robot, and tested it on the classical navigation task designed by Tolman
& Honzik [12]. This protocol allowed us to assess the ability of the system to learn
topological representations, and to exploit them to perform flexible goal-directed be-
haviour (e.g., planning optimal detour trajectories). The Tolman & Honzik’s task is a
purely spatial navigation protocol. Our middle-term goal is to extend the cortical model
presented here to elaborate more abstract contextual representations. For example, be-
sides learning the spatial properties of the environment, the system shall be able to
encode multidimensional information, such as motivation-dependent memories, multi-
scale spatio-temporal correlates, and action cost/risk constraints.

2 Methods
2.1 Single neurone model

The elementary computational units of the model are artificial firing-rate neurones i,
whose mean discharge ri ∈ [0, 1] is given by:

ri(t) = f
(
Vi(t) · (1± ε)

)
(1)

where Vi(t) is the membrane potential at time t, f is the transfer function, and ε is a
random noise uniformly drawn from [0, 0.01]. The potential Vi varies according to:

τi ·
dVi(t)
dt

= −Vi(t) + Ii(t) (2)

where τi = 10 ms is the membrane time constant, and Ii(t) is the synaptic drive gener-
ated by all the afferent inputs at time t. Eq. 2 is integrated by using a time step ∆t = 1
ms. Both the synaptic drive Ii(t) and the transfer function f are characteristic of the
different types of model units, and they will be defined thereafter.

2.2 Encoding space and actions: the minicolumn and column model

The main inputs to the cortical model are the location- and orientation-selective activi-
ties of hippocampal place (HP) and head-direction cells, respectively [13, 14]. The HP
field representation is built incrementally as the animat explores the environment, and it
provides the system with a continuous distributed and redundant state representation S
[15, 16]. A major objective of the cortical model is to build a more compact state-action
representation S ×A suitable for topological map learning and action planning.
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Fig. 1. The cortical model and the activation-diffusion process. (A) The architecture of two col-
umn units c and c′. Columns are composed of sets of minicolumns (vertical grey regions), each
of which consists of a supragranular layer unit (SL) and an infragranular layer unit (IL). (B)
Top: back-propagation of the motivational signal through the network of SL neurones. Bottom:
forward-propagation of the goal-directed action signal through the IL neurones.

In the model, the basic component of the columnar organisation is the minicolumn
(vertical grey regions in Fig. 1). An unsupervised learning scheme (see Sec. 2.3) is
employed to make the activity of each minicolumn selective to a specific state-action
pair (s, a) ∈ S ×A. Notice that a given action a ∈ A represents the allocentric motion
direction of the animat when it performs the transition between two locations s, s′ ∈ S.
According to the learning algorithm, all the minicolumns selective for the same spatial
location s ∈ S are grouped to form a higher-level computational unit, i.e. the column
(see c and c′ in Fig. 1A). This architecture is inspired by biological data showing that
minicolumns inside a column have similar selectivity properties [17]. Thus, columns
consist of a set of minicolumns that are incrementally recruited to encode all the state-
action pairs (s, a1···N ) ∈ S × A experienced by the animat at a location s. During
planning (see Sec. 2.4), all the minicolumns of a column compete with each other to
locally infer the most appropriate goal-directed action.

Every minicolumn of the model consists of two computational units, representing
supragranular layer (SL) and infragranular layer (IL) neurones (Fig. 1A). The discharge
of SL and IL units simulates the mean firing activity of a population of cortical neu-
rones in layers II-III, and V-VI, respectively. Each minicolumn receives three different
sets of afferent projections (Fig. 1A): (i) Hippocampal inputs conveying space coding
activity converge onto IL neurones; these connections are plastic, and their synaptic
efficacy is determined by the weight distribution wp (all the synaptic weights of the
model are within the maximum range of [0, 1]). (ii) Collateral afferents from adjacent
cortical columns converge onto the SL and IL neurones via the projections wu and
wl, respectively. These lateral connections are learnt incrementally (see Sec. 2.3), and
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play a prominent role in both encoding the environment topology and implementing
the activation-diffusion planning mechanism. (iii) SL neurones receive projections wm

conveying motivation-dependent signals. As shown in Sec. 2.4, this input is employed
to relate the activity of a minicolumn to goal locations.

