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Abstract— The Extended RItz Method (ERIM) can be used
to face optimal decision and control problems when finding the
global solution is hard, because the problem is ill-conditioned or
we can only compute the solution via numerical approximations.
It consists in constraining the control functions to take on a
fixed structure with a certain number of free parameters to
be optimized. We will show the use of such method for the
solution of a communication problem in a mixed (analog/digital)
transmission environment. A noisy channel is used to convey
information from a limited-energy analog device to a sink; in the
presence of a binary link, how can we reduce the energy spent
for transmission without renouncing reconstruction capability
and real-time encoding?

I. I NTRODUCTION

I T is well known that decentralized optimal control prob-
lems involving the interaction between information and

control of multiple decisional agents can be very diffi-
cult to solve. A classical case is that of Witsenhausen’s
counterexample [1], where in the presence of two decision
makers, a nonlinear optimal solution is known to exist
(but has never been found analytically), which outperforms
any linear strategy, even under LQG (linear information
structure, quadratic cost and Gaussian noise) hypotheses.
Ho et al. [2] pointed out the relation of a specific formu-
lation of Witsenhausen’s problem to a classical information
theoretic one, whose structure, on the other hand, admits
a linear optimal solution (which, however, is not found
by an optimization-theoretic approach, but rather using the
information theoretic concepts of rate-distortion and channel
capacity) - namely, the energy-constrained transmission of
a Gaussian source over a Gaussian additive noise channel
with quadratic distortion measure (the so-called “Gaussian
test channel”). It is also worth noting that in this case the
two decision makers play the role of an encoder and a
decoder, respectively, which turn out to be, in an information
theoretic sense, “instantaneous” or “single letter” (i.e., the
minimum distortion is not achieved asymptotically over long
sequences of source symbols; the reasons for this behavior
have recently been further investigated by Gastpar et al. [3]).
It was shown by Bansal and Başar [4] that the presence in
the cost function of Witsenhausen’s problem of a product
term between the decision variables gives rise to nonlinear-
ity in the optimal solution. In this case, many suboptimal
solutions have been sought in the literature. In Baglietto et
al. [5], the optimal decision strategies are approximated by
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means of fixed-structure parametrized nonlinear functions,
by using the Extended RItz Method (ERIM) [6]. The short
discussion above shows how even small variations in the
problem formulation in a decentralized decision theoretic
framework can produce very different responses. A similar
case is considered in the present paper, where we deal with a
communication problem in the presence of a mixed channel
environment. More specifically, our setting is exactly the
same as the Gaussian test channel, but with the addition
of a parallel binary channel, creating the possibility of a
second “description” between the encoder and the decoder.
Therefore, we are no longer under the hypotheses leading to a
linear structure and instantaneous coding strategies. However,
we want to keep the latter characteristic as a constraint, and
we want to investigate the impact of strategies where the
nonlinearity is reduced to a simple on-off decision, and the
binary channel is used as a signaling one to communicate the
outcome of this decision to the decoder. In order to highlight
the effect of the presence of the binary channel, we assume
it to be noiseless.1 The rationale for considering such on-off
signaling strategies arises, for instance, in the collection of
measurements in a sensor network, where each element can
decide weather to transmit or not the observed realization
of a phenomenon described by a Gaussian random variable
to a sink, according to the “significance” of the measured
value. Refraining from transmission results in lower energy
consumption. The case of the Gaussian vector channel [8] -
where, interestingly enough, the best linear solution turns out
to be also instantaneous and may prevent some components
with low signal-to-noise ratio to be transmitted, in favour
of others - will be the subject of future work: in this paper
we only refer to the single sensor - sink case, which is the
simplest energy-constrained communication problem of this
kind. A suboptimal solution for this kind of problem was
originally considered in [7], where the space of admissible
strategies was constrained in order to obtain a closed-form
solution. It is worth noting that “hybrid” (analog/digital)
communication schemes like the one in our setting are
actually possible and have been considered in the communi-
cations literature (see, e.g. [9],[10]).

Here we will develop a more precise approximation to
the optimal (constrained) strategies. In order to find better
solutions, as close as possible to the global optima, we
suggest to use a functional approximation technique: after
the encouraging results of Baglietto et al. [5] in the solution

1The presence of a noisy BSC (Binary Symmetric Channel) can be taken
into account without substantial modifications of our approach.



of Witsenhausen’s counterexample, the ERIM was chosen,
being a well-known approach for the solution of functional
optimization problems [6][11]. The use of ERIM combined
with team theory consents, with a finite number of parame-
ters, to cover a wider space of admissible solutions, which is
only limited by the smoothness hypotheses of the functions
to be approximated.

