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A Control Approach for Thrust-Propelled
Underactuated Vehicles and its application to

VTOL drones
Minh-Duc Hua, Tarek Hamel, Member, IEEE, Pascal Morin, Claude Samson

Abstract—A control approach is proposed for a class of
underactuated vehicles in order to stabilize reference trajectories
either in thrust direction, velocity, or position. The basic modeling
assumption is that the vehicle is propulsed via a thrust force along
a single body-fixed direction and that it has full torque actuation
for attitude control (i.e. a typical actuation structure for aircrafts,
Vertical Take-Off and Landing (VTOL) vehicles, submarines,
etc.). Additional assumptions on the external forces applied to
the vehicle are also introduced for the sake of control design and
stability analyses. They are best satisfied for vehicles which are
subjected to an external force field (e.g. gravity) and whose shape
induces lift forces with limited amplitude, unlike airplanes but as
in the case of many VTOL drones. The interactions of the vehicle
with the surrounding fluid are often difficult to model precisely
whereas they may significantly influence and perturb its motion.
By using a standard Lyapunov-based approach, novel nonlinear
feedback control laws are proposed to compensate for modeling
errors and perform robustly against such perturbations. Simu-
lation results illustrating these properties on a realistic model of
a VTOL drone subjected to wind gusts are reported.

Index Terms—Thrust-propelled vehicle, underactuated sys-
tem, nonlinear control, velocity stabilization, trajectory tracking,
bounded nonlinear integrator, anti-windup.

I. INTRODUCTION

Airplanes, helicopters and other VTOL vehicles, blimps,
rockets, hydroplanes, ships and submarines are generally un-
deractuated. These vehicles are basically composed of a main
body immersed in a fluid medium (air or water), and they are
commonly controlled via i) a propulsive thrust force directed
along a body-fixed privileged axis, and ii) a torque vector with
one, two or three complementary independent components in
charge of modifying the body’s orientation. These vehicles
are underactuated in the sense that, apart from the direction
associated with the thrust force, the other possible direction(s)
of displacement is (are) not directly actuated. Interestingly,
the above-mentioned structural similitude has seldom been
exploited to develop a general control framework for these
vehicles. Various reasons can be proposed. For instance, there
exist important differences between an airplane and a ship. The
first vehicle evolves in air and 3D-space, whereas the other is
(partly) immersed in water and essentially moves on a 2D-
plane; the ambient fluid is not the same and it produces either
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aerodynamic or hydrodynamic reaction forces with different
properties and magnitude; gravity is not compensated by
buoyancy in the case of an airplane, but lift-force effects
are more systematic and preponderant; added-mass effects
mostly concern ships, submarines, and blimps; etc.. Another
probable reason is historical: aerospace and naval engineering
communities involved in the control of these vehicles have
not addressed common issues (the design of autopilots, for
instance) in a coordinated manner, nor at the same time, nor
with the same constraints (physical, economical, etc.), nor
even with the same approaches. In this paper we consider the
case of vehicles moving in 3D-space with four independent
actuators (one force and three torques), knowing that six
actuators would be necessary for full actuation. This is a
common actuation structure for many underactuated vehicles
evolving in 3D-space. Modeling assumptions concerning the
environmental forces (drag, lift, gravity, etc) are introduced
to simplify the control design and stability analyses. They
basically infer i) that lift forces issued from the environment
are limited in intensity and ii) the existence of an external
force field. They are, for instance, satisfied by most wingless
VTOL vehicles subjected to the action of gravity [9], [11],
[19], [20]. Extension of the approach to vehicles whose motion
relies on intense lift forces, like e.g. airplanes [1], remains
to be worked out. As for the assumption about the existence
of an external force field, it essentially serves to exclude the
difficult case when the linearized system along the considered
reference trajectory is not controllable. This case corresponds,
e.g., to situations when buoyancy exactly annihilates the action
of gravity, as this may happen in the 3D-case of submarines
and blimps or in the 2D-case of a sea ship, and when the
reference trajectory consists of a fixed “pose” (i.e. position
and orientation). Specific (and still prospective) nonlinear
techniques are then required to solve the stabilization problem
(see e.g. [23]).

An important motivation of this work is related to robustness
issues, which can be critical for the systems under consider-
ation due to a combination of factors. First, the complexity
of aero/hydro-dynamic effects impedes to obtain a precise
dynamical model, valid in a large operating domain. Then,
vehicles are often subjected to rapidly changing perturbations
(wind gusts, sea currents, etc.) whose magnitude can be
commensurable with the available actuation power. Finally,
measurement/estimation errors of the vehicle’s pose can be
significant. Of course, these issues have long been investigated
in the context of linear control (see e.g. [1], [8], [29], [34]
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and the references therein). More generally, all kinds of
linear control methods (Nyquist-like techniques [7], [34], H2

and H∞ optimization [10], [21], LQR optimal control [18],
[34], etc.) have been applied to these systems. They concern
Single-Input-Single-Output (SISO) Control Augmented Sys-
tems (CAS) associated with the regulation of a single variable
(pitch, yaw, roll angle, altitude, etc.) as well as Multi-Input-
Multi-Output (MIMO) CAS. However, they only guarantee a
limited domain of stability and are often based on restrictive
assumptions (e.g. hovering regime without wind gusts for
VTOL vehicles). For these reasons, nonlinear control design
methods (feedback linearization, backstepping, sliding mode,
etc.) have been increasingly investigated in recent studies [3],
[12], [15], [20], [25], [28], [33]. Robustness issues are par-
ticularly important for light and/or small vehicles, like blimps
or reduced-scale VTOL vehicles and AUVs (Autonomous Un-
derwater Vehicles) because they are very sensitive to wind or
current-induced perturbations. The last decades have witnessed
an increasing interest in the construction and control of these
vehicles. Let us mention the examples of the HoverEye [5],
[6], [27], [28], X4-flyer [11], [35], iStar [19], or AVATAR
[31] VTOL vehicles, the AURORA airship [2], [24], the
ROGUE underwater glider [18], or the Minesniper AUV
[30]. This interest is much related to the versatility of these
systems for surveillance and inspection missions, and to the
development of low-cost and low-weight embarked sensors
(Inertial Measurement Unit, camera, etc.). However, nonlinear
control studies focusing on robustness issues for these systems,
like [2], [24], [28] for instance, are not numerous. The present
paper is also a contribution to the design and analysis of robust
nonlinear control laws.

In this paper, several control modes typically associated with
different levels of motion autonomy are considered. Particular
attention is paid to the three following problems: i) stabiliza-
tion of (desired) reference thrust directions, ii) stabilization
of reference linear velocities, and iii) stabilization of refer-
ence position-trajectories. The first and second problems re-
late typically to manual joystick-augmented-control situations,
whereas the third one is associated with fully autonomous
motion applications. At first glance, the proposed approach
is reminiscent of methods described in [9], [28], [32] for the
stabilization of hovering VTOL vehicles, based on the idea of:
i) using the thrust force and the vehicle’s orientation as control
variables to stabilize the vehicle’s velocity and/or position, and
ii) applying a classical backstepping procedure or a high-gain
controller to determine torque-inputs capable of stabilizing the
desired orientation. Here, instead of the vehicle’s orientation,
we use its angular velocity as intermediary control input. This
alleviates several difficulties associated with control inputs
which belong to a compact manifold and enter the system’s
equation in a non-affine manner. It also allows to cast linear
velocity and position control problems as natural extensions
of the basic thrust direction control one. Another originality
of this paper concerns unmodeled dynamics. It is well-known
from Control Theory that integral correction constitutes an
effective means to compensate for modeling, measurement,
and/or estimation static errors (biases). However, it is also
well-known that this type of correction may generate insta-

bility and windup problems. Many control design techniques
addressing these problems have been proposed during the last
decades, like linear Anti-Windup Bumpless Transfer (AWBT)
schemes (see e.g. [17] and the references therein), or nonlinear
nested saturations approaches (see e.g. [36]). AWBT control
schemes can efficiently reduce windup effects, but their global
stability is difficult to guarantee. Nested saturations approaches
yield bounded correction terms, thus reducing effectively the
risk of saturation of the actuators which could jeopardize
the stability of the controlled system. However, this does not
prevent the integral terms involved in the correction function
to grow arbitrarily large, leading to slow desaturation and
sluggish dynamics. The nonlinear integrator bounding tech-
nique proposed here deals with these problems and is another
contribution of the paper. Finally, the way energy dissipation
produced by motion reaction forces is exploited for the control
design and the stability analyses constitutes to our knowledge
a novel interpretation which justifies the use of simple models
and supports observations made by other authors [30].

The paper is organized as follows. The notation and the
dynamic modeling of the class of systems considered are
recalled in Section II. Assumptions on the external forces
applying to the system (gravity, aero/hydro-dynamic forces,
etc.) are introduced and discussed in this section. By using
a standard Lyapunov-based approach, initial control laws are
derived in Section III under other assumptions which simplify
and facilitate the exposition of the main lines of the approach.
In Section IV, the controllers are modified in order to comply
with more realistic assumptions. Simulation results for a
particular model of a VTOL vehicle are described in Section
V to illustrate the concepts. Finally, concluding remarks are
given in Section VI.

II. NOTATION AND MODELING

A. Notation

In this paper, we focus on vehicles which can be modeled
as rigid bodies immersed in a fluid. The following notation is
used.
• G is the vehicle’s center of mass, m its mass, and J its

inertia matrix. Both m and J are assumed to be constant
• I={O;−→ı o,−→ o,

−→
k o} is a fixed (inertial or Galilean) frame

with respect to (w.r.t.) which the vehicle’s absolute pose is
measured. This frame is chosen as the NED frame (North-
East-Down) with −→ı o pointing to the North, −→ o pointing
to the East, and

−→
k o pointing to the center of the earth.

