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Slow-wave sleep (SWS) is important for memory consolidation. During sleep, neural patterns reflecting previously acquired

information are replayed. One possible reason for this is that such replay exchanges information between hippocampus and

neocortex, supporting consolidation. We recorded neuron ensembles in the rat medial prefrontal cortex (mPFC) to study

memory trace reactivation during SWS following learning and execution of cross-modal strategy shifts. In general, reactivation

of learning-related patterns occurred in distinct, highly synchronized transient bouts, mostly simultaneous with hippocampal

sharp wave/ripple complexes (SPWRs), when hippocampal ensemble reactivation and cortico-hippocampal interaction is

enhanced. During sleep following learning of a new rule, mPFC neural patterns that appeared during response selection

replayed prominently, coincident with hippocampal SPWRs. This was learning dependent, as the patterns appeared only

after rule acquisition. Therefore, learning, or the resulting reliable reward, influenced which patterns were most strongly

encoded and successively reactivated in the hippocampal/prefrontal network.

The acquisition of labile new memories can trigger processes spanning
from molecular1 to system-wide levels, gradually transforming and
stabilizing memory traces. The system consolidation theory views the
interaction between hippocampus and neocortex as being instrumental
for this2–4. Although the hippocampus is vital in the initial acquisition
and early storage of memories, the cerebral cortex, among other
structures, is important later on5. The exchange between a fast-learning
module (the hippocampus) and a slower one (the neocortex) would
take place mainly after memory acquisition, allowing one-shot acquisi-
tion of new items without losses of older memories because of
interference2,3. A further role of slow consolidation following acquisi-
tion would be to reorganize memories into more semanticized, de-
contextualized representations6–8.

A role for SWS in such an exchange3,5,9–11 would be to replay the
neural patterns concerning previously acquired information12–18. Such
sleep replay would then instill a change in the neural substrate of
memory traces and ultimately favor memory consolidation. During
sleep, the hippocampus and the neocortex engage in a dialog that
involves and affects the dynamical states of both19–23. Hippocampal
SPWRs are likely vectors for hippocampal-neocortical information
exchange24; SPWRs25 are brief (B50–150 ms), large bursts of hippo-
campal activity that are mostly observed during SWS or immobility
and correspond to increased hippocampal memory reactivation14.
During SWS, neocortical activity shows periods of large, synchronous
oscillations (0.1–4 Hz) of membrane potentials and neural firing26, and
these are correlated with SPWRs19–21. Slow oscillations were recently
found to coordinate episodes of visual cortical and hippocampal

reactivation16, but the precise temporal relationship between cortical
and hippocampal replay remains unknown.

The PFC is often implicated in long-term memory consolidation27,
particularly for hippocampally dependent spatial and contextual infor-
mation. Indeed, the PFC shows detailed, time-compressed replay
following initial acquisition of memory-related sequences of neural
ensemble activation in rats17 and increased coordination with the
hippocampus during retrieval of sleep-consolidated memories in
humans28. The PFC is one of the neocortical areas most closely
associated with the hippocampus, both anatomically and physio-
logically, as it has a unique afferent pathway from the hippocampus29

that is endowed with synaptic plasticity30. Some functional imaging
and immediate early gene expression data support the idea that the
hippocampus activity contributions decrease over time during con-
solidation, with an opposite, increasing trend being observed
for the PFC27,28,31. However, the concerted function of PFC and
hippocampus is also necessary for memory maintenance during
task performance32,33.

Although the behavioral electrophysiology literature provides
numerous examples of memory replay12,14–18, the animals in these
studies were over-trained and little learning actually took place, or no
specific analysis of the evolution of replay with task performance was
attempted13. Our goal was to investigate memory reactivation and
hippocampal-neocortical interactions while new task-relevant infor-
mation was actually being acquired to better characterize the link
between learning and memory replay processes. Moreover, we focused
on subsecond resolution of the time course of memory replay to
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study precise correlations between replay events and large-scale syn-
chronization phenomena during SWS, such as SPWRs and slow
oscillations. Learning-related changes in neural activity over brief
time scales have been described in both the prefrontal cortex34,35 and
hippocampus, but the effects of these changes on subsequent sleep
activity has not yet been studied. We recorded neural activity in the
PFC and the hippocampus in rats during a cross-modal rule shift task
(known to implicate the medial PFC36), which allowed us to introduce
novel elements in the form of new rules while leaving the perceptual
aspects of the task unchanged.

RESULTS

mPFC ensemble activity patterns during a rule shift task

We used multiple tetrodes to record ensembles of medial PFC (see
Online Methods and Supplementary Fig. 1 online) neurons together
with mPFC and hippocampal local field potentials (LFPs) in rats. The
animals performed a task in a Y maze (Supplementary Fig. 2 online),
in which they had to learn to select the rewarded arm using one of
four possible rules (left arm, right arm, illuminated arm and non-
illuminated arm; during each trial, one target arm was illuminated at
random). This period will be referred to as the awake epoch. Neural
activity was also monitored during rest periods immediately before and
after the awake epoch (pre and post epochs). As soon as the rat
achieved criterion performance (see Methods) according to the current
rule, the rule was changed without any additional cue and the rat had to
again infer the new rule from the pattern of rewarded and nonrewarded
arms. Because no pre-training was performed before the electro-
physiological recordings, during the experiments the rats encountered
rules to which they had never been exposed before.

We recorded 1,692 cells in the mPFC (Supplementary Fig. 1)
from four rats during a total of 63 recording sessions (rat 15, 16; rat

18, 11; rat 19, 12; rat 20, 24). Only sessions with a minimum of ten
cells and at least 4 min of SWS in each rest epoch were analyzed.
Cells in the mPFC had diverse behavioral correlates, corresponding
to one or more task phases, and responses in some neurons
dynamically adapted as the rat acquired the current task rule
(Battaglia et al., Soc. Neurosci. Abstr. 573.13, 2006). We used
principal component analysis to extract the neural patterns char-
acteristic of the awake epoch (high-rank principal components,
associated with larger eigenvalues or encoding strengths will be
referred to as signal components, whereas lower-rank, nonsignal
components mostly reflect noise; see Online Methods and Supple-
mentary Fig. 3 online).

Signal components identified neuronal assemblies with reliable and
consistent responses in the task. For example, they assigned same-signed
weights to cells with similar behavioral correlates and opposite-signed
weights to cells with complementary correlates (Fig. 1a and Supple-
mentary Fig. 4 online). On the basis of the eigenvalues associated with
the principal components and on a threshold value computed from the
null hypothesis of random, uncorrelated spike trains, we could typically
discriminate 1–6 signal components (and occasionally more) in each
session (Fig. 1b). The patterns of activity detected by principal compo-
nents were correlated with behavior; in an example session, the first
principal component showed a positive peak activation right after trial
onset (Fig. 1c), principal component 2 peaked later in the trial and
principal component 3 peaked even later on. Moreover, principal
components 1 and 2 increased their scores, whereas principal component
3 decreased its score as the rat abandoned the strategy of always going to
the right arm across trials (Fig. 1c) and instead chose, with a great
probability, to alternate between the two target arms. Thus, principal
components 1, 2 and 3 extracted patterns of activity that correlated both
with trial phase and, at a greater time scale, with the strategy that the rat
followed in a block of trials.

