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a b s t r a c t

In this paper, we propose a method to track multiple deformable objects in sequences (with a static cam-
era) in and beyond the visible spectrum by combining Gabor filtering and clustering. The idea is to sample
moving areas between two frames by randomly positioning samples over high magnitude area of a
motion likelihood function. These points are then clustered to obtain one class for each moving object.
The novelty in our method is in using cluster information from the previous frame to classify new sam-
ples in the current frame: we call that a recursive clustering. This makes our method robust to occlusions,
objects entering and leaving the field of view, objects stopping and starting, and moving objects getting
really close to each other.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Object tracking has been a topic of great interest in computer
vision. The main source of difficulty lies in the ability to reliably
determine whether a given moving area in the frame corresponds
to the same object over time. In this paper, we describe a system
for detecting and tracking multiple moving objects. We are partic-
ularly interested in situations where there are multiple moving
and deforming objects, entering and leaving the field of view, being
occluded, stopping and re-starting. Our approach is divided into
two main steps. We first characterize the motion by filtering the
difference image between two consecutive frames using a set of
Gabor filter banks. This step results in a 2D motion likelihood func-
tion, on which we randomly position samples over high magnitude
areas. The second step consists in clustering these samples to iden-
tify single moving objects: our goal is to associate each moving ob-
ject with one class. New samples at time ðtÞ are, either associated
with clusters recovered at time ðt � 1Þ or reclustered using a clas-
sical k-means algorithm, depending on their location in the current
frame with respect to the previous one. Therefore the behavior of
each cluster is tracked throughout the sequence. The main advan-
tage of this technique is it resolves a lot of ambiguities in the clas-
sification because clusters from the previous frame are used to
generate a new clustering in the new frame. This is especially effi-
cient when different objects get closer to each other.
ll rights reserved.
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The remainder of this article is organized as follows. In Section 2
we classify information sources used for object tracking. In Section
3, we explain how to construct the motion likelihood function be-
tween two consecutive frames of a video sequence. In Section 4, we
reveal how this function is sub sampled using what we call motion
samples, and how these samples are then classified to associate
one class with each moving area. We particularly outline the ini-
tialization and update steps of this algorithm. Our algorithm has
been tested on several sequences in and beyond the visible spec-
trum and some results are given in Section 5. Finally, we give con-
clusions and perspectives in Section 6.

2. Information sources for object tracking

Tracking algorithms generally use either of two sources of infor-
mation: a model of the appearance of the moving objects (color
distribution, geometric model, etc.), or a model of the dynamic
behavior of the objects. Recently, hybrid approaches have also been
developed.

There is a large amount of literature on tracking methods using
an appearance model of the object. Many of these approaches use a
statistical description of the region of interest to perform the track-
ing. Region-based methods typically align the tracked regions be-
tween successive frames by minimizing a cost function (Hager
and Belhumeur, 1998; Jurie and Dhome, 2001). Feature-based ap-
proaches (Shi and Tomasi, 1994) extract features (such as intensity,
colors, edges, contours) and use them to establish correspondence
between model images and target images. Mean shift (Comaniciu
et al., 2003) is one of the most successful methods used for locating
the optimal position of the tracked object, given a likelihood image
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whose peak is the most likely position of the tracked object. The
likelihood image is generated by computing the probability that
the given pixel belongs to the object, based on the distribution of
feature values learned from the previous frames. Model-based
tracking (Black and Jepson, 1998; Isard and MacCormick, 2001)
can be very efficient for a particular application but often cannot
be easily extended to a different class of target, because they incor-
porate prior information about the tracked objects. When objects
are represented with parametric structures (usually curves), track-
ing is performed by seeking the lowest potential of a cost function
of the parametric representation of the objects (shape, length, cur-
vature, etc.): deformable models, snakes and appearance models
(Tsechpenakis et al., 2004; Sclaroff and Isidoro, 2003; Chan et al.,
1999) are the most popular techniques for tracking with small
deformations.

Another source of information used by tracking methods is the
dynamic behavior of the object of interest. For these so-called
probabilistic trackers, the object is characterized by a state se-
quence fxkgk¼1;...;n whose evolution is specified by a dynamic equa-
tion xk ¼ fkðxk�1; vkÞ. The goal of tracking is to estimate xk given a
set of observations. The observations fykgk¼1;...;m, with m < n, are
related to the states by yk ¼ hkðxk;nkÞ. Usually, fk and hk are vec-
tor-valued, nonlinear and time-varying functions, and vk and nk

are white Gaussian noise sequences, independent and identically
distributed. The Kalman filter and its extensions have been suc-
cessful for tracking (Gao et al., 2005; Stenger et al., 2001), but they
do not cope with highly non linear models or non Gaussian noise.
Tracking methods based on particle filters (Noyer et al., 2005; Hue
et al., 2002; Yang et al., 2005) can be applied under very weak
hypotheses and track multiple objects even when there are occlu-
sions by maintaining multiple hypotheses in the state space. Parti-
cle filters need observations to predict the states of the moving
objects in a video sequence. Between two observations, the parti-
cles evolve according to the underlying Markov chain. Given a
new observation, each particle is assigned a weight proportional
to its likelihood. New particles are randomly sampled to favor par-
ticles with higher likelihood. Recently, new approaches combining
appearance and dynamic models have been proposed (Okuma
et al., 2004; Li et al., 2003). These methods are very robust, but
unfortunately, they also have very high computational cost, espe-
cially when combining particle filters and learning approaches.