The paper is organized as follows. The precise problem
formulation is reported in Section II, where the suboptimal
solution of [7] is also recalled. Section III describes the
application of ERIM to the problem. Special cases and
numerical results are discussed in Sections IV and V. Section
VI contains the conclusions.

II. PROBLEM FORMULATION

Consider the problem in Fig. 1, where the decision maker
DM1 has to decide whether or not to transmit the measured
variablex = y1 (or its elaboration) over the analog channel,
perturbed by noisev, and the decision makerDM2 must
compute the best estimateu2 of the measured variablex,
according to the analog noisy signaly22 and the binary signal
(y21 = u11 = 1 means transmission, whiley21 = u11 = 0
means no transmission) that it receives perfectly fromDM1.
To resume, the channel communication equations are:

y21 = u11 ∈ {0, 1} , y22 = u12 + v ∈ R (1)

and we defineu1 = col(u11, u12) and y2 = col(y21, y22).
The stochastic variables are gaussian, with zero mean and
known variance:

x ∼ N(0, σ2
x) , v ∼ N(0, σ2

v) . (2)

The transmission ofDM1 is subject to a power constraint:

E
x

{

u2
12

}

≤ 1 . (3)

The two decision makers cooperate in order to minimize the
average distortion:

d = E {JD} = E
{

(y1 − u2)
2
}

. (4)

Remark 1: The information vector of the two decision
makers is:I1 = y1, I2 = y2.
The goal of the communication control problem is to find the
optimal functions,γ1, γ2, which implement the two decision
makersDM1,DM2, such that the average distortion in the
communication process is minimum, and the source does not
exceed its physical limit in transmission power.

Remark 2: If σ2
x ≤ 1 andu12 = x, then the constraint (3)

is always honored.
Problem 1: For the communication problem in Fig. 1,

where (1) and (2) hold, find the optimal decision functions
γ1 : R 7→ {0, 1} × R, γ2 : {0, 1} × R 7→ R:

u1 = γ1(y1) (5)

u2 = γ2(y2) (6)

subject to constraint (3), so that the average distortion (4) of
the communication is minimum.

DM1 DM2

v
y21

y22

u11

u12
u2x = y1

{0, 1}

γ1 γ2

Fig. 1. The basic communication problem (encoder/decoder - sensor/sink).

A. Suboptimal analytical solution

Problem 1 suffers from the same difficulties which have
been investigated by Ho et al. [2], in particular the solution
of a complex functional optimization problem. Aware of the
issues, Davoli in [7] gives up searching for global solutions
and instead considers a modified version of the problem,
which allows the analytical computation of a suboptimal
solution. To be precise, the following assumptions are made.

Assumption 1: The structure ofDM1 is partially con-
strained:γ12(y1) = y1γ11(y1).
In other words, the encoder’s decision is on whether to send
the observed value or not, and the binary channel is used to
communicate this decision to the decoder.

Assumption 2: DM2 ignores the shape ofγ11(·) , ϕ(·),
in particular the following conditional probability cannot be
computed:py21|y1

(u11|X).
By applying the person-by-person optimality principle of
team theory [12], finding the optimal solution to Problem 1,
under Assumptions 1 and 2, can be partitioned into two
subproblems2:

min
γ11

E
{

(y1 − u2)
2|γ∗

2

}

(7)

min
γ2

E
{

(y1 − u2)
2|γ∗

11

}

(8)

which have to be solved, respectively, for the encoderDM1

and the decoderDM2 (and in the following will be named
“the encoder/decoder problem”).

Remark 3: In the two subproblems,γ12 is fixed onceγ11

is known, as in Ass. 1; hence, there is no need to condition
the expected values with respect toγ12.
In [7], under the conditionσ2

x = 1, the optimal decision
function γ◦

2 is found after the solution of (7). Afterward, in
virtue of Ass. 2,γ◦

11 is computed analytically; then, applying
Ass. 1,γ◦

12 is found. More precisely, the decoder problem
yields

u◦
2 = γ◦

2(y2) = y21
1

1 + σ2
v

y22 , y21 λ y22 (9)

while the subsequent encoder problem yields

u◦
11 = γ◦

11(y1) =

{

0, |y1| ≤
√

σ2
v

1+2σ2
v

, α

1, otherwise
(10)

2γ∗ means that the functionγ is fixed.