SL neurones discharge as a function of the motivational signals conveyed via both
wu and wm inputs. The synaptic drive Ii(t) depolarising a SL neurone i that belongs
to a column c is given by:

Ii(t) = max
i′∈c′ 6=c

{
wu

ii′ · ri′(t)
}

+ wm
i · rm (3)

where i′ indexes other SL neurones of the cortical network; wm
i and rm are the weight

and the intensity of the motivational signal, respectively. In the current version of the
model the motivational input is generated algorithmically, i.e. wm

i = 1 if column c is
associated to the goal location, wm

i = 0 otherwise, and the motivational signal rm = 1.
The membrane potential of unit i is then computed according to Eq. 2, and its firing rate
ri(t) is obtained by means of an identity transfer function f .

Within each minicolumn, SL neurones project onto IL units via non-plastic projec-
tions wc (Fig. 1A). Thus, IL neurones are driven by HP cells p (via the projections wp),
by IL neurones belonging to adjacent columns (via the collaterals wl), and by SL units
i (via wc). The synaptic drive of a IL neurone j ∈ c is:

Ij(t) = max
{ ∑

p∈HP

wp
jp · rp(t) , max

j′∈c′ 6=c

{
wl

jj′ · rj′(t)
}}

+ wc
ji · ri(t) (4)

where j′ indicates other IL neurones of the network;wc
ji = 1 if the SL neurone i and the

IL neurone j belong to the same minicolumn, wc
ji = 0 otherwise. Then, the membrane

potential Vj(t) is computed by Eq. 2, and a sigmoidal transfer function f is employed
to calculate rj(t). The parameters of the transfer function change online to adapt the
electroresponsiveness properties of IL neurones j to the strength of their inputs [18].

2.3 Unsupervised growing network scheme for topological map learning

The topological representation is built incrementally as the animat explores the envi-
ronment. At each location visited by the agent at time t the cortical network is updated
if-and-only-if the infragranular layers of all existing minicolumns remain silent, i.e.∑

j H(rj(t) − ρ) = 0, where j indexes all the IL neurones, H is the Heaviside func-
tion (i.e., H(x) = 1 if x ≥ 0, H(x) = 0 otherwise), and ρ = 0.1. If at time t the
novelty condition holds, a new group of minicolumns (i.e., a new column c) is recruited
to become selective to the new place. Then, all the simultaneously active place cells
p ∈ HP are connected to the new IL units j ∈ c. Weights wp

jp are initialised according
to: wp

jp = H(rp − ρ) · rp. For t′ > t, the synaptic strength of these connections is
changed by unsupervised Hebbian learning combined to a winner-take-all scheme. Let
c be the column selective for the position visited by the animat at time t′, i.e. let all the
j ∈ c be the most active IL units of the network at time t′. Then:

∆wp
jp = η · rp · (rj − wp

jp) (5)

with η = 0.005. Whenever a state transition occurs, the collateral projections wl and
wu are updated to relate the minicolumn activity to the state-action space S×A. For in-
stance, let columns c and c′ denote the animat position before and after a state transition,
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respectively (Fig. 1A). A minicolumn θ ∈ c becomes selective for the locomotion ori-
entation taken by the animat to perform the transition. A new set of projections wl

j′j are
then established from the IL unit j ∈ θ of column c to all the IL units j′ of the column c′.
In addition, at the supragranular level, a new set of connections wu

ii′ is learnt to connect
all the SL units of column c′, i.e. i′ ∈ c′, to the SL unit i of the minicolumn θ ∈ c. The
strengths of the lateral projections are initialised as: wl