B={G;−→ı ,−→ ,−→k } is a frame attached to the body. The vector−→
k is parallel to the thrust force axis. This leaves two possible
and opposite directions for this vector. The direction here
chosen (

−→
k pointing downward nominally) is consistent with

the convention used for VTOL vehicles.
• The vector of coordinates of G in the basis of the

fixed frame I is denoted as x = (x1, x2, x3)
T with the T-

symbol used for the operation of transposition. Therefore,−−→
OG = x1

−→ı o + x2
−→ o + x3

−→
k o, a relation that we also

write in a more concise way as
−−→
OG = (−→ı o,−→ o,

−→
k o)x.

The orientation of the body-fixed frame B w.r.t. the inertial
frame I is represented by the rotation matrix R. The column
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Fig. 1. Inertial and body-fixed frames.

vectors of R correspond to the vectors of coordinates of
−→ı , −→ , −→

k expressed in the basis of I. The vector of
coordinates associated with the linear velocity of G w.r.t. I is
denoted as ẋ = (ẋ1, ẋ2, ẋ3)

T when expressed in the basis of I,
and as v = (v1, v2, v3)

T when expressed in the basis of B, i.e.
−→v = d

dt

−−→
OG = (−→ı o,−→ o,

−→
k o)ẋ = (−→ı ,−→ ,−→k )v. The angular

velocity vector of the body-fixed frame B relative to the fixed
frame I, expressed in B, is denoted as ω = (ω1, ω2, ω3)

T .
The notation defined in the present item will also be used
with the subscript “r” to denote reference trajectories, i.e.
the trajectories to be stabilized. For example, −→v r denotes a
reference velocity vector associated with the vehicle’s velocity
vector −→v . We assume that the reference trajectories are defined
on R+ = [0,+∞).
• The ambient fluid velocity w.r.t. I is denoted as −→v f =

(−→ı o,−→ o,
−→
k o)ẋf = (−→ı ,−→ ,−→k )vf . The “apparent velocity” of

the body −→v a is the difference between the velocity of G and
the ambient fluid velocity, i.e. −→v a = −→v −−→v f . One has also
−→v a = (−→ı o,−→ o,

−→
k o)ẋa = (−→ı ,−→ ,−→k )va, with ẋa = ẋ − ẋf

and va = v − vf .
• {e1, e2, e3} denotes the canonical basis of R

3. ∀u ∈ R
3,

S(u) denotes the skew-symmetric matrix associated with the
cross product by u, i.e. S(u)v = u× v, ∀v ∈ R

3, with × the
cross product operation. The Euclidean norm in R

n is denoted
as |.|, and the inner product as 〈., .〉.
• A function η : [to,+∞) −→ R

p is u.b. (for ultimately
bounded) by a constant c, if there exists a time t1 such that
|η(t)| ≤ c, ∀t ≥ t1. An output y = h(x, t) ∈ R

p is u.u.b.
(for uniformly ultimately bounded) by a constant c along the
solutions to a differential equation ẋ = f(x, t) if, ∀(xo, to),
y(.) = h(x(., xo, to), .) is u.b. by c, where x(τ, xo, to) denotes
the solution at time τ with initial condition xo at t = to.

B. System modeling

We consider mechanical systems with four control inputs:
one force input T (also termed “thrust” input) along the body-
fixed direction

−→
k to create longitudinal motion, and three

independent torque inputs to monitor the vehicle’s attitude.
We assume that the thrust

−→
T = −T−→k applies at a point that

lies on, or close to, the axis {G;
−→
k }, so that it does not create

an important torque at G. The torque actuation is typically
obtained via secondary propellers (X4-Flyer), rudders or flaps
(HoverEye), control moment gyros (see [37]), etc. Complete
torque actuation allows one to modify the vehicle’s attitude in
order to direct the thrust at will. All external forces acting on
the vehicle (gravity and buoyancy forces, added-mass forces,

and dissipative aerodynamic or hydrodynamic reaction forces)
are summed up in a vector

−→
F e, so that the total resultant

force applied to the vehicle is
−→
F = −T−→k +

−→
F e. In the

absence of motion reaction forces exerted by the ambient
fluid on the vehicle, only gravity, eventually counteracted by
buoyancy forces of roughly constant magnitude, is present in−→
F e. This force can then be modeled as a constant vector
parallel to the {0;−→k o} axis associated with the fixed frame
I. However, due to aerodynamic or hydrodynamic reaction
forces, this vector generally depends on the apparent body
velocity and acceleration (via added-mass effects), i.e. on
(ẋa, ẍa, ω, ω̇) as well as on the vehicle’s attitude R. It may also
depend on the vehicle’s position when the characteristics of
the ambient fluid are not the same everywhere. For simplicity,
this latter dependence will not be considered here. Moreover,
whereas the dependence on accelerations is roughly linear, it
is known that the intensities of motion reaction forces vary
like the square of |ẋa|. Therefore, the intensity and direction
of
−→
F e can vary considerably as soon as the vehicle’s velocity

is modified significantly, or due to important modifications
of the ambient environment (waves, wind, etc.). Modeling
the various components of this function is, in general, time
consuming and costly. This modeling effort is necessary for
simulation purposes, and also for the optimization of the
vehicles’ geometrical and mechanical characteristics. A model
of
−→
F e can also be of use for control design purposes, but

the knowledge of a precise and well-tuned model may not
be as critically important as for simulation. Indeed, a well-
designed feedback control is expected to grant robustness -
in the sense of performance insensitivity- with respect to
model inaccuracies. Furthermore, using on-line measurements
or estimations of

−→
F e based on a crude model in the control

can be preferable to using a sophisticated but nonetheless
imperfect model of this force. In [14], an estimation of−→
F e based on the measurement of the vehicle’s velocities
and a high gain observer is proposed. Since there exists a
variety of solutions to this problem, we henceforth assume
that

−→
F e and its time-derivative are measured and/or estimated

with “reasonably” good accuracy. Although the present paper
focuses almost exclusively on control aspects we are aware
that, for many applications, measurement/estimation issues are
complementary and critically important.

Applying the fundamental theorem of Mechanics in the
coordinates x yields

mẍ = −TRe3 + Fe(ẋ, ẍ, R, ω, ω̇, t) (1)

with Fe ∈ R
3 the vector of coordinates of

−→
F e expressed in the

inertial frame. By expressing the dynamics in the body-fixed
frame B, and by using Euler’s theorem of angular momentum,
one obtains the following equations (see e.g. [8, Ch. 2],[34,
Ch. 1])

Σ1 :





ẋ
mv̇

Ṙ



=





Rv
−mS(ω)v − Te3 +RTFe(ẋ, ẍ, R, ω, ω̇, t)

RS(ω)





Σ2 : Jω̇ =−S(ω)Jω + Γ + Γe(ẋ, ẍ, R, ω, ω̇, t)
(2)
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with Γ = (Γ1,Γ2,Γ3)
T the vector of torque inputs and Γe

the external torque induced by the external forces. Equation
(2) shows that the dynamical subsystem Σ2 is fully-actuated.
Exponential convergence of the angular velocity ω to any
bounded desired reference value is then theoretically possible,
especially when the external forces apply at points close to
the center of mass G and |Γe| is negligible. In this case,
one may view ω as an intermediary control input. In practice,
this corresponds to the classical decoupled control architecture
between inner and outer loops. The inner control loop provides
high gain stabilization of the vehicle’s angular velocity based
on direct measurement of the angular velocity from the Inertial
Measurement Unit. The outer control loop uses pose mea-
surement along with estimation or measurement of the linear
velocity as sensor inputs, and the angular velocity set point
and thrust intensity as control inputs. For many applications,
the time-scale separation between the two loops is sufficient to
ensure that the interaction terms can be ignored in the control
design. Therefore, in the sequel we consider T and ω as the
control inputs, and we focus on the control of the subsystem
Σ1.

C. Assumptions

To simplify both the control design and the associated
analyses we make some assumptions discussed hereafter.

Assumption 1 Fe depends only on the vehicle’s linear ve-
locity ẋ and the independent time variable t. Moreover, it
is continuously differentiable with respect to these variables,
and the functions t 7−→ Fe(ẋ, t), t 7−→ ∂Fe

∂ẋ (ẋ, t), and
t 7−→ ∂Fe

∂t (ẋ, t) are bounded on R+, uniformly with respect
to ẋ in compact sets.

The non-dependence of
−→
F e on the vehicle’s attitude is

physically justified when the aerodynamic (and/or hydrody-
namic) forces do not depend on the vehicle’s orientation, a
property which depends essentially on the vehicle’s shape.
This assumption is clearly violated in the case of airplanes
which are subjected to lift forces whose intensities are very
sensitive to angles of attack, but it better holds in the case of
VTOL vehicles, as examplified by the “HoverEye” of Bertin
Technologies Group. As for the non-dependence upon the
angular velocity ω, Assumption 1 is better justified when i)
the external forces apply at points close to the vehicle’s center
of mass, ii) motion reaction forces resulting from the vehicle’s
rotation can be neglected when compared to those produced
by translational motion. Finally, the non-dependence on the
acceleration variables ẍ and ω̇ is justified when added-mass
effects can be neglected. These effects can be ignored when
the density of the body is much more important than that
of the ambient fluid. The example of a dense spherical body
whose center coincides with its center of mass can be used to
concretize a physical situation for which Assumption 1 holds
with a good approximation.

The following two complementary assumptions are much
less restrictive than the previous one. However, they are very
important for the control design and analyses presented in
Section IV.

Assumption 2 There exist two real numbers c1 ≥ 0, c2 > 0
such that

|Fe(ẋ, t)| ≤ c1 + c2|ẋ|2 , ∀(ẋ, t) ∈ R
3 × R+ (3)

Assumption 3 There exist two real numbers c3 ≥ 0, c4 > 0
such that

ẋTFe(ẋ, t) ≤ c3|ẋ| − c4|ẋ|3 , ∀(ẋ, t) ∈ R
3 × R+ (4)

Assumption 2 indicates that the intensity of
−→
F e cannot grow

faster than the square of the intensity of the vehicle’s velocity
vector. This is consistent with common models of aerodynamic
and hydrodynamic drag and lift forces (see e.g. [8, Ch. 2,
3], [34, Ch.2]). The constant c1 allows to take into account
the force of gravity, when it is active, and the action of
perturbation forces produced by wind or sea-current. Assump-
tion 3 follows from Assumption 2 and the “dissipativity”, or
“passivity ”, property of drag and lift forces. In particular, it
indicates that for “large” velocities, the negative work of these
forces increases like the cube of the body’s apparent velocity,
and thus becomes predominant when all other forces remain
bounded.