Then, applying Assumption 1 we can computeγ◦
12. The

strategies (10) and (9) constitute a couple of individual op-
timal strategies, or “person-by-person” optimal strategies.It
is obvious that the two assumptions lead to a suboptimal
solution of Problem 1. Nevertheless, it can be proved that
the average distortion produced by the suboptimal strategies,
d̄◦, is always lower then the one produced by the opti-
mal encoder-decoder couple in the absence of the binary
channel, corresponding to Shannon’s optimal linear filters,
d̄Sh = σ2

v/(1 + σ2
v). Some numerical results, proving the

inequality, are reported in Table I: for different signal-to-
noise ratios (keepingσ2

x = 1 and varyingσ2
v) we computed

the α parameter ofγ11 (called the “dead-zone” parameter,
because it delimits the no-transmission interval), Shannon’s
distortion limit for the Gaussian source over the Gaussian
channel, and the numerical approximation of transmission
power and distortion, corresponding to the application of
(9) and (10) onN ∼= 107 different random realizations
(x, v) = (x(k), v(k)) , k = 0, . . . , N − 1. In a practical
way, this shows that the contribution of the binary channel
“enhances” the communication process. In order to find a
better solution (as close as possible to the global optima) to
Problem 1 than the one found in [7], as mentioned before
we will use a functional approximation technique, more
precisely the ERIM. In the following, we report the details
of the procedure which is necessary to apply the ERIM
to find the numerical approximation of the global optimal
solution of Problem 1: specifically, the back-propagation
technique applied to the dynamic structure of the team
and the capability to handle binary signals and particularly
difficult stochastic constraints. For further details on the
ERIM, we refer to [6].

Remark 4: For the simplicity and economy of implemen-
tation, a linear suboptimal solution strongly discouragesthe
resource-demanding search of the global optimal nonlinear
solution. In fact, in this paper a technique is proposed, which
consents the approximation of the global optimal solution,
by means of neural approximators. Their use allows to find
a global cost that is inferior to the linear solution one, and
to keep the solution easy to implement (even in hardware).

σ2
v d̄Sh d̄◦ α P

0.0 0 0 0 1
0.001 0.00099900 0.000010 0.031591 0.999474
0.01 0.00990099 0.000446 0.099015 0.999224
0.03 0.02912621 0.002838 0.168232 0.998225
0.1 0.09 0.020827 0.288675 0.993247
1.0 0.5 0.425461 0.577350 0.953148

TABLE I

PROBLEM 1: SHANNON’ S DISTORTION LIMIT, DAVOLI ’ S DISTORTION

COST, AVERAGE TRANSMISSION POWER, AND PARAMETER α FOR THE

SUBOPTIMAL STRATEGIES, WITH RESPECT TOσ2
v (σ2

x = 1).

III. SOLUTION OF THE COMMUNICATION PROBLEM BY

MEANS OF THEERIM

In order to solve Problem 1, we shall give our functions a
fixed structure. As to the binary signalu11, we shall generate

it by means of a continuous quantityz = γ11(y1) and a ‘sign’
function, i.e.u11 = sgn(z).

The generation of signalu12 will be obtained asu12 =
u11γ12(y1). This implies that the transmission ofγ12(y1)
(that is, the elaboration of the measured variabley1) occurs
only when the binary signal isu11 = 1; if u11 = 0, there is
no transmission (u12 = 0), and the energy for transmission
is saved. The graphical representation of the generation of
u1 is shown in Fig. 2. Within the new assumptions, we can
reformulate Problem 1 as:

Problem 2: For the communication problem in Fig. 1,
where u11 is generated as in Fig. 2, and (1), (2) and (6)
hold, find the optimal decision functionsγ◦

11 : R 7→ R,
γ◦
12 : R 7→ R, γ◦

2 : {0, 1} × R 7→ R, subject to constraint
(3), so that the average distortion (4) of the communication
process is minimum.

Remark 5: From a team theory point of view,γ11, γ12, γ2

can be considered as three agents in a cooperative game.

DM1

u11

u12y1

z

z
0

1
{0, 1}

γ11

γ12

Fig. 2. The generation ofu1 from the encoder, whereu11 = sgn(γ11(y1))
andu12 = u11γ12(y1).