Transient synchronized replay of awake patterns

To assess the nature and extent of the interaction between prefrontal
cortex and hippocampus in memory replay, we characterized the
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Figure 1 Signal components and their behavioral correlates. (a) Peri-event

time histograms of all cells from a recording session, aligned with trial

initiation (vertical dashed line). Cells are sorted by their weight in the first

signal component (scale above); cells with similar weights tended to have

similar behavioral correlates and cells with oppositely signed large weights

had complementary behavioral correlates. PC, principal component.

(b) Awake epoch correlation matrix eigenvalues from the same session as is

shown in Figures 2a and 3a. The dotted line represents the signal threshold
(lmax), defined as the theoretical upper bound for eigenvalues in the case

of random spike trains (see Online Methods). Filled squares indicate

eigenvalues associated with the six (suprathreshold) signal components.

Hollow squares represent nonsignal components. (c) Trial-by-trial time

scores of the first three principal components during the awake epoch,

plotted as a function of the linearized position of the rat on the maze.

The right panels summarize the rat behavior. The beige background indicates

trials in which the rat reliably chose the right arm, and the blue background

indicates trials in which the rat basically alternated between the two arms

(with no other discriminable strategy). The black dots in the first column

(Arm) denote trials in which the rat chose the left arm. The black dots in

the second column (Correct) indicate rewarded trials (here the lit arm was

rewarded and neither strategy was successful). Note that principal

component scores are shown instead of reactivation strength (see below)

because in this case the sign is important, as large positive principal

component scores denote activation of those cells with positive

principal component weights (see Fig. 2a) and large negative principal

component scores denote activation of those cells with negative

principal component weights.
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detailed time course of replay during rest episodes. For this, we
computed the instantaneous reactivation strength (see Methods) of
the signal components computed from the awake epoch. At each
moment (with a resolution of 100 ms, unless otherwise specified),
reactivation strength assesses the similarity between reference awake
signal components and the rest period neural activity.

During post epoch SWS, signal components reappeared more
frequently and strongly than in the pre epoch (for example, Fig. 2a),
confirming that experience-related patterns are reactivated in mPFC17

in ensuing sleep. No such effects were observed in the rest periods that
were not classified as SWS (as shown in Supplementary Fig. 5 online);
therefore, further analyses were restricted to SWS. Pre and post epochs
SWS did not differ in terms of the average duration of the sleep
episodes, average population firing rates, rates of occurrence of delta
waves and SPWRs, and local field potential power in the delta and
spindle ranges (Supplementary Fig. 6 online). The average reactivation
strength was greater during post epoch SWS than pre epoch SWS for
signal components (Po 0.005 all comparisons, n¼ 10, 40 and 273 for

the three signal groups observed here, sorted according to their
encoding strength, n ¼ 811 for nonsignal components; Fig. 2b,c).
Reactivation strength correlated positively with encoding strength
(r2 ¼ 0.61, P o 10�30, Pearson correlation test, n ¼ 323; Fig. 2b and
Supplementary Fig. 7 online). Thus, the patterns that were most active
in the mPFC during the awake epoch were preferentially reactivated
during the following SWS, similarly to previous observations in the
hippocampus18. During pre SWS, this relationship was significantly
weaker with respect to slope (P o 10�20, n ¼ 323) and correlation
(P o 10�5, n ¼ 323; Supplementary Fig. 7). These observations were
not likely to erroneously result from potentially faulty spike sorting, as
they persisted when cell pairs discriminated from the same tetrode were
ignored. Moreover, cell pairs from the same tetrodes, when considered
alone, showed no replay effect, so that virtually all contributions to the
replay results came from the correlations between neurons recorded
with different tetrodes (Supplementary Fig. 8 online).

Notably, replay occurred in distinct events of strong signal reactiva-
tion in post epoch SWS (Fig. 2a), denoting synchronous transient
activation of the cell assemblies identified by the signal components.
Histograms of the reactivation strengths for post epoch SWS were
heavy tailed (Fig. 2d), with the tail constituting the main difference
with pre epoch SWS (Fig. 2d), whereas the bulk of the distribution was
similar in the pre and post epochs. The difference in tail weight was
reflected in the significant difference between the post and pre epochs
in the skewness of the signal reactivation–strength histograms (P o
0.05, t test, n ¼ 10–40), most markedly for patterns with higher
encoding strengths (Fig. 2e). The peaks in reactivation strength
correspond to the transient, coordinated activation of the cells that
are assigned a large weight in the relative principal component
(Supplementary Fig. 9 online). Those cells provide the greatest
contribution to the total reactivation strength. Different principal
components recruit different, rarely overlapping sets of neurons with
high-weight strengths. During sleep, reactivation strengths for simul-
taneously recorded principal components tended not to peak at the
same times; instead, concomitant activation of different principal
component–related patterns was less than expected by chance, as can
be inferred from the zero lag trough in their cross-correlograms
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Figure 2 Time course of memory replay. (a) Reactivation strength (black and

white traces; right axes) of the signal component during sleep pre (left) and

post (right) epochs superimposed on the mPFC LFP spectrogram (left axes).

White traces indicate SWS periods and black traces indicate non-SWS. The

spectrogram shows periods of elevated slow/delta and spindle oscillations

often coinciding with SWS. Reactivation strengths show high peaks during

post epoch SWS, usually concomitant with periods of strong oscillations.

(b) Bar plot of the epoch-wide average reactivation strengths, grouped by
their encoding strength (normalized eigenvalue), F ¼ l/lmax, for the pre and

post epochs (data from 63 sessions and 1,692 recorded cells). Error bars

indicate s.e.m. (c) Average difference in reactivation strength between pre

and post epochs for principal components grouped by their encoding

strengths. Error bars indicate s.d. (d) Incidence of reactivation strengths

during rest periods (left, pre; right, post) for the same session as in a (also

shown in Fig. 3a). Black filled zones indicate SWS periods and the gray trace

indicates non-SWS. The post epoch SWS histogram has a heavy tail,

reflecting strong transient reactivation events. (e) Average difference between

the skewness of post and pre epoch reactivation strength incidence histogram

(Fig. 3c) for components grouped by their encoding strength; post epoch

histograms were generally more skewed than pre epoch ones. Error bars

represent s.e.m. (f) Cumulative contribution to the difference between total

reactivation strength in post and pre epochs for signal components (black,

grouped by encoding strength) and for nonsignal components (gray). Red

diamonds indicate the 99th percentile of reactivation strength distribution

(in post). About half of the reactivation was accounted for by reactivation

strengths over the 99th percentile.
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(Supplementary Figs. 9 and 10 online). Shuffled controls showed that
this cannot be explained by global fluctuations in the population firing
rate alone (Supplementary Fig. 11 online).