The proposed method does not use the appearance of the ob-
jects since it only works on the difference image and it does not
incorporate any motion model either. Meanwhile, we use previous
information to predict new positions of moving objects: our algo-
rithm can also be classified as motion based.
3. Motion likelihood function

The first step of our approach consists in identifying and
emphasizing the motion between two consecutive frames.

3.1. Motion identification

The Gabor wavelet transform (Lee, 1996) is defined as the con-
volution of a signal with a family of Gabor wavelets (e.g. filters).
Gabor filters are modulation products of Gaussian kernels and
complex sinusoidal signals. The output f̂ ðx; yÞ of a 2D Gabor filter
Gðx; yÞ excited by an input signal f ðx; yÞ is given by
f̂ ðx; yÞ ¼ f IGðx; yÞ. A 2D Gabor filter bank Gf0;r;N is defined by a
group of N filters Giði ¼ 1; . . . ;NÞ so that:

Giðx; yÞ ¼
1

2pr2 exp � x2 þ y2

2r2

� �� �
� exp½j2pf0ðx cos hi þ y sin hiÞ�

ð1Þ
where f0 and hi ¼ ip
N are the central frequency and the orientation of

the sinusoidal wave, and r is the scale (e.g. standard deviation) of
the Gaussian kernel. The multi-resolution approach consists in fil-
tering the image with a set of r 2D Gabor filter banks G2�kf0 ;2

kr;N ,
where k ¼ 0 (respectively k ¼ r � 1) corresponds to the lowest
(respectively highest) resolution. For motion characterization, the
larger the k, the larger the recovered motion. Bruno and Pellerin
(2002) have worked on combining Gabor filters and optical flow
and have shown that Gabor filter banks with parameters r 2
[2,4], f0 < 0.15 and N 2 ½3;6� can be used to characterize motion.
The issue with such a filtering technique is its computational time,
that is why we have used a parallel algorithm for discrete Gabor
transforms (Sudan et al., 2007) that significantly accelerate the
filtering process.

In our case, instead of filtering the input sequence, we have
chosen to filter the difference images between consecutive
frames because they reveal the motion between frames. The
main advantage of the multi-resolution multi-orientation filter-
ing (Gabor) of a difference image is that it characterizes motions
in all directions and with all magnitudes. In addition, it high-
lights the entire moving object, whereas the difference image
(even after applying a Gaussian filter) only highlights the con-
tours of the moving objects. This property can be seen in
Fig. 2a: on the left we see the difference image between the first
two frames of ‘‘Taxi” video sequence, and on the right its Gabor
motion response. It is clear that the difference image is insuffi-
cient to well characterize motion because we need to sample de-
tected motion area, and those highlighted by difference image
are too thin.
3.2. Motion characterization

Given a sequence of Nf images IðtÞ; ðt ¼ 1; . . . ;Nf Þ, the first step
consists in applying a CLAHE filter on the entire sequence (Les-
zczynski and Shalev, 1989) if the contrast is low: this often can
happened when working on visual imagery, more rarely in infrared
imagery. The filter enhances the contrast in the image by modify-
ing local histograms to align them to uniform distributions. The
goal is to remove the influence of contrast during the sequence.
More precisely, the CLAHE algorithm partitions an images into con-
textual regions and applies the histogram equalization to each one.
This evens out the distribution of used gray values and thus makes
hidden features of the image more visible. Then, the characteriza-
tion of the motion between the frames IðtÞ and Iðt�1Þ consists in the
steps in Algorithm 1.
Algorithm 1. Generate samples inside moving objects
Compute the image difference DðtÞ ¼ jIðtÞ � Iðt�1Þj
Compute the Gabor motion response GðtÞ using multiple Gabor filters
with different resolutions and orientations:
GðtÞ ¼
XN

i¼1

Xr�1

k¼0

DðtÞIG2�k f0 ;2
kr;i

� �
ð2Þ

Filter GðtÞ with a median filter to eliminate noise
Position a set of samples PðtÞ randomly on high magnitude areas
In Eq. (2), we sum the responses from all Gabor filters to obtain
an image where all moving objects are highlighted, regardless of
the motion orientation or resolution. In Fig. 2a we show the differ-
ence image between the first two frames of the ‘‘Taxi” video se-
quence (see a frame in Fig. 2b) and its motion response (sum of
the magnitude of the Gabor responses). It can be seen that the
three moving vehicles are much easier to identify in the Gabor mo-
tion response than in the difference image itself. Also, the low con-



608 S. Dubuisson, J. Fabrizio / Pattern Recognition Letters 30 (2009) 606–614
trast (for example the vehicle on the left side of the sequence) does
not affect the detection of motion, which is a strong advantage in
using Gabor filtering.