The solution of Problem 2 is not easy, because:

• it is an infinite-dimension functional optimization prob-
lem (as the goal is to find optimal functions);

• the information structureI2 = y2 is not well-defined
until the strategiesγ11, γ12 are fixed; that is the prob-
abilities which are required for the computation of the
solution depend on the solution itself: the problem of
variable estimation is no longer separable from the
control and decision one;

• the optimization problem min
γ11,γ12,γ2

J(γ11, γ12, γ2) is

difficult to solve because of functional dependencies,
i.e. γ2 = γ2(γ11, γ12).

These difficulties are characteristic of team decision prob-
lems with dynamic information structures, and have been
widely investigated since the well known Witsenhausen’s
counterexample [1]. Following the successful approach of
Baglietto et al. [5] for the solution of the aforementioned
problem, we shall apply the ERIM in order to solve Prob-
lem 2. The admissible decision functionsγ11, γ12, γ2 are
constrained to take on a fixed but parametrized structure,



indeed in the form of one hidden layer neural networks:

γ̂j(z,wj) =
ν
∑

i=1

cijϕ(z, κi) + bj , j = 11, 12, 2 (11)

where wj = [{cij}, {κi}, bj ], cij , bj ∈ R; moreover, if
j = 11, 12, κi ∈ R

2 and z = y1; if j = 2, κi ∈ R
3

and z = y2 = col(y21, y22). The hidden layer function
ϕ can be a radial basis function, a sigmoidal one, etc. In
our case, we choose sigmoidal functions,ϕ : R 7→ [−1, 1].
By substituting the control functions with the parametrized
ones (11), the functional costJ(γ11, γ12, γ2) is turned into a
function J(w11,w12,w2), which is dependent on a finite
number of parameters3, namely w , col(w11,w12,w2),
where dim(w) = 3(2ν + ν + 1) = 9ν + 3, if the three
neural networks have the same numberν of “neurons” (we
remind thatν is related to the approximation capability of
the neural network [13]). We can now restate Problem 2.

Problem 3: For the communication problem in Fig. 1,
where u11 is generated as in Fig. 2, and (1), (2) and (6)
hold, find the vectors of optimal parametersw

◦
11,w

◦
12,w

◦
2,

being

u11 =sgn(γ̂11(y1,w11)), u12 = u11γ̂12(y1,w12),

u2 = γ̂2(y2,w2) (12)

whereγ̂11 : R 7→ R, γ̂12 : R 7→ R, γ̂2 : {0, 1}×R 7→ R have
the structure (11), and are subject to constraint (3), so that
the average distortion (4) of the communication is minimum.

Problem 3 is a constrained non-linear programming problem;
it is possible to re-interpret the hard constraint (3), which de-
limits the set of admissible valuesw = col(w11,w12,w2) ∈
W ⊆ R

3ν , as a soft constraint, by means of a penalty
function, which can be added to the cost function to be
minimized. We can define the penalty cost termJP :

JP = κP f(P̄ ) = κP

[

max(P̄ − 1, 0)
]2

(13)

where P̄ is the average transmission power. Obviously,
only a numerical approximation of̄P (over N successive
realizations of the random variablex) can be computed:

P̄ , E
x

{

u2
12

}

∼=
1

N

N−1
∑

i=0

[

u
(i)
12

]2

(14)

Remark 6: The correct choice ofκP is crucial. It weights
the excess of power limit, that is the violation of the original
constraint. It is important to balance it with the cost to be
minimized (the distortion), above all during the “training” of
the networks. For a dissertation on the optimal choice of this
parameter for quadratic penalty functions, see [14].
Then we can restate Problem 3.

Problem 4: For the communication problem in Fig. 1,
whereu11 is generated as in Fig. 2, and (1), (2), (6) and (12)
hold, wherêγ11 : R 7→ R, γ̂12 : R 7→ R, γ̂2 : {0, 1}×R 7→ R

3The use of parametrized nonlinear approximators avoids the exponential
growth of the number of parameters, i.e. incurring in the curseof dimen-
sionality.

have the structure (11), find the vectors of optimal parameters
w

◦
11,w

◦
12,w

◦
2, so that the cost

J̄(w) = E
x,v

{JD + JP } = E
x,v

{

(x − u2)
2 + κP f(P̄ )

}

(15)
of the communication process is minimum.
Problem 4 is now an unconstrained nonlinear programming
problem, which can be solved by a usual gradient descent
method, i.e.