To assess the prevalence of the strongest transient cell assembly
activations, we computed the cumulative contribution to the epoch-
wide reactivation of events with reactivation strengths up to certain
values for post epoch SWS and subtracted the same measure for pre
epoch SWS. This cumulative contribution (Fig. 2f) increased steadily
over two orders of magnitude, and 40–50% of the net reactivation
(difference between post and pre) came from events with reactivation
strengths beyond the 99th percentile. Thus, rare events of elevated
network synchronization or network spikes37,38, although spanning
only a small period of time, account for a substantial proportion of the
total observed reactivation.

Preferential mPFC replay during hippocampal SPWRs

The standard systems consolidation theory holds that, following
acquisition, experience-related information flows from the hippo-
campus toward the neocortex24. Conversely, neocortical influences
may contribute to selecting the pattern reactivated in the hippo-
campus22. We tested the relationship between mPFC cell assembly
reactivation and hippocampal SPWRs, the most prominent pattern of
hippocampal activation during SWS (which, similar to reactivation
strength peaks, occur irregularly). Indeed, cortical assembly reactiva-
tion events occurred in concert with hippocampal SPWRs. Examining
data from entire post epoch sessions (Fig. 3) revealed that virtually all
reactivation peaks occurred concomitantly with a SPWR event (and
also with an increase in synchronous activity of those cells with large
positive weights in this signal component). We examined the ensemble
spike trains corresponding to a reactivation peak for an example session
(Fig. 4); at the time of the peak, virtually all cells with large positive

weights in this signal component were active
(and negative weight cells reduced their activ-
ity). In this example, the two largest peaks
(Fig. 4a) coincided with SPWR events
(Fig. 4b) and one preceded a delta wave
(Fig. 4c). The ensemble spike trains corre-
sponding to a reactivation peak are shown
(Fig. 4d,e); at the time of the peak, virtually all
cells with large positive weights in this signal
component were active.

The average reactivation strength in post
epoch SWS was considerably greater for bins
coinciding with SPWRs than for non-SPWR
bins (all comparisons P o 0.005, n ¼ 8, 37
and 225, including only sessions with reliable

discrimination of ripple signals; Fig. 5a). The effect was stronger for
components with higher encoding strengths (Pearson’s correlation test,
P o 10�20; Supplementary Fig. 7). The SPWR-triggered average
(Fig. 5b) showed that the reactivation strength for signal components
during post, but not pre, epoch SWS increased by B70% at the time of
the sharp waves with respect to baseline (P o 10�10, n ¼ 270).
Reactivation in mPFC declined to baseline values within 1 s before
and after the peak of the SPWR events. No such effect was found for
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Figure 4 Example of reactivation strength peaks coinciding with hippocampal

SPWR. (a) Reactivation strength (white traces, right axis) of the signal
component superimposed on the mPFC LFP spectrogram (left axis). This is

expanded from the zone shown in Figure 3a (post epoch), delimited by the

dashed line. The black dashed line represents the normalized population

firing rate. (b) The bandpass-filtered hippocampal LFP (100–300 Hz) shows

ripple events (red asterisks); the signal is normalized by its s.d. (c) Bandpass-

filtered (0–5 Hz) PFC LFP. Delta waves are denoted by green asterisks.

(d) Raster plot of spike trains from the PFC cells sorted by principal

component weight magnitude (as in Fig. 1a). (e) Expansion of the 300 ms

surrounding the peak indicated by an arrow in a. Red rasters represent spikes

occurring in the bin of peak reactivation strength. This example also shows

two delta waves in the cortical LFP, with preceding and following increases in

population activity (putative UP states41). See Supplementary Figure 7

for statistical analysis of reactivation/slow oscillation interactions.
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nonsignal components. A similar analysis at higher time resolution
(Fig. 5c) showed that reactivation peaked B40 ms after SPWR
occurrences, which is compatible with the transmission delay measured
for prefrontal responses to hippocampal stimulation39 (the second peak
in the event triggered histogram is probably a result of the frequent
occurrence of sharp wave ‘doublets’). On the other hand, overall
ensemble mPFC activity (of all recorded neurons, including those not
involved in signal components) showed a qualitatively different, sharply
asymmetric profile with respect to SPWR occurrences (Fig. 5d); on
average, prefrontal population activity transiently increased with the
SPWRs and maintained sustained activity thereafter20,21 (with no
difference between pre and post epochs). This sustained post-SPWR
activity contrasts with the faster decay of signal reactivation, arguing
against an explanation of the latter solely in terms of general population
activity fluctuations. Furthermore, autocorrelograms of both reactiva-
tion strength and SPWR occurrences (Fig. 5e) decayed with very similar
time constants (150 and 160 ms for exponential fits, respectively),
suggesting that the clustering in time of SPWRs is reflected by a similar
grouping of mPFC reactivation events.

Relation of slow oscillations with SPWRs and mPFC replay

A hallmark of cortical activity during SWS is slow oscillations26, which
trigger and orchestrate LFP waves in the delta (2–4 Hz) and spindle
(10–20 Hz) ranges. Reactivation episodes in the hippocampus and
neocortex occur during the slow oscillation phase with high neural
activity16 (UP state) and are correlated with hippocampal SPWRs, but
little is known about the precise temporal relation between cortical
oscillatory phenomena, hippocampal activity and neocortical reactiva-
tion. When we examined the relationship between mPFC reactivation
and SWS oscillations (Fig. 2a), we found that episodes of strong replay
were significantly concentrated into periods of elevated prefrontal LFP

oscillatory activity in the delta (2–4 Hz) and spindle (10–20 Hz) ranges
(Po 10�5 for all, t test; Supplementary Fig. 5). Therefore, we tested the
correlation between reactivation strength and LFP markers of slow
oscillations. First, we considered delta waves; that is, large positivities of
the depth cortical LFP associated with states of reduced cortical activity
(DOWN states) and with the K-complex phase characterized by absence
of spindles40. During post epoch SWS, the reactivation strength for
signal components showed a significant (P o 0.001, t test) increase
B400 ms before the peak of the delta wave (Fig. 6a). This was
experience dependent and possibly memory related, as the modulation
was smaller for pre epoch SWS and null for nonsignal components. The
timing of hippocampal SPWRs relative to delta peaks closely resembled
that of mPFC reactivation (Fig. 6a). In contrast, mPFC ensemble
activity showed a different profile (Fig. 6a), with a minimum immedi-
ately before the peak of the delta wave, but symmetric peaks before and
after (with a return to baseline in 500–1,000 ms). The second peak was
not associated with an increase in reactivation.

