
ADAPTIVE MOTIVATION IN A BIOMIMETIC ACTION SELECTION
MECHANISM

A. Coninx,1,2∗ A. Guillot,2 B. Girard1

1 – Laboratoire de Physiologie de la Perception et de l’Action 2 – Institut des Systèmes Intelligents et de Robotique
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ABSTRACT
In this paper, we extend a basal ganglia action selection
model with an adaptive motivational system. We evaluate
the resulting model in a minimal survival task, where the
adaptive motivational system is used to take the resource
density in the environment into account. We show that the
model exhibits an increased decisional autonomy, which al-
lows the robot to behave more economically when possible,
without jeopardizing its survival chances. We discuss the
effect of motivational adaptation on the robot’s behaviour
in various initial conditions, and find that prior adaptation
strongly affects selection between two unequally abundant
resources. Finally, we propose hypotheses on the neurobi-
ological mechanisms of motivational adaptation.
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1 Introduction

Action selection can be defined as the resolution of con-
flicts between functional units competing to access mo-
tor resources. It is a classical problem for both computa-
tional neuroscience and autonomous robotics, and includes
an evaluation component (how to learn the actions’ rela-
tive priorities) and a selection component (how to solve the
conflict between the concurrent actions). Neuroscientists
have shown natural action selection to be strongly related to
the basal ganglia (BG) [1], and many neurocomputational
models deal with either the evaluation aspect of action se-
lection, using reinforcement learning (RL) algorithms [2],
or the selection aspect [3].

A way to evaluate the relevance of those models is to
enclose them into a sensorimotor loop by a simulated or
robotic embodiment, and to measure their efficiency while
solving a given task. In this study, we address the ques-
tion of the adaptation of the motivational processes during
selection, according to the environmental conditions. Our
purpose is to allow the agent to efficiently adapt its be-
haviour in situations where the task is the same (and the
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efficient action sequences are hence identical) but the envi-
ronment is different, e.g., various resource densities.

We use the basal ganglia action selection model pro-
posed in [4] (CBG model), and extend it by adding mo-
tivational adaptation capabilities. A recent work from
Konidariset al. [5] contains an interesting proposal for an
adaptive motivational system, but does not use such a neu-
romimetic action selection model. It learns a policy by a
RL system whose reward value is generated from the sa-
tiation levels of resources using Hullian drives. A prior-
ity parameter is computed so as to reflect the agent’s long-
term beliefs about his environment, and biases each drive’s
reward generation process so that a resource perceived as
“rare” will also be perceived as more rewarding. The task
used to test this model differs from the one used to evaluate
the CBG model. We thus adapt this proposal to the CBG
model: we use a similar priority parameter to bias the selec-
tion process, without modifying the underlying behavioural
rules.

This paper first presents the motivational adaptation
model, studies its performance and benefits, and discusses
its possible neurobiological substrates.

2 Material and methods

2.1 Action selection model

The CBG model, proposed in [4], is a neurocomputational
basal ganglia action selection model. It closely follows the
recent neuroscientific research on the anatomy and connec-
tivity of the dorsal circuits of the basal ganglia, and has
been shown to perform efficient action selection. Like the
older GPR model [6, 7], on which it is based, the CBG
model selects an action within a repertoire by disinhibit-
ing it (see Fig. 1). It is made of a number of channels in
competition, each of them being associated to an action.
The inputs of these channels are numerical values called
saliences, which model a cortical input representing the
agent’s propensity to execute the associated action. The
channels’ inhibitory output, which represent projectionsto
the brainstem motor centers, is tonically active except in the
selected action’s channel : the selected action is therefore
disinhibited.
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Figure 1: The CBG model, modified to take adaptive motivational modulation into account. Three competing channels are shown. For better
readability, only the projections from the second channel are represented, but similar projections exist for all channels. Black arrows are
inhibitory projections, white arrows are excitatory projections. TH : thalamus. TRN : thalamic reticular nucleus. FC :frontal cortex. Str
: striatum. D1 Str, D2 Str and FS (fast-spiking) : various cell populations within the striatum. STN : subthalamic nucleus. GPe : external
globus pallidus. GPi : internal globus pallidus. SNr : substantia nigra pars reticulata. Motivational modulation is applied to the cortical input
s (which represents sensory and inner state information) in the cortico-striatal synapses. See [4] for a comprehensive description of the CBG
model.