wj(k + 1) = wj(k) − s(k)∇wj
J̄(w(k))+

+ η(wj(k) − wj(k − 1)), j = 11, 12, 2 (16)

wherek is the generic iteration step (k = 0, 1, . . . ,K−1; K
can be defined a priori or be consequent to a stop condition),
s(k) a suitable step-size, andη ∈ [0, 1] a constant weighting
a regularization term. To be more precise, the application of
algorithm (16) requires the following assumption:

Assumption 3: J̄(w) from (15) isC1 (first order continu-
ity) with respect tow.
If Ass. 3 holds, then under certain regularity hypotheses,
J̄(w(k)) = E

x,v
{J(w(k))} is also continuous and differen-

tiable, and:

∇w E
x,v

J(w(k)) = E
x,v

∇
w(k) [J(w(k))] (17)

Unfortunately, it is practically impossible to compute the
gradient analytically or exactly, as a consequence of
the stochastic nature of the problem, and because of
the computational complexity. Therefore, we will opt for
a stochastic approximation technique: a single “realiza-
tion” ∇

w(k)J(w(k))
∣

∣

x=x(k),v=v(k)
is computed, where the

stochastic variablesx(k), v(k) are generated randomly ac-
cording to their known probability density functions. In fact,
in this case a “single” couple(x(k), v(k)) is not sufficient to
compute the gradient, as a consequence of the cost function
J , in particular of the penalty termJP , which requires the
computation of the average power̄P (k):

P̄ (k) ∼=
1

N

N−1
∑

i=0

[

ui
12(k)

]2
(18)

Remark 7: The difference between (14) and (18) is merely
formal. In (18) it is emphasized that at each iterationk,
the average power is computed for the current vector of
parametersw(k).
To be clear, for a single iteration the average global cost
function J̄(w(k)) = J̄(k) is:

J̄(k) = E
x,v

{JD(k) + JP (k)} = E
x,v

{

(x(k) − u2(k))2
}

+

+ κP max

[(

1

N

N−1
∑

i=0

(u
(i)
12 (k))2 − 1

)

, 0

]2

where the following stochastic sequences are generated,
according to their known probability functions:x(k),v(k),



{

x0(k), . . . , xN−1(k)
}

. Then a simple gradient steepest de-
scent algorithm can be applied:

wj(k + 1) = wj(k) − s(k)∇wj
J̄(k)+

+ η(wj(k) − wj(k − 1)), j = 11, 12, 2 (19)

for a generic iteration stepk. The convergence of the method,
which is known asstochastic gradient approximation, is
assured by a particular choice of the step-sizes(k), that must
fulfill a set of conditions [15]. Of course, in order to apply
the algorithm and find the optimal parameters, one has to
compute the partial derivatives of the costJ̄(k) with respect
to the parameters to be optimized,w11(k),w12(k),w2(k):

∂J̄(k)

∂w11(k)
=

∂J̄(k)

∂u11(k)

∂ sgn(γ̂11(y1,w11(k)))

∂w11(k)
, (20)

∂J̄(k)

∂w12(k)
=

∂J̄(k)

∂u12(k)

∂u11(k)γ̂12(y1,w12(k))

∂w12(k)
, (21)

∂J̄(k)

∂w2(k)
=

∂J̄(k)

∂u2(k)

∂γ̂2(y2,w2(k))

∂w2(k)
. (22)

Unfortunately the first derivative cannot be computed be-
cause of the non-differentiability of the step function, which
is necessary for the creation of the binary signal. In order
to consent this computation, we will substitute thesgn(·)
function with a differentiable one, which is designed to fit
the step as close as possible, depending on a suitable tuning
parameter.

Assumption 4: u11 = σB(αB γ̂11(y1)).
Then u12(k) = σB(αB γ̂11(y1,w11(k)))γ̂12(y1,w12(k)).
The continuous sigmoid functionσB(αB ·), R 7→ [0, 1], with
increasingαB , approximates the Heaviside function and is
still differentiable (see Fig. 3). Therefore, by an appropriate
choice of αB , we can use it to generate the binary signal
u11, preserving the differentiability in the problem. In fact,
(20) becomes:

∂J̄(k)

∂w11(k)
=

∂J̄(k)

∂u11(k)

∂σB(αB γ̂11(y1,w11(k)))

∂w11(k)
. (23)
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Fig. 3. The shape ofσB(αBz) from a sigmoid tends to a step-function,
with increasingαB .