To further investigate this relationship, the same analysis was carried
out with reference to putative DOWN to UP state transitions (putative
DOWN states were defined as a decrease of neural activity in windows
of at least 80 ms; Fig. 6b). The relationships between reactivation and
SPWR occurrence with these transitions were comparable with our
delta wave results. Because spindles (bouts of 10–20 Hz oscillations)
appear at the onset of UP states41, we examined their correlation with
reactivation strength. In general, signal reactivation tended to occur
before spindle episodes. Reactivation event-triggered averages centered
on spindles troughs were asymmetric, with an increase in reactivation
in the B1 s preceding spindles compared with the period thereafter
(Po 0.001, t test; Fig. 6c). As was the case for delta waves, the increased
pre-spindle reactivation over a broad time scale echoed the increased
probability for hippocampal sharp waves preceding spindles (Fig. 6c).
In contrast, the population activity modulation showed a symmetrical
time course that peaked at the time of spindle events (Fig. 6c). The
respective cross-correlograms and event-time averages of reactivation
relative to these three cortical events were strongly correlated (Fig. 6d).
Thus, coupling between reactivation and sharp waves primarily struc-
tured the relationship between the reactivation time course and cortical
slow oscillations.

Replay of ‘choice point’ activity increases with learning

The principal component analysis that characterized the time course of
experience-related pattern reactivation during sleep may conversely be
employed to find out which aspects of the neural assembly coactivation
during task performance are replayed during sleep. For this, we
computed principal components from the ensemble neural activity
during sleep pre and post epochs, separately for SPWR and inter-
SPWR time bins. Those templates were matched to the activity during
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Figure 5 Prefrontal memory replay is enhanced during hippocampal

SPWRs. (a) Average reactivation strength for nonsignal (F o 1) and signal

components (grouped by encoding strength) during pre and post epoch SWS

for SPWR bins (left) and non-SPWR bins (right). (b) Event-triggered average

(ETA) of reactivation strength centered on hippocampal SPWRs for all

analyzed signal components during pre SWS (gray) and post SWS (black) and

for nonsignal components (black and gray, respectively). We observed an

increase around SPWRs during the post epoch for signal components only.
(c) Expanded view of the central portion of b for post SWS (time bins of

20 ms) with an increased reactivation peak 40 ms after SPWRs. (d) ETA of

spiking probability density of multi-unit activity relative to SPWR

occurrences, averaged over all recording sessions. Gray, pre SWS; black,

post SWS. No difference was observed between the pre and post epochs.

(e) Autocorrelogram for post SWS reactivation strengths (red) and SPWR

occurrences (black) showing similar decay time constants.
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the awake period. For a significant number of components (Po 0.05)
extracted from SPWR bins (Fig. 7a,b, Supplementary Table 1 and
Supplementary Fig. 12 online), coactivations became stronger as the
rat started the first run of correct trials marking rule acquisition. This
difference was not significant (P 4 0.05) for principal components
computed from the inter-SPWR intervals in post or pre epochs. This
was not simply a result of the elapsed time during the session, as there
was no such difference between the two halves of those sessions where
no rule learning occurred.

Furthermore, the principal components computed from post SPWR
appeared primarily when the rat was on the central platform of the Y
maze: that is, the point at which it was required to select the behavioral
response (Fig. 7a,c). A significant effect (P o 0.05) of learning on the
spatial distribution of principal components from post SPWR
appeared only in the part of the maze going from the central platform
toward the end of the target arm (Fig. 7c). Moreover, a factor analysis
of these spatial distributions revealed that the two most important
factors were concentrated on the platform and on the target arm,
respectively (Fig. 7d and Online Methods).

Rule acquisition was not accompanied by a change in the principal
measures of the rat behavior, including trial duration, trajectories
(which followed the same stereotyped paths before and after rule
acquisition) and running speed at each point of the trajectory (Sup-
plementary Fig. 12). Moreover, the greater contribution to reactivated
patterns during SPWRs from trials occurring immediately after rule
acquisition is not likely to result from changes in the general sensory
experience other than reward. To test this hypothesis, we compared
trials occurring before and after spontaneous strategy shifts effected by
the rat that did not lead to acquisition of the rewarded strategy in

sessions where no learning took place (rats made such shifts while
seeking the correct rule by trial and error). In these cases, no difference
was observed in contribution to reactivated patterns during SPWRs
(see Online Methods, Fig. 7b and Supplementary Fig. 13 online).

DISCUSSION

We found new links between learning and the dynamics of replay in the
mPFC and hippocampus and our study has three main results. First,
mPFC replay occurred in transient episodes, corresponding to the
activation of distinct cell assemblies. Second, prefrontal replay,
although it occurred throughout the post-training SWS, mostly coin-
cided with hippocampal sharp wave events and therefore with
increased hippocampal replay and hippocampal/neocortical interac-
tions. Third, and most importantly, in sessions with rule learning,
mPFC replay during hippocampal sharp waves principally concerned
neural activity patterns emerging only after the acquisition.

These results demonstrate the relationship between memory replay,
the task phase where the activity patterns originated and task per-
formance level in a dynamic setting, wherein the rats were obliged to
continually adapt to new rules. Notably, when the rat adhered to the
newly acquired rule, the patterns that contributed the most to memory
replay in mPFC during hippocampal SPWRs were those appearing at
the point at which the rat committed to choosing a goal arm. During
the trial, the contribution to hippocampal-related replay in the mPFC
climbed steadily on the departure arm (where activity may predict the
choice42), to peak at the arms intersection. Furthermore, preferentially
replayed patterns arose just when rats began a series of correct trials at
criterion with respect to the new rule. Prefrontal cortical activity
reflecting newly learned associations has been found to emerge only
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Figure 6 Reactivation strength relative to mPFC

LFP events. (a) Cortical delta wave peaks. Top,

ETA of signal components’ reactivation strength

centered on cortical delta wave peaks for pre (blue)

and post epoch SWS (red). Gray bars indicate

significantly (P o 0.001, t test) higher

reactivation strengths for signal components during

post SWS with respect to baseline (defined as the
average reactivation strength from –4 to

–2 s and from 2 to 4 s from the delta wave peak).

Reactivation had a significant peak preceding the

delta wave. Middle, cross-correlogram of SPWR

occurrences relative to delta peaks. SPWRs tended

to occur more frequently just before delta peaks,

similar to reactivation. Bottom, spiking probability

density of multi-unit activity relative to delta waves

and averaged over all recording sessions. Gray, pre

SWS; black, post SWS. Prefrontal cells showed a

strong decrease in firing at the time of the delta

peak, preceded and followed by activity increases.

(b) Same plot as in a, but centered on putative

DOWN to UP state transitions (as defined by

population average firing rate). Results are

comparable with those shown in a except for

spiking probability, which only showed a marked

deflection during the DOWN state. (c) Same plots

as in a, but centered on spindle troughs. Top,
reactivation strength was significantly higher

(P o 0.05) for over 1 s before spindles. Middle,

hippocampal SPWR ETA centered on spindles

showed a similar profile. Bottom, spike activity

increased at the time of spindles. (d) Comparison

between time relationship of reactivation strength

and SPWR occurrence relative to the three cortical

events presented in a–c showing a high correlation

in each case.
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after the associations have been acquired34. The time course that we
observed for replay is similar to that seen in the latter study34:
coactivations preferentially replayed in SPWRs arose after the rat
started to perform at criterion. These effects were probably not a
consequence of different neural activity statistics at the choice point,
as they remain specific for post SPWR patterns and are not found for
patterns extracted from the pre epoch or from inter-SPWR intervals.