The input saliences are computed in the following
way :

saliencei = wi × f(si) + pi (1)

The parameters are defined as follows :

• wi is a weight, which defines action’si priority with
regard to the others. For example, the saliences for
consumptive actions must be greater than those for ap-
petitive actions in order to take precedence over them.
These weights’ values were hand-tuned in the present
work, but previous research has shown that they could
be efficiently learnt by a RL system [8].

• si is a product of thesensory and inner state vari-
ables (such as satiation levels) relevant for actioni.
For example, an energy-seeking behaviour must not
be activated if the energy need is fully satiated.

• f is a sigmoid transfer function.

• pi denotes apersistance term, a positive feedback
provided by the CBG, which can be used to give a
bonus to the salience of the currently selected action.

Konidaris [5] uses a family of nonlinear transfer func-
tionsg parametrized by aρ value as shown in Fig. 2. These
functions replace thef transfer function in our salience
computation and allow to influence each drive’s motiva-
tional weight by varying theρ parameter. By having the
robot learnρi values adapted to its environment, we can
then make its motivational system adaptive.
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Figure 2: Transfer functions proposed by Konidaris, adapted to

the CBG model.g(si, ρi) = 1 − (1 − si)
tan

ρiπ

2 , wheresi is the
sensory and inner state input value related to actioni. For ρi =
0.5, the function is linear (no bias). Forρi > 0.5, the motivational
drive is overstressed (the related sensory and inner state input is
given more importance). Forρi < 0.5, it is understressed.

2.2 Survival task

The CBG model, as well as the older GPR model [6, 7],
have already been evaluated in a simulated robotic task,
which has been designed as a minimal survival task to eval-
uate action selection mechanisms. We used the same task
to evaluate our model. In this task, a simulated robot has an
artificial metabolism based on two inner variables, Energy
(E) and Potential Energy (Ep), taking values between 0
and 1. In order to succeed, the robot has to regularly reload



Ep and then transform it into usableE. (See Fig. 3)

• E decreases at a rate of 0.007 unit per second. If it
reaches 0, the trial is stopped. In order to prevent that,
the robot must activate theReloadE behaviour on an
Energy resource. This transformsEp into E at a rate
of 0.2 unit per second.

• Ep only decreases during the above-mentioned trans-
formation process, and can be reloaded at a rate of 0.2
unit per second by activating theReloadEp behaviour
on a Potential Energy resource.
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Figure 3: Structure of the survival task. In order to keep itsE level
above 0 and to survive, the robot must 1) reach aEp resource ; 2)
reloadEp ; 3) reach aE resource ; and 4) transformEp into E.

The robot must alternate between locations contain-
ing the two different types of resources. Its action selection
system uses a repertoire of 8 atomic actions:

• WanderEp and ApproachEp are appetitive actions
used to reachEp resources.WanderEp is a random
exploration behaviour used to discoverEp resources,
andApproachEp is a visual approach behaviour acti-
vated when anEp resource is in sight.

• WanderE andApproachE are similar actions used to
reachE resources. Note thatWanderEp andWanderE
activate the same random exploration behaviour but
are different actions for the action selection system
since they are not directed to the same goal.

• ReloadEp andReloadE are the above-described con-
sumptive actions.

• AvoidObstacle activates a simple obstacle avoidance
behaviour.

• Sleep halves the energy consumption rate (0.0035 unit
per second), but stops the agent, which prevents it
from gathering resources. It must therefore be acti-
vated only when bothE andEp are satiated.