Finally, the following assumption is made to avoid non-
essential complications in the analyses.

Assumption 4 The reference velocity −→v r is bounded in norm
on R+ by a constant v̄r, and its first and second order
derivatives d

dt
−→v r and d2

dt2
−→v r are well-defined and bounded

on this set.

III. BASICS OF THE CONTROL DESIGN

Using Assumption 1 the subsystem Σ1 of System (2) can
be rewritten as

ẋ = Rv
v̇ = −S(ω)v − ue3 +RT γe(ẋ, t)

Ṙ = RS(ω)
(5)

with γe(ẋ, t) := Fe(ẋ, t)/m called the “apparent accelera-
tion”, and u := T/m and ω used hereafter as the control
inputs.

This section is devoted to the stabilization of either the
vehicle’s thrust direction, or its linear velocity, or its position.
The angular velocity ω3 about the thrust axis is not involved in
the realization of these control objectives, so that this degree
of freedom can be used for complementary objectives and
defined case-by-case, depending on the considered vehicle and
application. A priori, there are infinitely many possibilities at
this level, starting with the simplest choice ω3 = 0. In [26]
(pages 105–108) this variable is determined in order to take
advantage of lift forces associated with an asymmetric VTOL
vehicle. In the sequel, to simplify the control design and the
associated analyses we assume that ω3 is well-defined and
bounded on R+.
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A. Thrust direction control

Let γ ∈ R
3 denote the normalized vector (|γ| = 1) of

coordinates of the desired thrust direction expressed in the
inertial frame I. In practice this desired direction may be
specified by a manual joystick. The objective is to stabilize
the vehicle’s thrust direction about the reference vector γ or,
equivalently, to stabilize RT γ about e3. Define

γ̄ := RT γ (6)

and let θ̃ ∈ (−π;π] denote the angle between the two unit
vectors e3 and γ̄, so that cos θ̃ = γ̄3, the third component of
γ̄. The control objective is also equivalent to the asymptotic
stabilization of θ̃ = 0. The first control result of this paper is
stated next.
Proposition 1 Let k denote a strictly positive constant, and
apply the control law

ω1 = − kγ̄2
(1+γ̄3)2

− γTS(Re1)γ̇

ω2 = kγ̄1
(1+γ̄3)2

− γTS(Re2)γ̇
(7)

to the system Ṙ = RS(ω). Then the equilibrium point θ̃ = 0
of the controlled system is exponentially stable with domain
of attraction equal to (−π, π).

The proof of this proposition is given in Appendix B. In what
follows we show how this controller can be extended to the
linear velocity and position control problems.

Remark 1: The above control law (like those presented
in the forthcoming sections) makes use of the feedforward
term γ̇, which is not always available in practice. Simulations
with the VTOL model and numerical data of Section V have
shown that good performance (in the sense of “small” ultimate
tracking errors) is also obtained when γ̇ in (7) is set equal to
zero and its actual value is not too large. This can be justified
rigorously using the Lyapunov function (33) of Appendix B.

Remark 2: To simplify the stability statement, the equi-
librium set and domain of attraction have been expressed in
term of the variable θ̃. However, Proposition 1 can be stated
without referring to θ̃, by defining the equilibrium set as
{R∗ : R∗e3 = γ} and the associated domain of attraction
as {R : 〈Re3, γ(0)〉 6= −1}.

B. Velocity control

Let ẋr denote the reference velocity expressed in the inertial
frame I, ẍr its time-derivative, and ṽ := RT (ẋ − ẋr) the
velocity error expressed in the body-fixed frame B. Instead
of defining γ as a reference unit vector as in the previous
subsection, we now define

γ(ẋ, t) := γe(ẋ, t)− ẍr(t) (8)

One then obtains the following error model
˙̃x = Rṽ (9a)
˙̃v = −S(ω)ṽ − ue3 +RT γ(ẋ, t) (9b)

Ṙ = RS(ω) (9c)

with either x̃ :=
∫ t

0
(ẋ(s) − ẋr(s)) ds, the integral of the

velocity error, or x̃ := x − xr, the position tracking error
when a reference trajectory xr is specified.

The problem of asymptotic stabilization of the linear veloc-
ity error ẋ− ẋr to zero is clearly equivalent to the asymptotic
stabilization of ṽ to zero. Equation (9b) indicates that ṽ ≡ 0
implies that

−ue3 +RT γ(ẋ, t) = 0 (10)

As long as γ(ẋ, t) is different from zero, one can define a
locally unique thrust direction solution to the above equation.
However, this solution cannot be prolonged by continuity at
γ = 0. As a matter of fact, one can verify that this singularity
corresponds to the case when the linearization of System
(9b)–(9c) at any equilibrium point (ṽ, R) = (0, R∗) is not
controllable. As explained in the introduction, this critical
case is not the subject of the present paper. Beyond the
technical difficulty associated with this case (which could
be addressed in future studies), the main reason is that the
vanishing of γ does not correspond to a generic situation for
a large class of underactuated mechanical systems (those for
which γe(ẋr(t), t) is nominally different from zero). We thus
essentially discard this issue here by assuming that

Assumption 5 There exists a constant δ > 0 such that
|γ(ẋ, t)| ≥ δ for all (ẋ, t) ∈ R

3 × R+.

Although this assumption is restrictive, it simplifies the expo-
sition of a basic and generic control design. In Section IV,
however, we will weaken this assumption and propose an ad-
hoc adaptation of the control design in order to ensure the
well-posedness of the controller’s expression and maintain a
minimal control of the vehicle when |γ| gets close to zero.
When both Assumption 5 and relation (10) hold, using (6) one
deduces that γ̄ = ±|γ|e3. Let θ̃ ∈ (−π;π] denote the angle
between the two unit vectors e3 and γ̄

|γ| , so that cos θ̃ = γ̄3
|γ| .

The control objective implies that either θ̃ = 0 (i.e. γ̄ = |γ|e3)
or θ̃ = π (i.e. γ̄ = −|γ|e3) must be asymptotically stabilized.
The choice between these two equilibria is often made via
simple physical considerations such as minimizing the energy
consumption in relation to actuator’s efficiency and vehicle’s
shape, or by taking into account the unilaterality of the thrust
direction as in the case of most VTOL vehicles. Without
loss of generality, we henceforth assume that the choice has
been made to stabilize θ̃ = 0. Based on the above notation
the second control result of this paper is stated in the next
proposition.

Proposition 2 Let k1, k2, k3 denote strictly positive constants,
and apply the control law

u = γ̄3 + |γ|k1ṽ3
ω1 = −|γ|k2ṽ2 −

k3|γ|γ̄2
(|γ|+ γ̄3)2

− 1

|γ|2 γ
TS(Re1)γ̇

ω2 = |γ|k2ṽ1 +
k3|γ|γ̄1

(|γ|+ γ̄3)2
− 1

|γ|2 γ
TS(Re2)γ̇

(11)
to System (9). Suppose that Assumptions 1, 4, and 5 are
satisfied. Then, for the subsystem (9b)–(9c), the equilibrium
point (ṽ, θ̃) = (0, 0) of the controlled system is asymptotically
stable with domain of attraction equal to R

3 × (−π, π).
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The proof of this proposition is given in Appendix C. It is
based on the use of the candidate Lyapunov function

V =
1

2
|ṽ|2 + 1

k2

(

1− γ̄3
|γ|

)

=
1

2
|ṽ|2 + 1

k2
(1− cos θ̃) (12)

whose time-derivative is negative semi-definite along any
solution of the controlled system.

C. Velocity control with integral term

For the stability and convergence analysis of the control
(11), it is implicitly assumed that γ(ẋ, t) = γe(ẋ, t)− ẍr(t) is
perfectly known. In practice however, due in particular to the
difficulty of obtaining precise measures or estimates of Fe,
the apparent acceleration γe is not known exactly, nor is γ
therefore. It is well-known from the theory of linear control
systems that integral correction terms can compensate for
additive perturbations which, in the present case, may take the
form of a constant bias in the measurement (or estimation) of
γe. The objective of this subsection is to show that the control
(11) can be modified in order to still ensure the convergence
of ẋ− ẋr to zero when such a bias is present. To this purpose
let us introduce the following integral term

Iv(t) :=

∫ t

0

(ẋ(s)− ẋr(s)) ds+ I0 (13)

where I0 is an arbitrary constant. Also, let h denote a smooth
bounded strictly positive function defined on [0,+∞) such
that, for some positive constants η, β,

∀s ∈ R, |h(s2)s| < η (14)

∀s ∈ R, 0 <
∂

∂s
(h(s2)s) < β (15)

An example of such a function is h : s 7−→ h(s) = η√
1+s

,
with η a positive constant. Let γ̂e denote the measure (or
estimate) of γe and define now γ as follows (in replacement
of relation (8))

γ := γ̂e − ẍr + h(|Iv|2)Iv (16)

Proposition 3 Apply the control law (11) to System (9) with
γ defined by (16). Suppose that

i) Assumptions 1, 4, and 5, with γ given by (16), are
satisfied,

ii) the measurement (or estimation) error c := γe − γ̂e is
constant,

iii) lim
s→+∞

h(s2)s > |c|.
Then, for System (9b)–(9c) complemented with the equation
İv = Rṽ, there exists a constant vector I∗v ∈ R

3 such that
the equilibrium point (Iv, ṽ, θ̃) = (I∗v , 0, 0) of the controlled
system is asymptotically stable, with domain of attraction
equal to R

3 × R
3 × (−π, π).

The proof is similar to the proof of Proposition 2. It is given
in Appendix D.