For the sake of completeness, we now restate Problem 4 as:
Problem 5: For the communication problem in Fig. 4,

under Ass. 4, where (1), (2), (6) and (12) hold, where
γ̂11 : R 7→ R, γ̂12 : R 7→ R, γ̂2 : {0, 1} × R 7→ R have

the structure (11), find the vectors of optimal parameters
w

◦
11,w

◦
12,w

◦
2, so that the cost (15) of the communication

process is minimum.4

DM1 DM2

v

σB

y21

y22

u11

u12
u2y1

{0, 1}

γ̂2

γ̂11

γ̂12

Fig. 4. Problem 5, which can be solved by the ERIM.

The proposed algorithm for the computation of the op-
timal parameters5 consists in two phases, a forward and
a backward one, and in a back-propagation technique. In
the forward phase we follow the precedence diagram of
the team, and forward all the signals, simulating a com-
munication process. At iteration stepk, when the parame-
ters arew11(k),w12(k),w2(k), a sequence ofN couples
(xi(k), vi(k)) is generated, and all the decisions generated
by the neural networks are computed; the average power of
transmission is estimated. Then, all the partial costs are com-
puted. In thebackward phase, all the gradient components
are computed and eventually “back-propagated” fromDM2

to DM1. The complete list of equations that are necessary for
the computation of (23), (21) and (22), and the consequent
application of the stochastic gradient technique, is reported
in the Appendix. A pseudo-code description of the algorithm
is reported in Alg. 1.

For the numerical simulations performed to train the neural
networks we used a particular decreasing step-size, satisfying
the convergence conditions:s(k) = c1/(c2 + k), with c1 ≈
102 − 104, c2 ≈ 107 − 109. Moreover,ν = 20. Training was
usually stopped afterK > 108 iterations, or whenever the
difference between subsequent weights was properly conver-
gent to zero. To avoid local minima, simulated annealing
methods were used. We point out that once the networks are
trained, the online phase is very quick, consisting only on
a single forward pass (the computational time on a standard
Intel x86 Pc is in the order of10−6 seconds).

IV. T HE STUDY ON THE EVENNESS OFγ11

From [7], we know that the suboptimal solution to the
communication problem has a certain symmetry, i.e.γ11(y1)
is an even function; in particular, it is symmetric with respect
to the average ofy1 (which is always zero in our examples, as
E {x} = 0). However, from numerical simulation we found

that an unconstrained̂γ11 yields better results (in term of

4We point out that Ass. 4 is necessary only for the “training” phase,
as it consents the correct back-propagation of the partial derivatives ofJ̄ .
Once the optimal parameters are found, in a pure online phase itis not
required, and thus the step function can be used (with a further decrease of
complexity).

5Usually called “training” of the neural networks.



Algorithm 1 Find w
◦
11,w

◦
12,w

◦
2 that minimize the average

cost J̄ of Problem 5
Require: E {x} , σ2

x, E {v} , σ2
v ,K,N

Ensure: w
◦
11,w

◦
12,w

◦
2

1: for k = 0 to K − 1 do
2: computes(k)
3: for i = 0 to N − 1 do
4: generatexi(k), vi(k) according to their known

stochastic properties
5: yi

1(k) ⇐ xi(k)
6: ui

11(k) ⇐ σB(αB γ̂11(y
i
1(k),w11(k))), ui

12(k) ⇐
ui

11(k)γ̂12(y
i
1(k),w12(k))

7: yi
21(k) ⇐ ui

11(k), yi
22(k) ⇐ ui

12(k) + vi(k)
8: ui

2(k) ⇐ γ̂2(y
i
21(k), yi

22(k),w2(k))
9: end for

10: P̄ (k) ⇐
1

N

N−1
∑

i=0

[ui
12(k)]2

11: compute (23),(21),(22)
12: updatewj(k), j = 11, 12, 2 using (19)
13: end for
14: w

◦
j ⇐ wj(K), j = 11, 12, 2

average distortion) with respect to âγ11, constrained to be
even with respect toy1. Let us compare the two policies6:

u12 = γ̂12(y1,w
u
12)σB(αB γ̂11(y1,w

u
11)) (24)

u12 = γ̂12(y1,w
c
12)σB(αB γ̂11(|y1| ,w

c
11)) (25)

We trained the networkŝγ11, γ̂12 andγ̂2 (all with ν = 20) as
described in the previous section, and found different weights
for the different policies. We used a modified version of
Nguyen’s technique to initialize the neural networks weights
and biases [16]. Results are shown in Fig. 5, while in Table II
the average energy consumption and the average distortion
are reported. The fact that the unconstrained solutions do
not show any symmetry and outperform the constrained
symmetric ones, may be due to a local optimal solution
which has been reached during the training. Constraining the
neural networks to have an even output, we found another
local solution, which attains worse performance with respect
to the unconstrained one. These considerations suggest the
possibility of improving the optimization phase.