The experiments were conducted using the
Player/Stage simulation software [9]. The environ-
ment was a15 × 15 m square arena containing one
or four resources of each type depending on the tested
condition (Fig. 4). Those resources are neither destroyed
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Figure 4: Simulated environment in the (4E, 1 Ep) condition.
(See 2.2 for a detailed explanation.)

nor depleted by the consumptive actions. The simulated
robot and its sensorimotor abilities are the same as in [4].

The basic principle of our adaptive motivational sys-
tem is to modify the sensibility of salience computations
with regard to the agent’s belief about the resource den-
sity in the environment. This belief is encoded in therhoi

parameters, whose modification affects the shape of theg

functions. In his experiment [5], Konidaris uses the two
resources problem [10] : the agent needs two independant
resources, which are available as randomly placed lumps
that must be gathered and consumed. In this task, he com-
putes the ratio of the number of consumptive acts of the
two resources to learn theρi parameters. Our task is sig-
nificantly different, first because the two resources are cou-
pled by the simulated metabolism, and second because they
are available in unlimited supply at fixed locations. A robot
surviving in this task necessarily alternates between the two
resources, and thus has a ratio of the two resources’ num-
ber of consumptive acts close to1. Consequently, this ratio
is not a relevant indicator in our task.

We propose using visual input to assess each re-
source’s rarity. On each period of 25 seconds, we count
the number of times each type of resource appears in its
field of view. A moving average of the last counts is then
used as a measure of the availability of each resourceaEp

andaE .
We use as a reference condition environments with

one of each resource (1E, 1Ep). In this condition, we tune
the initial value of theρi parameters so as to ensure good
survival performances and we associate them to the mea-
suredaEp

andaE values. The adaptive motivation mecha-
nism then adjusts theρi parameters depending on the vari-
ations ofaEp

andaE :

• The appetitive actions’ρ parameters (ρWanderE,
ρApproachE, ρWanderEpandρApproachEp) linearly decrease
with the availability of their related resource: these



behaviours must be overstressed when that resource is
scarce and are less critical when it is abundant.

• The consumptive actions’ρ parameters (ρReloadEand
ρReloadEp) do not change, because in this task the
reloading actions operate relatively fast, so that there
is no point in interrupting an ongoing reload.

• ρAvoidObstacledoes not change either since theAvoidOb-
stacle behaviour has no link with resources gathering.

• ρSleep linearly grows with bothaEp
and aE : the

Sleep behaviour can be activated longer without dan-
ger when the resources are abundant, but must be
avoided otherwise.

The agent therefore continuously ajusts its beliefs
about the resource density and consequently adapts its be-
haviour.

Three resources repartitions were tested : (1E, 1Ep),
(1 E, 4 Ep), and (4E, 1 Ep) (Fig. 4). For each condition,
50 different environments were generated (with random re-
sources placement), and the robotic task was run in each en-
vironment twice, with and without the motivational adap-
tation. Each trial was stopped when the robot ran out of en-
ergy (E = 0), or after 30 minutes (and the survival trial was
then considered as successful). The simulated robot starts
each trial with an empty potential energy reserve (Ep = 0)
and a full energy reserve (E = 1), which allows to survive
for 2 minutes and 23 seconds if not reloaded.

Moreover, in order to evaluate the behavioural con-
sequences of the motivational adaptation, we tested the
robot’s choices when faced to two equally distant resources
(Fig. 5), after having been exposed to the various resource
settings, and when varying the internal state.

Ep resource

E resource

Robot position

Figure 5: Simulated environment for the behavioural choicetests.
The robot can see both resources and reach any of them. Trials
were run for various initialE andEp levels (see Fig. 6 for results).

3 Results

We found out that motivational adaptation does not mod-
ify the agent’s survival performances, but changes its be-
haviour and makes it more economical. The first general

result is that, in all resource settings, the number of success-
ful runs is quite similar when comparing the system with
and without adaptation (Table. 1). Moreover, the distribu-
tion of survival durations for the unsuccessful runs were
compared with and without adaptation, for each resource
settings, using the Kolmogorov-Smirnov (KS) test. They
are not significantly different.