Let us briefly comment on the role of the function h and
its properties. The property (14) of h is introduced in order to
limit, via (16), the influence of the integral Iv in the control
action. However, Assumption iii) of Proposition 3 also points
out that the upper-bound η associated with the choice of this

function should not be too small in order to compensate for a
large estimation error c. On the other hand, in view of (16) a
small value for η may reduce the risk of |γ| evolving close to
zero. This policy leads, for instance, to choose η < g in the
case when γe is essentially equal to the gravity acceleration,
and the estimation error c and ẍr are small compared to this
acceleration. These considerations illustrate that a compromise
has to be found, depending on the considered application.

D. Position control

The third control objective is the combined stabilization
of the velocity error ṽ (or ẋ − ẋr) and the position error
x̃ = x−xr to zero. A first solution to this problem is provided
by the control proposed in the previous subsection since, by
setting I0 = x(0) − xr(0) in (13), one has Iv = x̃. Now,
alike the velocity stabilization case, it can be useful (and even
necessary) in practice to complement the control action with
a position error integral correction term. A possibility consists
in using a term proportional to the output z of a classical
integrator of x̃ (i.e. ż = x̃) in the control expression. However,
this solution presents several drawbacks. For example, the
integral correction term may grow very large and this may
in turn cause large overshoots of the position tracking error.
To avoid this problem, and also cope with actuator limitations,
one must saturate the integral term. This can be done in many
ways, some better than others. For instance, it is important to
prevent the so-called desaturation (or windup) problem from
occurring in order to not overly increase the system’s time
response. The solution proposed in this paper is based on
a nonlinear dynamical extension yielding a type of bounded
nonlinear integrator. More precisely, we denote z the solution
to the following differential equation driven by x̃

z̈ = −2kz ż − k2z(z − sat∆(z)) + kzhz(|x̃|2)x̃
(kz > 0, z(0) = 0, ż(0) = 0)

(17)

where hz denotes a smooth bounded strictly positive function
satisfying (14)–(15) for some positive constants ηz, βz , and
sat∆ is a continuous “saturation function” characterized by
the following properties, with ∆ a positive number associated
with this function,
P1. sat∆ is right-differentiable along any smooth curve and

its derivative is bounded.
P2. ∀x ∈ R

3, if |x| ≤ ∆, sat∆(x) = x.
P3. ∃ ∆̄ > 0 such that ∀x ∈ R

3, |sat∆(x)| ≤ ∆̄.
P4. ∀(c, x) ∈ R

3 × R
3 such that |c| < ∆,

|sat∆(x+ c)− c| ≤ |x|.
A possible choice (for which ∆ = ∆̄) is the classical saturation
function defined as

sat∆(x) := xmin

(

1,
∆

|x|

)

(∆ > 0) (18)

One verifies from (17) that ultimate uniform upper-bounds of
|z|, |ż|, and |z̈| are ∆̄+ηz/kz , 2(kz∆̄+ηz), and 6kz(kz∆̄+ηz)
respectively. Define

y := x̃+ z (19)

v̄ := ṽ +RT ż (20)

γ := γ̂e − ẍr + h(|y|2)y + z̈ (21)
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where γ̂e denotes the measurement (or estimation) of γe, and
h is a smooth bounded strictly positive function satisfying
(14)–(15)1 for some constants η, β > 0.

Proposition 4 Let k1, k2, k3 denote strictly positive constants.
Apply the following control law

u = γ̄3 + |γ|k1v̄3
ω1 = −|γ|k2v̄2 −

k3|γ|γ̄2
(|γ|+ γ̄3)2

− 1

|γ|2 γ
TS(Re1)γ̇

ω2 = |γ|k2v̄1 +
k3|γ|γ̄1

(|γ|+ γ̄3)2
− 1

|γ|2 γ
TS(Re2)γ̇

(22)
to System (9) with v̄, γ, and y (which intervenes in the
definition of γ) defined by (20), (21), and (19) respectively.
Suppose that

i) Assumptions 1, 4, and 5, with γ given by (21), are
satisfied,

ii) the measurement (or estimation) error c := γe − γ̂e is
constant,

iii) lim
s→+∞

h(s2)s > |c|,
iv) ∆ > |z∗|, where z∗ denote the unique solution to the

equation h(|z∗|2)z∗ = c.
Then, for System (9) complemented with (17), the equilibrium
point (z, ż, x̃, ṽ, θ̃) = (z∗, 0, 0, 0, 0) of the controlled system
is asymptotically stable, with domain of attraction equal to
R
3 × R

3 × R
3 × R

3 × (−π, π).

The proof of this proposition is given in Appendix E.
The role of the function h has been commented upon in

the previous subsection. For position stabilization, we further
remark that the property (14) of h bounds the contribution of
the position error x̃ in γ defined by (21), and thus also in
the control inputs defined by (22). This limits the influence
of large initial position errors on the control inputs intensity
and reduces the risk of saturating the actuators. Note that the
choice of h is still a matter of compromise. Let us comment
on the role of the coefficient kz . Equation (17) points out
that kz influences the rate of desaturation of z which can
be observed, for instance, when |z| is initially larger than ∆
and x̃ = 0. The larger kz , the faster the desaturation and the
smaller the influence of this integral action on the system’s
time response. On the other hand, since upper-bounds of |z̈|
and |γ| are proportional to kz , a “small” value of kz tends to
limit the risk of saturating the actuators. A large value of kz
also increases the range interval of |γ| and, subsequently, the
risk of getting |γ| close to zero (a value for which the control
is no longer defined). The tuning of kz is thus again a matter
of compromise to be solved case-by-case depending on the
considered application.

E. Control with unidirectional thrust

In many applications the thrust direction cannot be inverted.
This means that only a positive (resp. negative) or null control
u can be applied. For the control laws given in Propositions
2–4, this sign constraint is satisfied in the neighborhood of the

1Note that h can be different from hz .

stabilized equilibrium point (since u ≈ |γ| and |γ| > 0 from
Assumption 5). However, it is not satisfied in the entire domain
of attraction of this equilibrium. The following proposition
points out how the position control law (22) in Proposition 4
can be modified to comply with the constraint u ≥ 0, without
consequences on the stability issue.

Proposition 5 Let k1, k2, k3 denote strictly positive constants,
and v̄ and γ as defined in Proposition 4. Let σ : R → R denote
a strictly increasing smooth function such that σ(0) = 0 and
σ(s) > − 1

k1
, ∀s ∈ R. Apply the control law

u = |γ|+ |γ|k1σ(v̄3) (≥ 0)

ω1 = −|γ|k2
(

v̄2 − v̄3γ̄2
|γ|+γ̄3

)

− k3|γ|γ̄2
(|γ|+γ̄3)2 −

1
|γ|2 γ

TS(Re1)γ̇

ω2 = |γ|k2
(

v̄1 − v̄3γ̄1
|γ|+γ̄3

)

+ k3|γ|γ̄1
(|γ|+γ̄3)2 −

1
|γ|2 γ

TS(Re2)γ̇

(23)
to System (9). Suppose that Assumptions i)–iv) of Proposition 4
are satisfied. Then the asymptotic stability result of Proposition
4 still holds.

The proof of this proposition is similar to the proof of Proposi-
tion 2. It is given in Appendix F. The proposed modification of
the control law applies also to the control laws of Propositions
2 and 3 by simply replacing v̄ in the control expression (23)
by ṽ. A possible choice for the function σ is given, e.g., by

σ(s) =
α

k1
tanh

(

k1s

α

)

, with 0 < α ≤ 1

IV. CONTROL ROBUSTIFICATION

The results of the previous section rely upon the satisfaction
of Assumption 5 which unconditionally guarantees the exis-
tence and local uniqueness of the desired thrust direction in
the velocity and position control cases. For most underactuated
vehicles, this assumption is too strong. Let us illustrate this
on a simple example.

Example 1: (Spherical vehicle) Consider a spherical ve-
hicle, with its center of mass coinciding with the sphere’s
center, submitted to the action of gravity, drag forces, and
added-mass effects. The translational dynamics of the vehicle
are given by (1) with Fe(ẋ, ẍ) = −ca|ẋ|ẋ − maẍ + mge3,
and ca, ma positive constant numbers associated with drag
forces and added-mass effects respectively. This equation can
be rewritten as (compare with (1)) m̄ẍ = −TRe3 + F e(ẋ)
with m̄ = m+ma, and F e(ẋ) = −ca|ẋ|ẋ+mge3. The term
γ(ẋ, t) of equation (8) is thus given by γ(ẋ, t) = F e(ẋ)

m̄ −ẍr =
− ca

m̄ |ẋ|ẋ+
mg
m̄ e3−ẍr. When drag effects can be neglected (i.e.

ca

m̄ |ẋ|ẋ ≈ 0), Assumption 5 is not satisfied when the reference
acceleration vector ẍr is equal to mg

m̄ e3. As a matter of fact,
the above relation points out that there always exists a velocity
ẋ such that γ(ẋ, t) = 0.

Another example is provided by a ship drifting with the sea
current at zero relative velocity. Indeed, the sum of external
forces applied to the ship is equal to zero in this case. Even
though one may hope that the set of “bad” velocities does not
belong to the nominal operational domain of the vehicle, these
examples indicate that, in some cases, Assumption 5 does not
hold. Moreover, when |γ| = 0 the control is no longer defined.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ACCEPTED FOR PUBLICATION, TO APPEAR 8

Now, to ensure local stability it is sufficient that γ does not
vanish near the considered reference velocity ẋr. This suggests
to replace Assumption 5 by the following weaker assumption.

Assumption 6 There exists a constant δ > 0 such that
|γe(ẋr(t), t)− ẍr(t)| ≥ δ for all t ∈ R+.