The hippocampal involvement in the formation of these cell
assemblies is likely to be critical; notably, task events linked to
preferential replay were also marked by increased coherence between
the hippocampus and mPFC LFP in the theta range (Benchenane
et al., Soc. Neurosci. Abstr. 690.15, 2008). Thus, on learning, the
choice point is the site of increased hippocampal-prefrontal coher-
ence. Cell assemblies activated at those times are prominently
replayed in the mPFC during SPWRs, that is, when the hippo-
campal-neocortical interaction is at its peak19–22. Coactivations may
reflect prefrontal cell assemblies representing new information. The
nature of this new information could be twofold: on one hand, it
could represent an emerging representation of the newly learned
rule, and on the other hand, it might reflect processes that take place
after learning has occurred (for example, a representation that is
activated by a consistent stream of reward). The reward signal may
‘tag’ the representations, making them more likely to be replayed. In
support of this hypothesis, we analyzed those periods in which rats
were searching for the correct rule by trial and error. We found that
when the rat makes spontaneous strategy shifts to unrewarded rules,
patterns from before or after the shift were indifferently replayed in
sleep (Supplementary Fig. 13). Thus, the consequent changes in the
general sensory experience do not cause the resulting neural patterns
to be replayed more or less strongly. Also, this seems to rule out
interpretation of our results in terms of repetitive experience
resulting in stronger replay18. Because preferential replay only
occurs during SPWRs, we speculate that regulation of hippocam-
pal-prefrontal interactions could result from dopaminergic, reward-
related signals43. The replay of reward tagged patterns, in concert

with the hippocampal replay during SPWRs14,44, would mark the
initial period of system-wide consolidation.

The high temporal resolution of our coactivation measures revealed
another feature of prefrontal replay: its detailed time course. Replay was
largely accounted for by brief events, with durations on the order of
100 ms or less (for example, see Fig. 2). In each event (similar to network
spikes; see Supplementary Discussion online), a substantial number
of cells were coactivated. The observed, highly irregular time course of
reactivation strength suggests that replay is not simply a result of
changes in the probability of co-firing for cell pairs (a straightforward
consequence of a change in the efficacy of the connection between the
two cells18), but is probably generated by global network effects induced,
for example, by the excitatory feedback connections in the mPFC.

Transient replay is concentrated during SWS (Supplementary Fig. 5).
This differs from studies of hippocampal reactivation that showed
nonzero replay during restful, nonsleep periods14. This may be an
intrinsic difference between the hippocampus and the mPFC or it
could be a result of a different sensitivity of our analysis methods. In
SWS, replay occurred principally in proximity to hippocampal SPWRs
(Figs. 3–5). Thus, besides being important for the hippocampal replay
of newly formed memories14, SPWRs also coincided with an increase of
overall reactivation in hippocampal output structures. Moreover,
SPWRs are related to increases in cortical activity and transitions to
UP states20,21. It is therefore possible that the correlation between
cortical replay and SPWRs that we observed may be a result of a
hippocampal influence on mPFC. At present, though, it is difficult to
speculate whether reactivation events originate in the hippocampus or
the neocortex; our data indicate that prefrontal replay peaks B40 ms
after SPWR occurrences, a latency that is compatible with observations
of prefrontal responses to hippocampal stimulation39 and thus with
hippocampus triggering this extra-hippocampal replay. On the other
hand, it is known that the neocortical slow oscillations45 influence the
membrane potential of hippocampal cells23 and the probability of
occurrence of SPWR22; such an influence would allow the neocortex
to contribute to selecting the information reactivated in the hippocam-
pus. As a third alternative, the concurrent prefrontal cortical replay and
hippocampal SPWRs may be the result of particular neocortical network
states that simultaneously regulate when hippocampal reactivation takes
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Figure 7 Replayed activity during SPWRs is correlated to rule acquisition.

(a) The activation strength of principal components computed from post

epoch SPWR activity is shown in peri-event color rasters for two examples

of sessions with rule learning (in different rats). The maze was linearized

and divided into 25 equal bins. Rewarded trials are marked with white dots

at right. The arrows indicate the learning point (see Online Methods). The

vertical bar to the right of each display shows the rat behavior: white dots

correspond to the rewarded trial. The black arrow denotes the point at which
a strategy shift towards the rewarded rule was detected (defined in Online

Methods). (b) Incidences of principal components computed from pre or post

epoch SPWRs or inter-SPWR epochs during sessions with learning (n ¼ 10,

four rats). The black bars are data recorded after learning occurred in the

session (above arrows in a), whereas gray bars are from before learning.

Significantly more post SPWR activity patterns were positively correlated with

activity after learning than with activity before learning (P o 0.05, two-way

ANOVA followed by t test). No such difference was observed for pre SPWR

patterns or for inter-SPWR patterns, or when a comparison was made

between the first and second half of nonlearning sessions or when the rat

switched between two erroneous, unrewarded strategies. (c) Average spatial

distribution of all fifteen principal components computed from post epoch

SPWR that were significantly higher on average after learning (gray trace)

than before (black trace). The gray bar (above) marks significantly different

bins (P o 0.05, t test, n ¼ 10). Dashed lines indicate s.e.m. (d) Factor

analysis scores of data from C showed two profiles with peaks at the goal

arms and the central choice point (see Online Methods).

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION 7

ART ICLES



place and facilitate the transfer of reactivated patterns between brain
regions20. In a more radical version of this hypothesis, the representation
of a memory item could integrally involve both hippocampus and
neocortex by the time of initial encoding, and thereafter this would
reactivate as a whole and manifest itself simultaneously in both
structures. In fact, analyses of data from our experiments (Benchenane
et al., Soc. Neurosci. Abstr. 690.15, 2008) show that signs of hippocam-
pal/neocortical interplay were already present when the replayed repre-
sentation was probably formed, in the form of theta-band coherence.

In conclusion, the acquisition of new rules involves the hippocampo-
cortical network; during the ensuing sleep, the PFC activity patterns
during hippocampal SPWRs reflect the neural patterns that occurred
during the task phase, particularly when a rule has been learned, just at
the time when hippocampo-cortical coherence is enhanced. Whether
the predominating causal influence in this dialog is cortical or
hippocampal, or rather this corresponds to an emergent system-wide
representation of information, our results show a possible mechanism
by which task-relevant learned information can be expressed and
reactivated in the prefrontal cortex. This would be contingent to
SPWRs for newly formed memories, but more uncoupled from the
hippocampus for more distant memory traces.