TABLE II

AVERAGE DISTORTION AND ENERGY CONSUMPTION FOR THE POLICIES

(24) AND (25), WITH σ2
v = 1.0.

Constrained even Unconstrained
d̄ 0.4051 0.2144
P̄ 0.9531 0.9923

A. Graphical results

In order to obtain some ‘visual’ evidence of the difference
between the results obtained by (24) and (25), the two

6Concerning the weights, u means “unconstrained”, while c means
“constrained”.
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(c) γ2: Constrained even and unconstrained

Fig. 5. Encoder and decoder strategies for the policies (25)and (24), with
σ2

v = 1.0. Wheny21 = 0, u2 could be found analitically. Nevertheless we
report the output of the corresponding neural network for this situation in
both cases.

Fig. 6. A gray-scale image, with a gaussian-like histogram.



(a) Constrained evenγ11

(b) Unconstrainedγ11

Fig. 7. The gray-scale image of Fig. 6 (left) as it is transmitted by the
encoder (u12) and (right) the image reconstruction (u2). In both cases, the
gray-scale values have been normalized so thatσ2

x = 1.0; the channel noise
also hasσ2

v = 1.0.

TABLE III

AVERAGE DISTORTIONd̄ FOR THE IMAGE IN FIG. 6 AFTER THE

APPLICATION OF THE POLICIES(24) AND (25).

σ2
v Constrained even (a) Unconstrained (b)

1.0 0.580202 0.437513
0.1 0.011642 0.0102578

DM1 DM2

v
y21

y22

u11

u12
u2y1

{0, 1}

γ2

Fig. 8. The “receiver” problem.

σ2
v d̄s d̄a Ps Pa

0.01 0.0004 0.0003 0.9992 0.9977
0.1 0.0208 0.0199 0.9932 0.9931
1.0 0.4254 0.3824 0.9531 0.9518

TABLE IV

“RECEIVER PROBLEM”: DISTORTION COST AND AVERAGE

TRANSMISSION POWER FOR THE SUBOPTIMAL(S) AND THE NEURAL

APPROXIMATED (A) SUBOPTIMAL SOLUTION. (σ2
x = 1).

policies have been applied to the following example: a
gray-scale image sent through a noisy analog channel.7

The image, which is natively a bi-dimensional source, is
transformed into a mono-dimensional source by sending one
pixel value per time, in raster order (i.e., from the upper
left corner of the image to the bottom right corner of the
image, line by line from left to right). The image must have
a Gaussian-like histogram, i.e., the distribution of values
between 0 and 255 has a Gaussian shape (see Fig. 6)8;
then, the gray values are scaled and shifted from the discrete
interval [0, 255] so that the image becomes a Gaussian source
with zero mean and unitary variance. Tests were performed
for two different channel Gaussian noises,σ2

v = 0.1, 1.0. In
Table III average distortions are reported for the two cases.
In Fig. 7 the transmitted and estimated images are shown in
the case of worst noise. It is evident that the unconstrained
policy outperform the constrained one not only from the point
of view of the distortion, but from the point of view of the
intelligibility of the estimated image.

V. I NDIVIDUAL OPTIMAL STRATEGIES AND SUBOPTIMAL

SOLUTIONS

In Section II-A suboptimal analytical solutions to Prob-
lem 1 have been considered. In the following we shall discuss
how we solved the second subproblem (8) (the first, (7) is
scarsely interesting, as once fixedDM2, γ11 can be found
analytically) through the same method we have described
in the previous sections, that has been applied to solve
Problem 1.

The reformulation of the “receiver problem”, defined by
(8) and generating the individual optimal strategyγ◦

2 , is:
Problem 6: For the communication problem in Fig. 8,

under Ass. 4, where (1) and (2) hold, whereγ̂2 : R 7→ R has
the parametrized structure (11), namelyγ̂2(y2,w2), and

γ12(y1) = xγ11(y1) (26)

γ11(y1) =

{

0, |x| ≤
√

σ2
v

1+2σ2
v

, α

1, otherwise
(27)

find the vector of optimal parametersw◦
2, so that the cost

(15) of the communication process is minimum.
The result of the neural training is that whenever a transmis-
sion occurs (y11 = 1), the shape of̂γ2 tends to be piecewise
linear, with different inclinations; in the other case (y11 = 0)
γ̂2 is zero, which is the known average of the stochastic
variable x, and the better estimate ofx in the case of no
transmission, as found before. Some numerical results for
the average power and distortion are presented in Table IV.