Under this assumption, the control laws proposed in Section III
are locally well-defined and ensure local asymptotic stability
of the desired reference velocity/position trajectory. This may
be sufficient for many applications. However, for practical
purposes one would like to ensure that the control calculation
is always well-posed and that the tracking errors can never
diverge explosively, whatever the adverse environmental con-
ditions or poorly chosen reference trajectories for which γ
approaches the null vector at some time-instant. Accordingly,
the objective of this section is to modify the controllers of
Section III in order to have the three following properties
satisfied simultaneously:
P1) local asymptotic stability when Assumption 6 is satisfied,
P2) well-posedness of the expression of the control even when

Assumption 6 is not satisfied,
P3) global uniform ultimate boundedness of the system’s

velocities ẋ and ω even when Assumption 6 is violated.
The modifications are carried out for the velocity control
objective of Proposition 2, but they are also valid for the other
control laws proposed in Section III modulo straightforward
transpositions which are shortly commented upon at the end
of this section.

Property P2) is simply obtained by multiplying the un-
bounded terms 1/|γ| and 1/(|γ| + γ̄3) in the control ex-
pression (11) by an adequate function taking the value one
inside a neighborhood of the reference trajectory and zero
at γ = 0. For instance, one can use the class C1 function
µτ : [0,+∞) −→ [0, 1] defined by

µτ (s) =

{

sin(πs
2

2τ2 ) , if s ≤ τ
1 , otherwise

(24)

for some constant τ > 0. This yields the modified control
expressions

u = γ̄3 + |γ|k1ṽ3
ω1 = −|γ|k2ṽ2 − µτ (|γ|+ γ̄3)

k3|γ|γ̄2
(|γ|+γ̄3)2

−µτ (|γ|) 1
|γ|2 γ

TS(Re1)γ̇

ω2 = |γ|k2ṽ1 + µτ (|γ|+ γ̄3)
k3|γ|γ̄1

(|γ|+γ̄3)2
−µτ (|γ|) 1

|γ|2 γ
TS(Re2)γ̇

(25)

This modification does not forbid the satisfaction of Property
P1). The fulfilment of Property P3) is more involved. It relies
in the first place on the following observation, which is a
direct consequence of the dissipativity of drag forces (i.e.
Assumption 3).

Proposition 6 Suppose that Assumption 3 is satisfied and that
u is calculated according to a feedback law such that, for some
constants β1, β2,

|u| ≤ β1 + β2|ẋ| (26)

Then, the linear velocity ẋ of the controlled vehicle is u.u.b..
Moreover, under Assumption 1, γe, γ̇e and the linear acceler-
ation ẍ are also u.u.b..

The proof of this proposition consists in calculating the time-
derivative of V = 1

2 |ẋ|2 and showing that it is negative when
|ẋ| exceeds a certain threshold (see [13] for details).

The objective is now to modify the expression (8) of γ(ẋ, t)
so that u, as given by (25), can satisfy inequality (26) without
destroying the property of local asymptotic stability. To this
purpose let sat∆ denote a continuous “saturation function”
satisfying Properties P1, P2, P3 of the function sat∆ and also
the following property P4: There exists a continuous function
φ : R

3 −→ R such that ∀(ξ, γ) ∈ R
3 × R

3, φ(γ) ≤ 1 and
ξT sat∆(γ) = φ(γ)ξT γ. A possible choice is the saturation
function defined by (18).

Let γd : R −→ R
3 denote any bounded function of class C1

whose derivative is also bounded. The role and choice of this
function will be commented upon further, along with some
examples. Define now γ as follows

γ(ẋ, t) := γd(t) + satM (γe,d(ẋ, t))− ẍr(t) (27)

with
γe,d(ẋ, t) := γe(ẋ, t)− γd(t) (28)

and M a positive real number the choice of which is discussed
further. From (27), Assumption 4, the boundedness of γd, and
the boundedness of the function satM , it follows that there
exists a finite value Q > 0 such that, whatever (ẋ, t),

|γ(ẋ, t)| ≤ Q (29)

Therefore, in view of the expression of u in (25), inequality
(26) is now satisfied. Prior to stating the main stabilization
result of this section we need to introduce some extra no-
tation. Since γd is bounded by assumption, it follows from
Assumptions 2 and 3 (recall that γe = Fe/m) and (28) that
there exist constant numbers c̄1 ≥ 0, c̄2 > 0, c̄3 ≥ 0, c̄4 > 0
such that, ∀(ẋ, t) ∈ R

3 × R,
{

|γe,d(ẋ, t)| ≤ c̄1 + c̄2|ẋ|2
ẋT γe,d(ẋ, t) ≤ c̄3|ẋ| − c̄4|ẋ|3 (30)

Consider the following polynomial in s: P (s) := c̄4s
3 −

c̄2v̄rs
2− c̄3s− c̄1v̄r, with v̄r > 0. Since c̄4 > 0, there exists a

number κ(c̄i, v̄r) ≥ v̄r such that s ≥ κ(c̄i, v̄r)⇒ P (s) ≥ 0.
The following theorem, proved in Appendix G, is the main

result of this section.

Theorem 1 Let k1, k2, k3 denote strictly positive constants.
Apply the control law (25) to System (9), with µτ and γ
given by (24) and (27) respectively. Suppose that 0 < τ < δ,
where τ and δ are the constants involved in relation (24) and
Assumption 6 respectively. Suppose that Assumptions 1, 2, 3,
4, and 6 are satisfied. Then,
1) u and ω are well-defined and bounded along any solution

of the controlled system,
2) ẋ is u.u.b. along any solution of the controlled system,
3) for the subsystem (9b)–(9c), the equilibrium point (ṽ, θ̃) =

(0, 0) of the controlled system is locally asymptotically
stable if M > c̄1 + c̄2v̄r, with M the constant associated
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with the function satM intervening in γ. Furthermore, if
M ≥ c̄1 + c̄2(κ(c̄i, v̄r))

2 and |γ(ẋ, t)| ≥ τ ∀(ẋ, t), the
attraction domain is equal to R

3 × (−π, π).

By comparison with the control laws of Section III, the control
(25) depends on extra design terms (τ , and the functions satM
and γd) which can be tuned so as to maximize the domain
of stability of the closed-loop system. Let us illustrate this
tuning possibility in the case of the spherical vehicle already
considered in Example 1.

Example 2: (Spherical vehicle, continued) To simplify
we assume that the desired velocity ẋr is constant, i.e.
ẍr = 0. In this case, γe(ẋ) = γ(ẋ) = γg + γae(ẋ), with
γg = (mg/m̄)e3 the gravity acceleration vector field, and
γae(ẋ) = −(ca/m̄)|ẋ|ẋ (ca > 0) the acceleration vector
associated with aerodynamic forces. Let us assume that the
function satM is defined by (18), and consider two possible
choices for γd (among others). First, let γd = γg . Then
γ = γg + satM (γe,d) and γe,d = γae. Since the norm of
γg is non-zero and constant, and satM is bounded by M ,
Assumption 6 is satisfied if M < mg/m̄. In this case,
|γ(ẋ, t)| ≥ mg/m̄ −M > 0. Moreover, if τ < mg/m̄ −M ,
the equilibrium (ṽ, θ̃) = (0, 0) is “globally” asymptotically
stable (i.e. the domain of attraction is R

3×(−π, π)). However,
imposing this inequality on M may not be compatible with
the satisfaction of the condition M ≥ c̄1 + c̄2(κ(c̄i, v̄r))

2

which guarantees the largest possible domain of attraction.
Indeed, in this case one has c̄1 = c̄3 = 0, c̄2 = c̄4 = ca, and
κ(c̄i, v̄r) = v̄r, so that the condition M ≥ c̄1+ c̄2(κ(c̄i, v̄r))

2

is now equivalent to M ≥ cav̄
2
r
. Therefore, the satisfaction

of Assumption 6 and global asymptotic stability are guar-
anteed provided that sup |ẋr(t)| <

√

mg/(m̄ca). Now, to
stabilize larger reference velocities which do not satisfy this
inequality it is necessary to use values of M larger than
mg/m̄. However the positivity of |γ(ẋ, t)| can no longer
be guaranteed locally around any reference velocity. In this
case, instead of choosing γd = γg , one might as well set
γd = 0, so that γ = satM (γe) = satM (γg + γae). With this
choice the positivity of |γ(ẋ, t)| is not unconditional, but it is
satisfied in the neighborhood of any reference velocity such
that ẋr 6=

√

mg/(m̄ca) e3. From Theorem 1 local asymptotic
stability is also obtained if M ≥ g + cav̄

2
r
.

Remark 3: The controllers of Propositions 3-5 can be modi-
fied in a similar way. Consider for example the position control
law of Section III-D. One can define (compare with (21))
γ := γd+satM (γ̂e,d)−ẍr+h(|y|2)y+ z̈, with γ̂e,d := γ̂e−γd,
and state stability results as in Theorem 1. The sole difference
concerns the condition M > c̄1+ c̄2(κ(c̄i, v̄r))

2 of Theorem 1
which yields global asymptotic stability. It has to be replaced
by the stronger condition M > c̄1 + c̄2(κ(c̄i, v̄r + 2ηz))

2.

V. SIMULATION RESULTS

This section illustrates the performance and robustness of
the proposed controllers for a model of a VTOL vehicle
similar to the “HoverEye” developed by Bertin Technologies
Group (see [5], [6], [27], [28]). This vehicle, whose shape
roughly corresponds to the one depicted on Figure 1, belongs
to the class of “sit on tail” VTOL UAVs. It is symmetric

along a privileged axis taken as the axis {G;
−→
k }. In the

first approximation, its inertia matrix J is diagonal and J ≈
diag(J1, J1, J2).