j′j = wu
ii′ = βLT P , ∀i′, j′ ∈ c′,

with βLT P = 0.9. Finally, in order to adapt the topological representation online, a
synaptic potentiation-depression mechanism can modify the lateral projections wl and
wu. For example, if a new obstacle prevents the animat from achieving a previously
learnt transition from column c to c′ (i.e., if the activation of the IL unit j ∈ θ ∈ c is not
followed in the time by the activation of all IL units j′ ∈ c′), then a depression of the
wl

j′j synaptic efficacy occurs: ∆wl
j′j = −βLT D · wl

j′j , ∀j′ ∈ c′, where βLT D = 0.5.
The projections wu

ii′ are updated similarly. A compensatory potentiation mechanism re-
inforces both wl and wu connections whenever a previously experienced transition is
performed successfully:∆wl

j′j = βLT P −wl
j′j , ∀j′ ∈ c′. The weightswu

ii′ are updated
similarly. Notice that wl,wu ∈ [0, βLT P ].

2.4 Action planning

This model aims at developing a high-level controller determining the agent’s behaviour
based on action planning. Yet, a low-level reactive module enables the animat to avoid
obstacles. Whenever the proximity sensors detect an obstacle, the reactive module takes
control and prevents collisions. Also, the simulated animal behaves in order to either
follow planned pathways (i.e., exploitation) or improve the topological map (i.e., ex-
ploration). This exploitation-exploration tradeoff is governed by an ε-greedy selection
mechanism, with ε ∈ [0, 1] decreasing exponentially over time [16].

Fig. 1B shows an example of activation-diffusion process mediated by the columnar
network. During trajectory planning, the SL neurones of the column corresponding to
the goal location sg are activated via a motivational signal rm (see Eq. 3). Then, the
SL activity is back-propagated through the network by means of the lateral projections
wu (Fig. 1B, top). During planning, the responsiveness of IL neurones (Eq. 4) is de-
creased to detect coincident inputs. In particular, the occurrence of the SL input ri is a
necessary condition for a IL neurone j to fire. In the presence of the SL input ri, either
the hippocampal signal rp or the intercolumn signal r′j are sufficient to activate the IL
unit j. When the back-propagated goal signal reaches the minicolumns selective for the
current position s this coincidence event occurs, which triggers the forward propagation
of a goal-directed path signal through the projections wl (Fig. 1B, bottom).

Goal-directed trajectories are generated by reading out the successive activations
of IL neurones. Action selection calls upon a competition between the minicolumns
encoding the (s, a1···N ) ∈ S×A pairs, where s is the current location, and a1···N are the
transitions from s to adjacent positions s′. For sake of robustness, competition occurs
over a 10-timestep cycle. It is worth stressing that each SL synaptic relay attenuates the
goal signal by a factor wu

ii′ (Eq. 3). That is, the smaller the number of synaptic relays,
the stronger the goal signal received by the SL neurone corresponding to the current
location s. Because the model column receptive fields are distributed rather uniformly
over the environment, the intensity of the goal signal at a given location s is correlated
to the distance between s and the target position sg .
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Fig. 2. (A) Tolman & Honzik’s maze [12]. The gate near the second intersection allowed the rats
to go from left to right only. (B) The simulated maze and robot. The dimensions of the simulated
maze were taken so as to maintain the proportions of the real Tolman & Honzik’s experimental
setup. Bottom-left inset: the real e-puck mobile robot has a diameter of 70 mm and is 55 mm tall.

2.5 The behavioural task and the animat

In order to validate our navigation planning system, we chose the classical experimen-
tal task proposed by Tolman & Honzik [12]. The main objective of this behavioural
protocol was to demonstrate that rodents undergoing a navigation test are able to show
some “insights”, e.g. to predict the outcome of alternative trajectories leading to a goal
location in the presence of blocked pathways. The original Tolman & Honzik’s maze
is shown in Fig. 2A. It consisted of three narrow alleys of different lengths (Paths 1, 2,
and 3) guiding the animals from a starting position (bottom) to a feeder location (top).