VI. CONCLUSIONS

In this paper, a neural approach to the optimal control of
an energy constrained communication process for a sensor

7The use of an image, in this case, is purely explanatory: it is useful to
give a qualitative idea of the effects of the two policies.

8It is not fundamental to have a “precise” Gaussian histogram, because it
is rare to find a natural image with this property (usually to have a “really”
Gaussian histogram it is necessary to use a synthetic image).



and sink couple is presented. The optimal control problem
is difficult to solve; nevertheless, we can approximate the
optimal solution thanks to the well known approximation
properties of the Extended RItz Method. The enhancement of
the proposed method with respect to a previously addressed
analytical solution is significant. In fact, a suboptimal solu-
tion could be found analytically only after a sequence of as-
sumptions, which limited the space of admissible strategies.
Neural approximators and team theory, with suitable training,
can yield better results in the solution of the problem, even
in the presence of stochastic constraints and binary signals.

APPENDIX

In the following, the equations which are necessary to
compute the partial derivatives of the global costJ̄(k) with
respect to all the parameters to be optimized (see (23), (21),
(22)) as explained in Section III, are reported. We remind that
the cost to be minimized is̄J(k) = J̄D(k) + J̄P (k), where
J̄D is the distortion termJ̄D(k) = E

{x,v}

{

[x − u2]
2
}

=

E{[x− γ̂2(y2,w2(k))]2} and J̄P the penalty termJ̄P (k) =

E
{x,v}

{

κP f(P̄ (k))
}

= E{κP

[

max
(

P̄ (k) − 1, 0
)]2

}. At it-

eration stepk, the average transmission power is com-
puted by Eq. 18 after the generation of a suitable num-
ber N of different realizations of the stochastic variables
{

xi(k), vi(k)
}N−1

i=0
. We also remind that

xi(k) =yi
1(k), ui

11(k) = σB

[

αB γ̂11(y
i
1(k),w11(k))

]

,

ui
12(k) =ui

11(k)γ̂i
12(y

i
1(k),w12(k)),

yi
21(k) =ui

11(k), yi
22(k) = ui

12(k) + vi(k),

ui
2(k) =γ̂2(y

i
21(k), yi

22(k),w2(k)).

The partial derivatives ofJD with respect to the signals
are listed hereinafter.

∂J̄D(k)

∂u2(k)
=

1

N

N−1
∑

i=0

∂JD(k)

∂ui
2(k)

= −
2

N

N
∑

i=1

[

xi(k) − ui
2(k)

]

,

(28)

∂J̄D(k)

∂u11(k)
=

1

N

N−1
∑

i=0

∂JD(k)

∂ui
11(k)

=

=
1

N

N−1
∑

i=0

∂JD(k)

∂ui
2(k)

[

∂ui
2(k)

∂yi
21(k)

+
∂ui

2(k)

∂yi
22(k)

γ̂12(y
i
1(k),w12(k))

]

,

(29)

∂J̄D(k)

∂u12(k)
=

1

N

N−1
∑

i=0

∂JD(k)

∂ui
2(k)

∂ui
2(k)

∂yi
22(k)

ui
11(k). (30)

The partial derivatives ofJP with respect to the signals are
listed hereinafter.

∂J̄P (k)

∂u2(k)
=

κP

N

N−1
∑

i=0

∂f(P̄ (k))

∂ui
2(k)

= 0, (31)

∂J̄P (k)

∂u12(k)
=

1

N

N−1
∑

i=0

∂J̄P (k)

∂ui
12(k)

=
2κP

N

∂f(P̄ (k))

∂P̄ (k)

N−1
∑

i=0

ui
12(k),

(32)

∂J̄P (k)

∂u11(k)
=

2κP

N

∂f(P̄ (k))

∂P̄ (k)

N−1
∑

i=0

ui
11(k)γ̂2

12(y
i
1(k),w12(k)).

(33)

After the computation of the derivatives, the values of
the three neural networks’ weights,w11(k),w12(k),w2(k),
are updated through the stochastic technique described by
Eq. 19. For further details on the implementation of the
algorithm, see [17].
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