METHODS

Methods and any associated references are available in the online
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Animals. Four Long-Evans (pigmented) male rats (R. Janvier, Le Genest-St-

Isle, France) weighing 250–300 g at arrival were handled daily. All experiments

were carried out in accordance with institutional (CNRS Comité Opérationnel

pour l’Ethique dans les Sciences de la Vie) and international (US National

Institute of Health guidelines) standards and legal regulations (Certificate no.

7186, French Ministère de l’Agriculture et de la Pêche) regarding the use and

care of animals.

After habituation to the experimental environment, rats were anesthetized

with intramuscular xylazine (Rompun, 0.1 ml) and intraperitoneal pentobar-

bital (35 mg per kg of body weight). A drive containing seven tetrodes (six

recording, plus one reference) was implanted through the skull above the right

medial PFC (anterior-posterior, 3.5–5 mm; medial-lateral, 0.5–1.5 mm). Each

tetrode was contained in a 30 gauge hypodermic tube, with the tubes arranged

in two parallel, adjacent rows. Tetrodes were twisted bundles of polymide-

coated nichrome wire (13 mm in diameter, Kanthal); the drive allowed

independent adjustment of tetrode depth. After dura retraction, the rows of

cannulae were implanted parallel to the sagittal sinus so that they targeted the

superficial and deep layers of the medial bank of the cortex. A separate micro-

drive containing three tetrodes was targeted to the ventral hippocampus

(anterior-posterior, �5.0 mm; medial-lateral, 5.0 mm). Each tetrode was

electrically connected in a single-electrode configuration (all channels shorted

together) and used for LFP recordings. For these, a screw implanted on the

occipital bone above the cerebellum served as the reference. The hippocampal

tetrodes were lowered to the CA1 pyramidal layer; the depth was adjusted with

the help of LFP signs (flat sharp waves, strong ripple oscillations). After surgery,

rats recovered for at least 2 weeks while the tetrodes were lowered to reach the

prelimbic area (main drive) and the CA1 pyramidal layer (hippocampal micro-

drive). Between sessions, tetrodes were gradually lowered to probe different

dorso-ventral levels in the prelimbic area.

Apparatus and pre-training. An elevated, wooden Y maze was coated with

waterproof black paint. The three arms were 85 cm long, 8 cm wide and

separated by 120 degrees. The arms connected on a circular central platform,

which could be elevated to block the access to all arms. A wooden box at the

end of each arm contained a reward well and a small light bulb that illuminated

the box and the end portion of the arm. Solenoids controlled the delivery of

drops of a liquid reward (chocolate- or strawberry-flavored milk). Infrared

photo-detectors, at the entrance of each arm and at the reward wells, detected

rat access to the arms and arrival at the reward site. The solenoids, light bulbs

and photo-detectors were connected to a micro-controller built into the data

acquisition system (Power1401, CED). The micro-controller managed reward

delivery and arm illumination on the basis of the behavioral task logic. A

monochrome camera was placed above the maze and tracked rat positions. The

video signal was acquired and synchronized with behavioral and electrophy-

siological data by the data acquisition software (Spike2, CED). The position of

LEDs placed on the recording headstage was tracked offline by dedicated

software (MaxTRAQ, Innovision Systems).

Behavioral task. Rats performed an attentional set shift task on a Y maze. Such

extradimensional set shift tasks have been shown to require the function of the

mPFC in rats36. This parallels the involvement of the human PFCs in the

Wisconsin card sorting task, which inspired our experimental design. Each

recording session consisted of a 20–30-min sleep or rest epoch (pre epoch),

in which the rat remained undisturbed in a padded flowerpot placed on

the central platform of the maze, followed by an awake epoch, in which the

rat performed the behavioral task described below for 20–40 min, and then

by a second 20–30-min sleep or rest epoch (post epoch; same situation as

in pre epoch).

The first recording sessions were the first time that the rats encountered the

behavioral task. Rats started each trial in the same arm (the departure arm).

One of the two other (choice) arms was illuminated at random (pseudo-

random schedule; runs of more than four consecutive trials with the same

illuminated arm were avoided, as were repeated bouts of imposed alternation

between the two arms). After that, the central platform was lowered, allowing

the rat to access the choice arms.

Only one of the choice arms was rewarded, according to one of four

contingency rules. Two contingency rules were spatially guided (always go to

the right arm or to the left arm), the other two were cue guided (go to the

illuminated arm or to the dark arm). The animal had to learn each rule by trial

and error, as it was not signaled by any cue. Once the rat reached a criterion of

ten consecutive correct trials or one error out of 12 trials, the rule was changed

with no further cue to the rat. Rule changes were extra-dimensional, from a

spatially guided rule to a cue-guided rule, and vice versa. The learning point

was defined as the first trial of a block of at least three consecutive rewarded

trials after which the performance until the end of the session was above 80%.

Because of an operator mistake, an intradimensional shift was applied once.

Typically, the trials necessary for acquisition of a rule spanned more than one

session; hence rule shifts did not occur in all sessions.

All four rats learned the right and light arm rules (according to above

criteria), whereas only two learned the left arm rule and one learned the dark

arm rule.

Electrophysiology. Tetrode recordings were obtained from up to six tetrodes

implanted in prelimbic area and hippocampal LFPs were obtained from

tetrodes implanted in the CA1 pyramidal layer in the mid-ventral part of

hippocampus that projects to mPFC. Because tetrodes were not moved after

each recording session, it is possible that the same cells were recorded more

than once, usually in different behavioral situations (current rule, performance

level, etc.).

For electrophysiological recordings, signals were fed into a unit-gain head-

stage pre-amplifier (HS-54, Neuralynx) and then, through a tether cable, to

amplifiers (Lynx-8, Neuralynx), where all signals were amplified 2,000-fold.

Single-unit recording signals were bandpass filtered between 600 and 6,000 Hz,

whereas LFP signals were filtered between 0.1 and 475 Hz (cortex) and 1 and

475 Hz (hippocampus). Data were digitized and stored by a Power1401 (CED)

acquisition system, which was controlled by Spike2 software. Single-unit data

were sampled at 25 kHz and a 1.3-ms sample was time-stamped and stored for

all the channels in a tetrode whenever any of the four exceeded a pre-set

threshold. LFPs were sampled and stored at 2 kHz.

Histology. At the end of the experiments, a small electrolytic lesion was

made by passing a small cathodal direct current (20 mA, 10 s) through each

recording tetrode to mark their tip locations. The rats were then deeply

anesthetized with pentobarbital. Intracardial perfusion with saline was followed

by 10% formalin saline (vol/vol). Histological sections were stained with cresyl

violet. The electrode tracks were reconstructed, verifying that the recording sites

were in the prelimbic area or, in exceptional cases, in the dorsal-most

infralimbic cortex.