We implemented our model by means of the Webots c© robotics simulation software.
Fig. 2B shows a simulated version of the Tolman & Honzik’s apparatus, and the simu-
lated robot. We emulated the experimental protocol designed by Tolman & Honzik to
assess the subjects’ navigation performance. The overall protocol consisted of a train-
ing period followed by a probe test. Both training and probe trials were stopped when
the subject had found the goal.
Training period: it lasted 14 days with 12 trials per day. The subjects could explore the
maze and learn a navigation policy by developing their preferences for P1, P2, and P3.

– During Day 1, a series of 3 forced runs was carried out, in which additional doors
were used to force the subjects to go successively through P1, P2, and P3. Then,
during the remaining 9 runs, all additional doors were removed, and the subjects
could explore the maze freely. At the end of the first training day, a preference for
P1 was expected to be already developed [12].

– From Day 2 to 14, a block was introduced at place A (Fig. 2B) to require a choice
between P2 and P3. In fact, additional doors were used to close the entrances to
P2 and P3 to force subjects to go first to the Block A. Then, doors were removed,
and subjects were forced to decide between P2 and P3 on their way back to the
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Fig. 3. Behavioural results. Top row: mean number of transits through P1, P2, and P3 (averaged
over 100 experiments). Bottom row: occupancy grid maps.

first intersection. Each day, there were 10 “Block at A” runs that were mixed with
2 non-successive free runs to maintain the preference for P1.

Probe test period: it lasted 1 day (Day 15), and it consisted of 7 runs during which a
block was placed at position B to interrupt the common section (Fig. 2B). The subjects
were forced to decide between P2 and P3 when returning to the first intersection point.

For these experiments, Tolman & Honzik used 10 male rats of mixed breed, from
5 to 8 months old, with no previous training. In our simulations, we used a population
of 100 animats, and we assessed the statistical significance of the results by means
of an ANOVA analysis (the significant threshold was set at 10−2, i.e. p < 0.01 was
considered significant).

3 Results
3.1 Behavioural analysis

Day 1. During the first 12 training trials, the animats learnt the maze topology, and
planned their trajectory in the absence of both block A and B (Fig. 2B). Similar to
Tolman & Honzik’s findings, our results show that the model learnt to select the shortest
pathway P1 significantly more frequently than the alternative paths P2, P3 (ANOVA,
F2,297 = 168.249, p < 0.0001). The quantitative and qualitative analyses reported on
Fig. 3 (left) describe the path selection performance averaged over 100 experiments.

Days 2-14. During this training phase (consisting of 156 trials), a block was in-
troduced at location A (Fig. 2B), which forced the animats to update their topological
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maps dynamically, and to plan a detour to the goal. The results reported by Tolman &
Honzik provided strong evidence for a preference for the shortest detour path P2. Con-
sistently, in our simulations (Fig. 3, centre) we observed a significantly larger number
of transits through P2 compared to P3 (ANOVA, F1,198 = 383.068 p < 0.0001), P1
being ignored in this analysis (similar to Tolman & Honzik’s analysis) because blocked.

Day 15. In agreement with Tolman & Honzik’s protocol, seven probe trials were
performed during the 15th day of the simulated protocol, by removing the block A
and adding a new block B (Fig. 2B). This manipulation aimed at testing the “insight”
working hypothesis: after a first run through the shortest path P1 and after having en-
countered the unexpected block B, will rats try P2 or will they go directly through P3?
According to Tolman & Honzik’s results, the rats behaved as predicted by the insight
hypothesis, i.e. they tended to select the longer but effective P3. The authors concluded
that rats were able to inhibit the previously learnt policy (i.e., the “habit behaviour” con-
sisting of selecting P2 after a failure of P1 during the 156 previous trials). Our probe
test results are shown in Fig. 3 (right). Similar to rats, the animats exhibited a significant
preference for P3 compared to P2 (ANOVA, F1,198 = 130.15, p < 0.0001). Finally, in
order to further assess the mean performance of the system during the probe trials, we
compared the action selection policy of learning animats with that of randomly behav-
ing (theoretical) animats. Fig. 4A provides the results of this comparison by showing
the error distribution over the population of learning agents (black histogram) and ran-
domly behaving agents (grey curve). The number of errors per individual are displayed
in the boxplot of Fig. 4B. These findings indicate a significantly better performance of
learning animats compared to random agents (ANOVA, F1,196 = 7.4432, p < 0.01).