The stability of the adaptation algorithm is assessed
by the facts that in the reference (1E, 1 Ep) condition,
aEp

andaE remain very close to their initial values, the
behavioural allocation is similar to the one without adap-
tation and finally, the distributions of the survival times
and energy consumption rates (see Table. 1) are not sig-
nificantly different (KS test,DKS = 0.11, p = 0.97 and
DKS = 0.12, p = 0.84 respectively).

In an environment with an increasedE resources den-
sity, the Sleep action is used much more often with the
adaptive system than without, as the increase in global re-
source density is taken into account. For example in the
(4 E, 1 Ep) setting,Sleep is activated50.0% of the time
with adaptation vs.17.4% without. This results in a signif-
icantly lower energy consumption (see Table. 1): the two-
tailed KS shows that energy consumptions with and with-
out motivational adaptation are drawn from significantly
different distributions (DKS = 0.86, p < 0.001). The be-
havioural test shows that after adaptation to this environ-
ment, the robot preferentially approaches the less abundant
Ep (compare Fig. 6a and Fig. 6b).
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Figure 6: Resource chosen in the behavioural choice task, depend-
ing on the initialE (horizontal) andEp (vertical) levels. Note the
shift of the choice boundary towards the less abundant resource.

Surprisingly, in the highEp density environments,
Sleep activation is not significantly modified by the adap-
tive system:31.5% of the time vs. 28.7% without adap-
tation. Energy consumption (see Table. 1) is thus not af-
fected; the KS test shows no significant difference (DKS =
0.2, p = 0.24), despite a behavioural modification driving
the robot towardsE resources in the choice test as shown
by Fig. 6c. This is caused by the specific chaining of the
two resources in the artificial metabolism of this task. The
robot can afford sleeping only when bothE and Ep are
high, and this can only happens when it just finished reload-
ing Ep (after reloadingE, theEp level is always low, asEp

has been consumed in the process). In the highEp density



environments, theρSleep increase, caused by the global re-
source density increase, is not sufficient to generate longer
Sleep bouts, becauseSleep is then in competition withWan-
derE or ApproachE, whoseρ is also high. Nevertheless, the
behaviour of the robot is affected by the resource imbal-
ance, as it preferentially approaches theE resource (com-
pare Fig. 6a and Fig. 6c).

Resources Model < Tsurvival > < CEp
> nsurvival

(1 E, 1 Ep) NA 926.5 0.0062 11/50
A 1092.0 0.0062 18/50

(4 E, 1 Ep) NA 1591.4 0.0060 37/50
A 1504.4 0.0050 33/50

(1 E, 4 Ep) NA 1559.5 0.0057 34/50
A 1386.4 0.0056 29/50

Table 1: Survival time< Tsurvival > (in seconds); average energy
consumption< CEp > (in Ep/s) and number of successful tri-
als (where the simulated robot survived for 30 minutes) in each
resources conditions. NA: no adaptation; A: adaptation.

4 Discussion & Conclusion

We presented an adaptive motivational mecanism added to
an existing neuromimetic action selection model, so as to
take into account the variations of the availability of re-
sources in the environment. It affects the behavioural se-
lection as expected and allows economical use of energy
when possible, which would be of great interest in an envi-
ronment with limited resources.

This adaptive mecanism is a purely algorithmic and
has not been matched with the operation of any brain re-
gion. We suggest that the involvement of the ventral basal
ganglia circuits, especially the one including the nucleus
acumbens shell [11], in the incentive salience processes
[12], makes it a possible substrate of this adaptive process.
This circuit is in position to modulate the selection in the
dorsal BG circuits – those which are simulated in the CBG
model – especially through its dopaminergic projections,
which are precisely supposed to affect motor and arousal
processes [13]. In a future work, we thus plan to improve
the neuroinsipration of our system by using a shell circuit
model developed within the ICEA consortium, projecting
to our dorsal basal ganglia model.
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