SWS detection. SWS was automatically detected. Power spectrograms of

cortical and hippocampal LFPs were computed with bins of 1 s. Power in

the cortical delta band (1–4 Hz), hippocampal theta (5–10 Hz), cortical

spindles (10–20 Hz) and speed of head motion were clustered with a K-means

algorithm. Clusters corresponding to high values of delta and spindle powers,

and to a low degree of head movement, were considered as corresponding to

SWS. Successive SWS clusters occurring in intervals of less than 1 min were

merged and resulting time intervals of SWS smaller than 10 s were dropped.

Data preprocessing. For single-unit activity discrimination, the first three

principal components of the energy-normalized waveforms were computed

from spike waveforms for the four tetrodes, generating a 12-dimensional vector

characterizing each spike. Those vectors were entered in the KlustaKwik46

clustering program. The resulting classification was manually refined using

the Klusters47 interface.

For ripple detection, the hippocampal LFP from the CA1 pyramidal layer

was bandpass filtered in the ripple frequency range (100–300 Hz) to detect

SPWRs. The r.m.s. signal was then smoothed (20-ms Gaussian window). Only

intervals for which the resulting envelope was 2 s.d. above the raw filtered signal

were retained. Ripple events were time-stamped with the times of the deepest

LFP troughs in these intervals if the latter were at least 5 s.d. below the r.m.s.

signal baseline. Finally, SPWR discrimination criteria were considered reliable

when at least 40 ripples were detected. In most sessions, at least 200 SPWRs

were detected.

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nn.2337 NATURE NEUROSCIENCE



For spindle detection, cortical LFP signal were bandpass filtered (10–20 Hz).

The r.m.s. signal was smoothed with a 100-ms Gaussian window and those time

intervals 1 s.d. above the filtered signal and at intervals less than 100 ms were

merged. Of the resulting intervals, only those at least 500 ms long were

retained. Spindle troughs are the minima of the filtered signal during those

intervals. For delta wave detection, cortical LFP signal was filtered between 0.1

and 4 Hz. Delta wave peaks were the minima at least 2 s.d. below the filtered

signal.

Computational methods. Reactivation strengths describe the instantaneous

replay at each time, during rest sessions, of neural coactivation patterns that

were characteristic of the awake epoch. Each recording session was subdivided

into three epochs (pre, awake and post). The goal of the analysis was to find the

characteristic patterns of neural activity from one of these epochs (referred to as

‘template’) and to determine the extent and at which times such patterns were

active during a second ‘match’ epoch. To determine when patterns from the

behavioral episode were reactivated during the following sleep (the analyses of

Figs. 1–6), we set the awake epoch as the template and the post epoch as the

match epoch (with pre serving as control). For the analyses of Figure 7 (where

we studied which phases of the behavioral task were most represented in the

sleep activity), the template epoch was the post epoch (with the pre epoch as a

control) and the match epoch was the awake epoch.

For all epochs, spike trains from prefrontal cells were binned in intervals of

duration Dtbin (100 ms unless otherwise specified). The obtained spike counts for

each cell si (t), i ¼ 1yn, t ¼ 1yB, where n is the number of cells and B is the

number of time bins in the epoch, were z transformed, obtaining the Q matrix

Qit ¼ si ðtÞ � /siS
ssi

where /siS ¼ 1
B

PB
t¼ 1

sj ðtÞ and ssi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B�1

 PB
t¼ 1

ðsi ðtÞÞ2 �/siS2

!vuut :

The pairwise cell activity correlation matrix is then

C ¼ 1

B
QQT ð1Þ

For the three behavioral epochs, we obtained three population spike count

matrices, Qpre, Qawake and Qpost, and the three correlation matrices, Cpre, Cawake

and Cpost.

Previously12, the reactivation of neural activity associated with active

experience has been studied by looking at the relationship between statistical

features of the activity as measured during behavior and during resting periods.

To determine whether this replay possibly corresponds to a specific modifica-

tion of the underlying neural circuits, we need statistical measures that are

informative about the neural patterns that occurred at different moments

during the experience, and not just global, epoch-wide modulation of neural

activities. The simplest such measure is the reactivation of zero-lag, pairwise

cell activity coactivation. To explain this at an intuitive level, suppose that

cells A and B coactivate during experience more than expected by chance given

their average activity. If, during subsequent sleep, the same cell pair shows

increased coactivation (compared with sleep before experience), this can be

taken as a sign of memory reactivation.

Previously proposed measures of reactivation of coactivation patterns14 are

based on the comparison of the C matrices for the awake and post epochs, by

taking a Pearson correlation coefficient of the elements of the two matrices or a

partial correlation coefficient, and then examining the correlation between post

and awake matrix elements once the effects of the pre-existing correlations (in

the pre epoch matrix) are taken into account. This measure computes the

general similarity level between the activity patterns in the awake and post

epochs, but it does not provide information about the detailed time course of

the activity during sleep and its instant-by-instant resemblance to experience-

associated patterns. For this, we take a measure equivalent to the Pearson

correlation coefficient of the elements of Ctemplate and Cmatch (assigning the role

of template and match to two of the three behavioral epochs), except for

constant terms (a graphical schematic of the method is provided in Supple-

mentary Fig. 3):

Mtemplate�match ¼
X

i; j; io j

Cmatch
ij C

template
ij

¼ 1

2
TrððCmatch � IÞTðCtemplate � IÞÞ

Mtemplate–match can be decomposed into a sum over time bins during the post

(pre) epoch (by using equation (1)).

Mtemplate�match ¼ 1

2

X
i; j; i 6¼ j

Cmatch
ij C

template
ij

¼ 1

2Bmatch

XBmatch

t¼ 1

X
i; j; i 6¼ j

Qmatch
it C

template
ij Qmatch

jt

¼ 1

2Bmatch

XBmatch

t¼ 1

Rmatch
0 ðtÞ

Thus, Cij
template can be seen as a template (technically a quadratic form) applied

to the vector of multi-cell spike counts Qij
match at each time t during the rest

epochs to produce the time series R0
match (t). R0

match (t) represents a decom-

position of the epoch-wide correlation similarity into its instantaneous con-

tributions; that is, the similarity between the current population vector at time t

and the general pattern of coactivation during the template epoch. Therefore, it

contains information concerning exactly when during the match epochs the

patterns of coactivation are similar to those in the template. However, such a

measure still combines together factors from several different cell groups, which

may coactivate independently. The obtained time course may therefore be the

result of averaging over these distinct patterns, which may behave quite

differently from one another.

To distinguish among these cell groups (and to find which of these patterns

contributed the most to the reactivation effect), we found the eigenvectors of

the Ctemplate matrix, p(l) (p(1) is associated with the highest eigenvalue l1). The

eigenvectors of the correlation matrix Ctemplate are the so-called principal

components of the data Qtemplate and the ones with the lowest rankings explain

most of the variance of Qtemplate. We can then decompose the Ctemplate matrix

into projectors, P(l), defined by the outer products of the eigenvectors

with themselves.