3.2 Analysis of neural activities

A series of additional analyses were done to begin to characterise the underlying pro-
cesses (e.g., neural activities) subserving the action selection behaviour of the model.
We measured the mean spatial density of the receptive fields of HP cells and cortical
column units of the model. We recall that one of the aim of our cortical column model
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was to build a less redundant state-space representation, compared to the HP field rep-
resentation. Fig. 5A shows that the cortical network permitted to reduce the redundancy
of the learnt spatial map significantly, compared to the upstream hippocampal space
code (ANOVA, F1,316 = 739.2, p < 0.0001). Finally, Fig. 5B displays some samples
of cortical column receptive fields of the model.

4 Discussion
We presented a navigation model based on the columnar organisation of the mammalian
cortex. It builds a topological map of the environment incrementally, and it uses it to
plan an efficient course of actions leading to a goal location. The model was success-
fully employed to solve the classical Tolman & Honzik’s behavioural task [12]. As
aforementioned, other models have been proposed to solve goal-directed navigation
tasks. They are mainly based on the properties of hippocampal (e.g., Samsonovich and
Ascoli 2005, [19]), and prefrontal cortex (e.g., Hasselmo 2005, [7]) neural assemblies.
However, most of these models do not perform action planning as defined in this pa-
per (see Sec. 1). Samsonovich and Ascoli [19] rather implements a local path finding
mechanism to select the most suitable orientation leading to the goal. Similarly, Has-
selmo’s model [7] do not plan a sequence of actions from the current location s to the
goal sg but only infers the first local action to be taken, based upon a back-propagated
goal signal. Yet, these two models rely on discretized state spaces (where predefined
grid units code for places), whereas our model uses a distributed population of HP cells
providing a continuous representation of the environment [16]. Also, our model learns
topological maps coding for the state-action space S ×A simultaneously. In the model
by Samsonovich and Ascoli (2005) no topological information is represented, but only
a distance measure between each visited place and a set of potential goals. Likewise,
in Hasselmo’s model states and actions are not jointly represented, which generates a
route-based rather than a map-based navigation system [20].

The preliminary version of the model enabled us to investigate some basic compu-
tational properties, such as the ability of the columnar organisation to learn a compact
state-space representation encoding topological information, and the efficiency of the
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activation-diffusion planning mechanism. Further efforts will be put to extend the cur-
rent model to integrate multiple sources of information. For example, the animat should
be able to learn maps that encode all the reward (subjective) values, and action-cost con-
straints. Also, these maps should be suitable to represent multiple spatio-temporal scales
to overcome the intrinsic limitation of the activation-diffusion mechanism in large scale
environments. Additionally, these multiscale maps should allow the model to infer high-
level shortcuts to bypass the low-level constraints of the environment.

To conclude, although the model has been based upon biological knowledge, some
of our working hypotheses are still under debate. First, the existence of cortical columns
has been questioned recently [21]. Second, the hippocampus has also been proposed as
a likely brain structure encoding topological maps [22]. Yet, the HP cell representa-
tion seems too redundant and distributed to constitute a suitable substrate for compact
topological map learning [23]. Also, the evidence for high-level spatial representations
mediated by neocortical areas (such as the prefrontal cortex, PFC [24]) corroborates
the hypothesis of an action planning processing shared among multiple cortical regions
[25]. In particular, several experimental observations [24, 26] point towards a role of the
PFC in abstract map building and action selection.
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