The system’s equations used in the simulations are given by
(2) with (see [28] for details)

Fe = mge3 + Fae −
1

L
RS(e3)Γ, Γe = Mae (31)

where
• Fae is the vector of coordinates of

−→
F ae expressed in the

basis of the inertial frame I, and
−→
F ae is the sum of all

aerodynamic reaction forces (lift, drag, and momentum
drag),

• Mae is the torque induced by these forces,
• L is the distance between the plane of controlled fins and

the vehicle’s center of mass.
Expressions of Fae and Mae are specified in [13]. Wind tunnel
measurements and aerodynamic modeling for this class of
VTOL vehicles have been reported in [27]. By setting

γe := Fe/m (32)

the subsystem Σ1 in (2) takes the form of System (5).
However, Assumption 1 is violated because Fae depends on
the vehicle’s orientation and angular velocity, and also because
Γ is related to the angular acceleration so that γe depends also
on these variables. Discrepancies like this one between the
ideal model used for the control design and the physical system
represent an opportunity to test by simulation the robustness
of the proposed controllers. The complete vehicle’s pose (i.e.
x and R) is measured together with all velocity components
(i.e. v and ω). The simulation results presented next have been
obtained with the following estimated physical parameters of
the vehicle: m = 3 kg, g = 9.8ms−2, J1 = 0.1 kgm2, J2 =
0.03 kgm2, L = 0.2m.

To test the robustness of the proposed controllers with
respect to static modeling errors we assume that the real
gravity acceleration is g∗ = 9.81ms−2, the real vehicle’s
mass is m∗ = 3.2 kg, and the real vehicle’s inertia matrix
is J∗ = diag(0.13, 0.13, 0.04).

Among the three control modes considered in the paper,
position stabilization is the most advanced one and simulations
are only presented for this mode. For the first subsystem
Σ1 the controller of Proposition 5, modified as proposed in
Section IV, is applied. The desired yaw angular velocity is
set to zero ωd,3 = 0 and a high gain controller is applied
to the second subsystem Σ2 in order to stabilize the angular
velocity at the desired value ωd whose first two components
are generated by the first controller. Note that the choice of a
high gain controller is here justified by the fact that Mae is
neither measured nor estimated. The applied control torque is
calculated according to Γ = S(ω)Jωd − JKω(ω − ωd), with
Kω a positive symmetric gain matrix here chosen diagonal.

The following gains and functions are used
• k1 = 0.24, k2 = 0.08, k3 = 12.8, Kω =
diag(20; 20; 20),

• h(s) = β√
1+β2s/η2

with β = 1.28 and η = 12,

• σ(s) = α
k1

tanh
(

k1s
α

)

with α = 0.9,
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• kz = 0.8, hz(s) = βz√
1+β2

zs/η
2
z

with βz = 0.8 and ηz =

0.8,
• sat∆ and satM as given by (18) with ∆ = 8, M = 50.
• γd = 0, µτ as given by (24) with τ = 1.

The gains k1, k2, k3, h(0), kz, hz(0) have been determined
via a pole placement procedure performed on the linearized
system of System (9)–System (17) at the equilibrium (z =
0, ż = 0, x̃ = 0, ṽ = 0, R = I3) in the particular case
of a reference trajectory consisting of a fixed point, with all
external forces being neglected. Details can be found in [13].
Two simulation cases are reported.

Simulation 1: Stabilization at a stationary point.
The control objective is to stabilize the vehicle’s center of

mass G, initially resting at the position x(0) = (8, 5,−8)T .
The initial vehicle’s attitude is given by R(0) = I3. This
corresponds to the equilibrium attitude associated with a fixed
desired position in the absence of wind. The desired position
is xr = (0, 0, 0)T . Initially there is no wind, but a horizontal
wind step velocity ẋf = (4, 0, 0)T is introduced between
the time-instants 30 s and 70 s, followed by a larger one
(ẋf = (8, 0, 0)T ) thereafter. This simulation was devised to
test the robustness of the proposed controller when neither
measurement nor estimation of aerodynamic reaction forces is
available. To this purpose we have used γ̂e = ge3 in the control
calculation, whereas the real value of γe is given by (31)-(32)
with g = g∗ and m = m∗. It matters also to illustrate the
role and importance of the integrator defined by (17). In this
respect two control versions are used for comparison purposes.
The first one does not incorporate a position integral action.
This corresponds to setting the terms z, ż, and z̈ equal to zero.
The second one contains the integral action resulting from the
calculation of z and its first and second order time-derivatives
from (17). The evolution of the vehicle’s position and attitude
is shown on Figures 2 and 3. With both control versions,
the position of the vehicle’s center of mass G converges
to a fixed position. However, in the no-integral action case
(see Figure 2) the position error does not converge to zero
due to estimation errors on the vehicle’s physical parameters
and poorly modeled aerodynamic reaction forces. Figure 3
shows that the incorporation of the proposed integral action
makes this error converge to zero. Note that Assumption iv)
of Proposition 5 ( lim

s→+∞
h(s2)s > |c|, with c = γ̂e − γe)

must be satisfied to guarantee the stability of the controlled
system and compensate for large wind-induced perturbations.
When η, the upper-bound of h(s2)s, is smaller than 10 and
the wind velocity is “strong” (ẋf = 8e1) –i.e. when modeling
errors on external forces are very large– we have observed,
in simulation, the divergence of the position error despite the
integral action. This explains the use of a larger value of η
(i.e. η = 12) in the reported simulations. Recall however that,
as discussed in Subsection III-C, using a large value of η has
the side drawback of increasing the risk of |γ| evolving close
to zero. It also contributes to increasing the magnitude of γ
defined by (21), and thus also of the control inputs defined by
(22). This in turn increases the risk of saturating the actuators,
with known associated destabilizing effects. To comply with
actuators power limitations a small value of η is preferable.

This in turn militates in favor of the on-line measurement
or estimation of the apparent acceleration γe. In [14] a high
gain observer of this force, based on the measurement of the
vehicle’s translational velocity ẋ and orientation R, and of
the thrust intensity T , is proposed. Figure 4 shows simulation
results of the controller with integral correction when using
such an observer. Smaller values of η and ∆ –the value
associated with the function sat∆– (i.e. η = 6, ∆ = 1) are also
applied. The improved tracking performance of this controller,
which is also used in the next simulation case, shows the
interest of complementing the integral correction action with
the estimation of the apparent acceleration.

Simulation 2: Trajectory tracking with strong variable
wind, large initial position error, and on-line estimation of
aerodynamic forces.

The control objective is to track the following reference
trajectory xr(t) = (10 cos(πt/10), 10 sin(πt/10),−t)T . The
initial vehicle’s position and attitude are given by x(0) =
(45, 50, −10)T and R(0) = I3 respectively. Integral correction
in position is used. To test the robustness of the controller with
respect to aerodynamic perturbations a “strong” variable wind
is simulated with velocity intensity variations represented on
Figure 6. The error of estimation of the apparent acceleration
is also shown on this figure. Limitations of the actuators are
also taken into account by saturating the applied thrust force
and torque components according to the following inequality
constraints 0 ≤ T ≤ 1.8m∗g∗ = 56.5, |Γi=1,2,3| ≤ 0.3TL.
The control results of Figure 5 illustrate the robustness of the
controller with respect to strong and rapidly varying wind-
induced perturbations and modeling errors. The tracking po-
sition errors decrease almost linearly from large initial values
and remain small thereafter (see Figure 5.c). At the beginning
of the simulation, due to the small value of η (i.e. η = 6) the
thrust input remains unsaturated (see Figure 5.e) despite large
initial position errors. The saturation occurring later on during
short time intervals, as a consequence of strong wind-gusts,
marginally affects the overall tracking performance.

VI. CONCLUSIONS

The present study attempts to set the foundations of a
general approach to the control of a large family of thrust-
propelled underactuated vehicles. Developing a control theory
for vehicles seemingly as different as a VTOL, an underwater
vehicle, or a space rocket may, at first glance, appears far-
fetched and unrealistic. However, a closer look at the model
equations of these systems brings evidence that the idea
is technically relevant. The basic principle of the approach
consists in monitoring the thrust direction in order to allow for
the compensation of the resultant of external forces. Control
laws conceived for incrementally complex objectives (ranging
from joystick-augmented-control of the vehicle’s attitude to
autonomous trajectory tracking) have been derived, with the
support of Lyapunov stability and convergence analyses. To
cope with imprecise modeling and/or measurement of the
forces acting on the vehicle, effective integral and anti-windup
correction terms have been introduced, whereas this type of
correction is often overlooked in nonlinear control studies.
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On the other hand, the concern of genericity induced a
certain number of simplifying assumptions. For instance, the
existence of attitude control actuators enough powerful to
overcome environmental perturbating torques was assumed, as
well as the availability of accurate measurements/estimations
of the vehicle’s pose and velocity. Clearly the validity of
these assumptions has to be assessed when considering an
application on a physical system. For the genericity of the
approach, it is important to extend this study in two directions.
The first one concerns the assumption according to which
environmental forces only depend on the vehicle’s velocity
(and the independent time-variable). This assumption needs to
be relaxed because it is not realisitic for a number of vehicles,
like airplanes, for which drag and lift forces depend strongly
on the angle of attack. The second direction concerns the
assumption of non zero-crossing upon the so-called “apparent
acceleration” –the resultant of external forces and desired
accelerations. A route could consist in coupling the present
approach with more involved, non-classical, control techniques
aiming at the unconditional practical stability of the system
[23]. Besides these conceptual developments, conducting ex-
periments on physical systems is indispensable to consolidate
the results of this study with respect to claims of robustness
and performance in particular.
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APPENDIX

A. Technical lemma

Lemma 1 Let γ̄ = RT γ with γ ∈ R
3 a non-zero time-

dependent vector and R the rotation matrix solution to (9c).
Let γ̄1,2 denote the vector (γ̄1, γ̄2)

T . Then,

d
dt

(

γ̄
|γ|

)

= 1
|γ|S (γ̄)

(

ω − 1
|γ|2R

TS(γ)γ̇
)

d
dt

(

1− γ̄3
|γ|

)

= 1
|γ| γ̄

T
1,2

[(

−ω2
ω1

)

+ 1
|γ|2

(

−γTS(Re2)γ̇
γTS(Re1)γ̇

)]

The proof of this technical lemma, based on elementary
calculations, can be found in [13].

Lemma 2 (Barbalat, see e.g. [22]) Let x(t) denote a solution
to the differential equation ẋ = a(t) + b(t) with a(t) a uni-
formly continuous function. Assume that lim

t→+∞
x(t) = c and

lim
t→+∞

b(t) = 0, with c a constant value. Then, lim
t→+∞

ẋ(t) = 0.