Ctemplate ¼
X
l

llPðlÞ ¼
X
l

l1p
ðlÞðpðlÞÞT

The time series R0
match (t) can then be further decomposed into terms

corresponding to the different eigenvectors.

Mtemplate�match ¼ 1

2Bmatch

X
l

ll
XBmatch

t¼ 1

X
i; j; i 6¼ j

Qmatch
it P

ðlÞ
ij Q

match
jt

¼ 1

2Bmatch

X
l

ll
XBmatch

t¼ 1

Rmatch
l ðtÞ ð2Þ

with

Rmatch
l ðtÞ ¼

X
i; j; i 6¼ j

Qmatch
it P

ðlÞ
ij Q

match
jt

The time series Rl
match (t) measures the instantaneous match of the l-th

coactivation template on the ongoing activity.

By definition, the reactivation strength measure is not very sensitive to

instantaneous firing rates; overall firing-rate fluctuations are canceled out

because the principal components’ coefficients have a zero mean. General
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firing-rate fluctuation effects on the reactivation strengths can be controlled for

with a shuffling procedure (Supplementary Fig. 8).

Signal and nonsignal components. The exact distribution of singular values

(root square of the eigenvalues of the correlation matrix Ctemplate) of random,

uncorrelated n-dimensional datasets follow the so-called Marcenko-Pastur

distribution48,49. In the limit B-N and n-N, with q ¼ B
n � 1 fixed,

rðlÞ ¼ q

2ps2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmax � lÞðl� lminÞ

p
l

ð3Þ

where lmax
min ¼ s2ð1 �

ffiffiffiffiffiffiffi
1=q

p
Þ2. s2 is the variance of the elements of the random

matrix, which is 1 here, because the Qtemplate matrix is z transformed. Equation

(3) shows that the distribution vanishes for l greater than an upper limit lmax.

Under the null hypothesis of an uncorrelated Qtemplate, the correlations

between spike trains are determined only by random fluctuations and

the eigenvalues of Ctemplate must lie between lmin and lmax. Eigenvalues

greater than lmax are therefore a sign of nonrandom correlations in the

matrix, and for this reason we refer to these principal components as signal.

Components associated with eigenvalues between lmin and lmax are termed

nonsignal components. For the awake epoch, a total of 323 components were

classified as signal and 811 were classified as nonsignal. To combine data from

different sessions, we used the normalized eigenvalues (or encoding strengths)

F ¼ l / lmax.

Heavy-tail characterization. The epoch-wide reactivation strength (equation

(2)) is given by the sum of instantaneous contributions. To analyze the

contribution to this sum by the peaks making up the tail of the reactivation

strength distribution, we computed the cumulative contribution

/RSr
�1 ¼

Z r

�1

uPðuÞdu

whose difference between post and pre is shown in Figure 2e. For distributions

P(u) with an exponential tail, this function will reach an asymptotic value,

indicating that large values contribute little to the sum. Diverging values of

/RSr
�1 (for example, p log(r)) are indicative of a P(u) with a tail decaying

with a power law.

Detection of sleep-related patterns in activity during the task. For the

analysis of Figure 7, the rest epochs (post, with pre as a control) were the

templates in the analysis described above, whereas awake was the match epoch.

The templates were computed separately from the bins (of constant duration

100 ms) coinciding with SPWRs and inter-SPWRs intervals. For each SPWR,

we considered the bin coincident with the ripple peak and the following one, as

SPWR activity. All of the remaining bins during SWS were considered inter-

SPWR activity. Multinomial statistics assessed significant changes in the

number of cell assemblies whose activation strength was higher after learning

than before (Fig. 7b). For each epoch, a limited number of principal

components were selected: for SWS, only signal components, and for SPWRs,

the first three (as a result of the low dimension of the dataset available from

SPWR events, significance cannot be assessed from eigenvalues as described

above; three principal components appeared to be adequate to describe

reactivated patterns determined from SPWRs). Comparisons of activation

strengths before and after learning (with an ANOVA test) were classified in

three categories: higher, lower or not significantly different. As these groups are

not independent, the use of multinomial statistics was necessary to compute

the 95% confidence interval of the probabilities mean of each category50. Thus,

significantly different probabilities (P o 0.05) were considered as a single

group using non-overlapping confidence intervals (the group data for days

when a rule was acquired are summarized in Supplementary Table 1). For

nonlearning days, a total of 111 principal components were considered; 31 were

lower (28%) and 22 were higher (20%) when the halves of the session were

compared. For nonrewarded strategy switches, 24 principal components were

considered; seven were lower (29%) and eight were higher (33%).

The spatial raster plots in Figure 7 and Supplementary Figures 11 and 12

were created from a spatially linearized trajectory on the Y maze (that is, in

which the right and left arms of the Y maze were combined), obtaining a path

going from the departure arm, through the central platform, to the reward site

at the end of the target arm (the trial-by-trial time course of the activation of

post SPWR-related activity patterns is shown in Fig. 7a). The activation of post

SPWR patterns increased after the strategy shift in both examples. This

phenomenon was observed in all our data, as significantly (Po 0.05) principal

components derived from post SPWR ensemble activity from all sessions

increased their activation than decreased. This difference was not present for

patterns extracted from pre epoch SPWRs or from pre and post epoch inter-

SPWR periods, or when we examined the difference between the first and

second half in sessions in which the rewarded rule was not acquired (Fig. 7b).

There was a significant difference (Po 0.05) between the two in the portion of

trajectory starting at the platform (that is, the maze choice point; Fig. 7c).

For factor analysis of when post patterns appeared in the awake epoch

(Fig. 7d), we carried out a principal component analysis in which vectors were

rotated to maximize the variance (the ‘varimax’ rotation). Two factors seemed

to adequately describe the data.

Furthermore, we analyzed sessions in which the animal spontaneously

switched between nonrewarded strategies. If the rat switched between more

than two strategies in a session, only the last switch was considered. Blocks of

trials in which the animal consistently followed a given strategy were auto-

matically detected. Those strategies considered were right, left, light, dark or

alternation (between the left and right arms, an often-observed spontaneous,

but unrewarded, strategy). Because the probability that an animal performs the

same behavioral strategy for six consecutive trials by chance is less than 5%

(3.12%), we considered this to be the criterion to consider a block of trials as

adhering to a given strategy. The criterion for a consistent strategy also accepted

blocks of at least nine trials including one noncompliant trial. For example, if

the animal performed a right strategy for six trials, then went to the left arm for

one trial, and then went to the right arm for two trials, the whole block of nine

trials was considered to be a right strategy block. Following the same principle,

we allowed blocks of nine trials constituted of five compliant trials, one

noncompliant trial and three compliant trials, or four compliant trials, one

noncompliant trial and four compliant trials. A total of eight sessions (at least

one for each rat) with such shifts were analyzed (Supplementary Fig. 13). The

same analysis as in Figure 7 showed that post SPWR patterns have the same

incidence for learning the first or the second rules.
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