The case b = 0 corresponds to the classical version of
Barbalat’s lemma (see e.g. [16]).

B. Proof of Proposition 1

Consider the following candidate Lyapunov function

V = 1− γ̄3 = 1− cos θ̃ (33)

Differentiating V along the solutions of the system Ṙ =
RS(ω) and using Lemma 1 with |γ| = 1 one has

V̇ = γ̄T1,2

[(

−ω2
ω1

)

+

(

−γTS(Re2)γ̇
γTS(Re1)γ̇

)]

Using expressions (7) of ω1, ω2 one gets

V̇ = −k |γ̄1,2|2

(1 + γ̄3)
2 = −k 1− γ̄3

1 + γ̄3
= − kV

1 + γ̄3
≤ −kV

2
≤ 0

(34)
This relation points out that V converges exponentially to zero.
This in turn implies the exponential convergence of θ̃ to zero.
As for the stability of the equilibrium θ̃ = 0, it is a direct
consequence of (33) and (34).

C. Proof of Proposition 2

It follows from the definition of θ̃ that

tan2(θ̃/2) =
|γ̄1,2|2

(|γ|+ γ̄3)
2 =

|γ| − γ̄3
|γ|+ γ̄3

(35)

Consider the candidate Lyapunov function V defined by (12).
Differentiating V along the solutions of System (9b)-(9c) and
using Lemma 1 one gets

V̇ = ṽT (−ue3 + γ̄)

+
1

|γ|k2
γ̄T1,2

[(

−ω2
ω1

)

+
1

|γ|2
(

−γTS(Re2)γ̇
γTS(Re1)γ̇

)]

= ṽ3 (−u+ γ̄3)

+
1

|γ|k2
γ̄T1,2

[(

−ω2
ω1

)

+
1

|γ|2
(

−γTS(Re2)γ̇
γTS(Re1)γ̇

)

+ |γ|k2ṽ1,2
]

with ṽ1,2 = (ṽ1, ṽ2)
T . Substituting expressions (11) of u, ω1,

ω2 and using (35) one obtains

V̇ = −|γ|k1ṽ23 −
k3
k2

|γ̄1,2|2

(|γ|+ γ̄3)
2 = −|γ|k1ṽ23 −

k3
k2

tan2(θ̃/2)

(36)
Since V̇ is negative semi-definite, the velocity error term ṽ is
bounded. The next step of the proof consists in showing that V̇
is uniformly continuous along every system’s solution in order
to deduce, by application of Barbalat’s lemma (i.e. Lemma 2),
the convergence of ṽ3 and θ̃ to zero2. To this purpose it suffices
to show that V̈ is bounded. In view of (36), Assumption 5,
and the boundedness of ṽ, this condition is satisfied if γ, γ̇,
˙̃v3, and d

dt tan
2(θ̃/2) are bounded.

From Assumption 4, the boundedness of ṽ, and the relation
ṽ = RT (ẋ−ẋr), it follows that ẋ is bounded. Therefore, using
Assumptions 1 and 4 one deduces that γe, γ and γ̄ are also
bounded, and that u (given by (11)) is also well-defined and
bounded. This implies that ẍ given by

ẍ = −uRe3 + γe(ẋ, t) (37)

is bounded. Since γ̇e(ẋ, t) =
∂γe
∂ẋ

(ẋ, t)ẍ+
∂γe
∂t

(ẋ, t), it comes
from Assumptions 1 and 4 and the fact that ẋ and ẍ are
bounded that γ̇e and γ̇ are also bounded. Let us now show
that along each system’s solution there exists ε > 0 such that

|θ̃(t)| ≤ π − ε, ∀t (38)

It follows from (11), (35), and Lemma 1 that

d
dt (1− cos θ̃) = −k2(γ̄1ṽ1 + γ̄2ṽ2)− k3

|γ|−γ̄3
|γ|+γ̄3

= −k2(γ̄1ṽ1 + γ̄2ṽ2)− k3 tan
2(θ̃/2)

Since γ̄ and ṽ are bounded, there exists ε1 > 0 such that
|θ̃| > π − ε1 =⇒ d

dt (1 − cos θ̃) < 0. Equation (38) is thus
satisfied with ε = min{ε1, π−|θ̃(0)|} (> 0). This implies the
boundedness of tan(θ̃/2) and also, from (35), of 1/(|γ|+γ3).
Along with Assumption 5 and the fact that ṽ, γ, γ̄, γ̇ are
bounded, this ensures that the control inputs ω1 and ω2, and
thus ω, are well-defined and bounded. Since γ, ṽ, ω, u
are bounded, it follows from (9b) that ˙̃v is also bounded.
Finally, since both γ̇ and ω are bounded, one deduces that
˙̄γ is bounded. The boundedness of d

dt tan
2(θ̃/2) then follows

from (35) and from the boundedness of 1/(|γ| + γ3). This
concludes the proof of uniform continuity of V̇ and of the
convergence of ṽ3 and θ̃ to zero. Note from (35) that γ̄1 and
γ̄2 also converge to zero.

There remains to show that ṽ1 and ṽ2 converge to zero. By
a direct calculation, one deduces from Lemma 1 and (11) that

d

dt

γ̄1,2
|γ| = a(t) + b(t) (39)

with

a(t) := −k2γ̄3ṽ1,2 − k3γ̄3
γ̄1,2

(|γ|+γ̄3)2

b(t) := 1
|γ|

(

ω3 +
1

|γ|2 γ
TS(Re3)γ̇

)

(

γ̄2
−γ̄1

)

2Note that LaSalle’s theorem does not apply since the closed-loop dynamics
is not autonomous.
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It is straightforward to verify that ȧ(t) is bounded (so that
a(t) is uniformly continuous) by using the boundedness of
˙̃v, γ̄, ˙̄γ, and 1/(|γ| + γ̄3)). Since b(t) is not necessarily
uniformly continuous (because of the terms ω3 and γ̇), the
classical version of Barbalat’s lemma does not apply. This
explains the use of the slightly generalized version given in
Lemma 2. Using the boundedness of ω3, Assumption 5, and
the properties obtained previously (i.e. convergence of γ̄1,2 to
zero and boundedness of γ̇) one verifies that b(t) converges to
zero. Direct application of Lemma 2 to System (39) ensures
the convergence of d

dt
γ̄1,2

|γ| to zero. Since γ̄1,2 converges to zero
and |γ| + γ̄3 > 0, the convergence of ṽ1, ṽ2 to zero follows.
As for the stability of the equilibrium (ṽ, θ̃) = (0, 0), it is a
direct consequence of relations (12) and (36).

D. Proof of Proposition 3

From the definition of γ, given by (16), equation (9b) can
be rewritten as

˙̃v = −S(ω)ṽ − ue3 +RT γ −RTh(|Iv|2)Iv +RT c (40)

Define the continuous function f : s 7−→ h(s2)s. From (15), f
is strictly increasing. Young’s inequality (see [4]) then allows
to establish the following relation

cT Iv ≤ |c||Iv| ≤
∫ |Iv|

0

f(s) ds+

∫ |c|

0

f−1(s) ds

with f−1 the inverse of f . This leads us to consider the
following candidate Lyapunov function

V =
1

2
|ṽ|2+

1

k2

(

1−
γ̄3

|γ|

)

+

∫ |Iv|

0

f(s) ds−c
T
Iv+

∫ |c|

0

f
−1(s) ds

(41)
It is straightforward to verify that this function is positive and
proper with respect to ṽ. One verifies also that V is proper
with respect to Iv by verifying that the Hessian matrix of V
with respect to Iv is definite positive, i.e. ∂

2V
∂I2v

> 0, using the
condition (15) of the function h. Using (40), Lemma 1, and
the relation İv = Rṽ one gets

V̇ = ṽT (−ue3 + γ̄)

+
1

|γ|k2
γ̄T1,2

[(

−ω2
ω1

)

+
1

|γ|2
(

−γTS(Re2)γ̇
γTS(Re1)γ̇

)]

(42)

Substituting the control expression (11) into (42) one obtains
that V̇ satisfies the equality (36). Then, the proof of conver-
gence of (Iv, ṽ, θ̃) to (I∗v , 0, 0) proceeds as for Proposition 2.
Note in particular that the condition (15) of the function h is
useful to ensure the boundedness of γ̇, and that its combination
with Assumption iii) of Proposition 3 implies the existence of a
unique vector I∗v ∈ R

3 such that h(|I∗v |2)I∗v = c. Furthermore,
to prove that Iv converges to I∗v one can apply Barbalat’s
lemma (i.e. Lemma 2) to (40) with a(t) := −RTh(|Iv|2)Iv +
RT c and b(t) := −S(ω)ṽ − ue3 +RT γ. As for the stability
of the equilibrium point (Iv, ṽ, θ̃) = (I∗v , 0, 0), it is a direct
consequence of relation (41), the decrease of V along the
system’s solutions, and the fact that this point is the unique
minimum of V .

E. Proof of Proposition 4

From (9b) and (20) it follows that the time-derivative of v̄
satisfies the equation ˙̄v = −S(ω)v̄−ue3+RT z̈+RT (γe−ẍr)
which can be rewritten as

˙̄v = −S(ω)v̄ − ue3 −RTh(|y|2)y +RT γ +RT c (43)

with γ defined by (21). Consider the candidate Lyapunov
function

V =
1

2
|v̄|2 +

1

k2

(

1−
γ̄3

|γ|

)

+

∫ |y|

0

f(s) ds− c
T
y+

∫ |c|

0

f
−1(s) ds

(44)
where f is specified in the proof of Proposition 3 and γ̄ is
given by (6). As in the proof of Proposition 3, one verifies
that V is positive and proper with respect to v̄ and y. Using
(43), (22), and the relation ẏ = Rv̄ one gets

V̇ = −|γ|k1v̄23 −
k3
k2

|γ̄1,2|2

(|γ|+ γ̄3)
2 (45)

From (17) one verifies that z, ż, and z̈ are bounded. From
(44) and (45) one deduces that y and v̄ are bounded. Since z
and ż are bounded, the relations y = x̃+ z and v̄ = ṽ+RT ż
imply that x̃ and ṽ are also bounded. Then it follows from
Property P1 of the function sat∆, Property (15) of the function
hz , and System (17) that z(3) remains bounded. Denote z∗

the unique solution to h(|z∗|2)z∗ = c. From there, with the
same arguments as in the proof of Proposition 3, one deduces
the convergence of (y, v̄, θ̃) to (z∗, 0, 0) and the stability of
this equilibrium for the corresponding subsystem. Now, let
ȳ := y − z∗, z̄ := z − z∗, w := ż, and gz(ȳ, z̄) := hz(|ȳ −
z̄|2)(ȳ − z̄) + hz(|z̄|2)z̄. Note that gz(ȳ, z̄) is bounded and
vanishes ultimately since ȳ converges to zero. Note also that
x̃ = y − z = ȳ − z̄. Then, System (17) can be rewritten as







˙̄z = w
ẇ = −2kzw − k2z z̄ + k2z(sat∆(z̄ + z∗)− z∗)

−kzhz(|z̄|2)z̄ + kzgz(ȳ, z̄)

or in the more compact form

Ż = F (Z) +G(ȳ, Z) (46)

with Z := (z̄, w)T , F (Z) := (w,−2kzw−k2z z̄+k2z(sat∆(z̄+
z∗) − z∗) − kzhz(|z̄|2)z̄)T , and G(ȳ, Z) := (0, kzgz(ȳ, z̄))

T

(a “perturbation” which vanishes ultimately). One verifies that
Z = 0 is the globally asymptotically stable point of the system
Ż = F (Z) by considering the candidate Lyapunov function

U =
1

2kz

∫ |z̄|2

0

hz(s) ds+
1

2
|z̄|2 + 1

2

∣

∣

∣

∣

z̄ +
w

kz

∣

∣

∣

∣

2

(47)

Indeed, differentiating U along the solution of the system
Ż = F (Z) and using Property P4 of the function sat∆ and
Assumption iv) of Proposition 4 one obtains

U̇ = −hz(|z̄|2)|z̄|2 − kz|z̄|2

− kz

(

∣

∣

∣

∣

z̄ +
w

kz

∣

∣

∣

∣

2

− (z̄ + (sat∆(z̄ + z∗)− z∗))T
(

z̄ +
w

kz

)

)

≤ −hz(|z̄|2)|z̄|2 − kz|z̄|2 − kz

∣

∣

∣

∣

z̄ +
w

kz

∣

∣

∣

∣

2

+ 2kz|z̄|
∣

∣

∣

∣

z̄ +
w

kz

∣

∣

∣

∣

(48)
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Since z is bounded, z̄ is also bounded from its definition. As
a consequence, there exists δz > 0 such that hz(|z̄|2) > δz .
This, along with relation (48), implies the existence of some
positive constants αz, αw, αu such that

U̇ ≤ −αz|z̄|2 − αw

∣

∣

∣

∣

z̄ +
w

kz

∣

∣

∣

∣

2

≤ −αuU (49)

Therefore, Z = 0 is an exponentially stable equilibrium of
the unperturbed system Ż = F (Z). Since G(ȳ, Z) converges
to zero, this in turn implies that the solutions to System (46)
converge to zero. The convergence of (z̄, ż) to (0, 0) follows.
Then, the convergence of ȳ = z̄+x̃ to zero (proved previously)
implies that x̃ converges to zero. Finally, since v̄ = ṽ +RT ż
and ż converge to zero, ṽ also converges to zero.

Let us finally establish the stability of the equilibrium
point (z, ż, x̃, ṽ, θ̃) = (z∗, 0, 0, 0, 0). From (44) and (45)
(v̄, ȳ, θ̃) = (0, 0, 0) is a stable equilibrium of the controlled
system, and from (47) and (49) Z = 0 is an asymptotically
stable equilibrium point of the system Ż = F (Z). Since the
function G in (46) is continuous and identically equal to zero
when ȳ = 0, one deduces that (v̄, ȳ, θ̃, Z) = (0, 0, 0, 0) is also
a stable equilibrium of the controlled system. The stability of
the equilibrium (z, ż, x̃, ṽ, θ̃) = (z∗, 0, 0, 0, 0) follows directly.

F. Proof of Proposition 5

The positivity of the thrust input u results from the definition
of u given in (23) and the assumptions on σ in Proposition 5.
Consider now the candidate Lyapunov function given by (44).
Using (43), Lemma 1, and the control expression (23) one gets

V̇ = −|γ|k1σ(v̄3)v̄3 −
k3
k2

|γ̄1,2|2

(|γ|+ γ̄3)
2 . From this equality the

proof proceeds like the proof of Proposition 4.

G. Proof of Theorem 1

The proof relies on the following technical lemma.

Lemma 3 Let γe,d as defined by (28). If M ≥ c̄1 +
c̄2(κ(c̄i, v̄r))

2, then ∀(ẋ, t),
ṽTRT (γe,d(ẋ, t)− satM (γe,d(ẋ, t))) ≤ 0 (50)

Proof: If |γe,d(ẋ, t)| < M , Property P2 of the saturation
function satM implies that γe,d(ẋ, t) = satM (γe,d(ẋ, t)), and
the result follows. If |γe,d(ẋ, t)| ≥M , it follows from (30) and
the choice of M that |ẋ| > κ(c̄i, v̄r). Then, by using Property
P4 of the saturation function satM , relation (30), the relations
φ(γe,d(ẋ, t)) ≤ 1 and Rṽ = ẋ− ẋr one gets

ṽTRT (γe,d(ẋ, t)− satM (γe,d(ẋ, t)))
= (1− φ(γe,d(ẋ, t)))(ẋ− ẋr)

T γe,d(ẋ, t)
≤ (1− φ(γe,d(ẋ, t)))(ẋγe,d(ẋ, t) + v̄r|γe,d(ẋ, t)|)
≤ −(1− φ(γe,d(ẋ, t)))(c̄4|ẋ|3 − c̄2v̄r|ẋ|2 − c̄3|ẋ| − c̄1v̄r)

From the definition of the function κ, the inequality |ẋ| >
κ(c̄i, v̄r) implies that c̄4|ẋ|3 − c̄2v̄r|ẋ|2 − c̄3|ẋ| − c̄1v̄r ≥ 0.
Inequality (50) follows.

From (25) and (29) relation (26) holds true for some
positive constants β1, β2. Property 2 of Theorem 1 (together
with the completeness of the system’s solutions) then directly

follows by application of Proposition 6. Since Assumption 1
holds, Proposition 6 implies also that γe, γ̇e, ẍ are bounded.
Since γ̇d(t) is bounded, one deduces from (28) that γ̇e,d(ẋ, t)
remains bounded. Combined with Assumption 4, relation (27),
and Property P1 of the function satM , this result implies that
γ̇(ẋ, t) is also bounded. As a consequence, it follows from
(25) that u, ω1, and ω2 are well-defined and bounded along
every system’s solution. This and the boundedness of ω3 yield
Property 1 of the theorem. Let us now establish Property 3.
Omitting the arguments for γ and γe,d, we have that

˙̃v = −S(ω)ṽ − ue3 +RT γ +RT (γe,d − satM (γe,d))

Therefore, the time-derivative of the function V defined by
(12) along the system’s solutions is given by

V̇ = ṽ3 (−u+ γ̄3) + ṽTRT (γe,d − satM (γe,d))

+ 1
|γ|k2 γ̄

T
1,2

[(

−ω2
ω1

)

+ 1
|γ|2

(

−γTS(Re2)γ̇
γTS(Re1)γ̇

)

+ |γ|k2ṽ1,2
]

Replacing u, ω1, ω2 by their expressions in (25) one obtains

V̇ = −|γ|k1ṽ23 − µτ (|γ|+ γ̄3)
k3
k2

|γ̄1,2|2

(|γ|+ γ̄3)
2

+ ṽTRT (γe,d − satM (γe,d))

+
(1− µτ (|γ|))
|γ|3k2

(−γ̄1γTS(Re2) + γ̄2γ
TS(Re1))γ̇

(51)

It follows from (30) and Assumption 4 that
satM (γe,d(ẋr(t), t)) = γe,d(ẋr(t), t), when M ≥ c̄1 + c̄2v̄

2
r
.

Using Assumption 2 one deduces that satM (γe,d(ẋ, t)) =
γe,d(ẋ, t) for ẋ in a neighborhood of ẋr, when M > c̄1+c̄2v̄

2
r
.

Furthermore, since τ ∈ (0, δ) by assumption, one deduces
from (24) that µτ (|γ|) = 1 in a neighborhood of ẋr. Equation
(51) becomes

V̇ = −|γ|k1ṽ23 − µτ (|γ|+ γ̄3)
k3
k2

|γ̄1,2|2

(|γ|+ γ̄3)
2

and the proof of local asymptotic stability proceeds like the
proof of Proposition 2. Let us now consider the case when
M ≥ c̄1 + c̄2(κ(c̄i, v̄r))

2 and |γ(ẋ, t)| ≥ τ, ∀(ẋ, t). This
latter condition implies that µτ (|γ|) = 1, ∀(ẋ, t). Therefore,
equation (51) becomes

V̇ = −|γ|k1ṽ23 − µτ (|γ|+ γ̄3)
k3
k2

|γ̄1,2|2

(|γ|+ γ̄3)
2

+ṽTRT (γe,d − satM (γe,d))

≤ −|γ|k1ṽ23 − µτ (|γ|+ γ̄3)
k3
k2

|γ̄1,2|2
(|γ|+γ̄3)2

where the inequality follows from Lemma 3. From here the
proof proceeds like the proof of Proposition 2.
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in 1995. After two years as a research assistant
at the UTC, he joined the “Centre d’Etudes de
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