The last step in Algorithm 1 consists in randomly positioning
samples only on all areas of high magnitude in GðtÞ, also called mo-
tion regions. The most important aspect is not to position samples
over all object area in the frames, but only on areas of motion. This
does not depend on the size of the moving objects. The placement
of new samples is done according to a Gaussian distribution over
the areas of high magnitude (above a given threshold) in the fil-
tered difference image (i.e. where movement is detected). The mo-
tion magnitude of the moving objects does not affect the number
of samples that will be assigned to it. In fact, we want to character-
ize the motion of all objects and not only the objects that move a
lot. The number Np of samples for each object is a compromise be-
tween speed and localization accuracy. If we assign a lot of sam-
ples, the algorithm is slower, but the classes are very well
characterized. We have determined empirically (see Fig. 1) that
the tracking is successful with 100–300 samples per object.
4. Sample classification and tracking: recursive clustering

The idea behind our algorithm is to cluster the samples that
were placed on moving areas and track the motion classes
throughout the sequence. However, instead of computing a new
clustering of the new samples at each frame, we update the classi-
fication from the previous frame with the new samples. For the
first two frames of the sequence, we assume that the number of
moving objects is known. Indeed, the initial number of classes is
very important that is the reason why we use it as prior knowl-
edge: the first image is the only observation we use (we call obser-
vation an image of the sequence for which we know specific
informations: in our case, the number of moving objects). Every-
thing else in the sequence is unknown. To automatically determine
the number of classes is a difficult problem to which the clustering
community has not yet provided an efficient solution. In the fol-
lowing frames, the number of moving objects can change and the
partition is updated with the new samples.

In the next sections, we adopt the following notations. Let’s
consider the set PðtÞ of Np samples randomly positioned on the Ga-
bor motion response GðtÞ (see Section 3): PðtÞ ¼ fpðtÞ1 ; p

ðtÞ
2 ; . . . ; pðtÞNp

g.
Our goal, for each frame of the sequence is to classify these samples
into NðtÞ classes xðtÞk ðk ¼ 1; . . . ;NðtÞÞ corresponding to the NðtÞ ob-
jects moving between frames ðt � 1Þ and ðtÞ. XðtÞ ¼
fxðtÞ1 ; . . . ;xðtÞ

NðtÞ
g is the set containing the NðtÞ classes of moving ob-

jects. In cases where the frame number is unambiguous, we will
omit the superscript ðtÞ to simplify the notation.
Fig. 1. Test on different sequences to determine the minimal number of samples
per moving object needed to obtain satisfactory pixel-level accuracy.
4.1. The first two frames

The first classification occurs in frame (2) using the difference
image Dð2Þ ¼ jIð2Þ � Ið1Þj. In this case, we assume that the number
Nð2Þ of moving objects is known. Later in the sequence, this number
will be automatically updated since our method can handle objects
entering and leaving the field of view. Let Pð2Þ ¼ fpð2Þ1 ; pð2Þ2 ; . . . ; pð2ÞNp

g
be the set of the Np motion samples randomly sampled over high
magnitude areas of the Gabor motion response. These samples
are clustered using the k-means algorithm which consists of two
steps. In the first step, a partition of patterns in k clusters is calcu-
lated, while, in the second step, the quality of the partition is eval-
uated. These two steps are repeated until the quality of the
partitions is maximum (see (Jain and Dubes, 1988) for more de-
tails). We have decided to use two criteria to evaluate the quality
of the partitions for the k-means algorithm: when the centers of
the clusters do not change between two iterations, and when the
partition minimizes the sum, over all clusters, of the within-cluster
sums of points to cluster centroids distances. In our case, the fea-
ture vector for each sample consists of its 2D image coordinates.
After the clustering algorithm, the samples in frame (2) are split
into Nð2Þ classes xð2Þk ; k ¼ 1; . . . ;Nð2Þ. We can then compute statistics
for each class.

Let pki
be the ith point in the kth class, ðk ¼ 1; . . . ;NðtÞ; i ¼

1; . . . ;nkÞ, where nk is the number of samples of class k. For each
class xk, we estimate the mean lk ¼

Pnk
i¼1pki

and covariance matrix
Rk ¼ 1

nk�1

Pnk
i¼1½ðpki

� lkÞðpki � lkÞ
t �.

Assuming that pki
follows a Gaussian distribution Nðlk;RkÞ, the

class can be represented by an ellipse Ek with center ck, orientation
hk, major and minor axes ak and bk, so that: ð ck; hk; ak; bk; Þ ¼
lk; tan�1 v1y

v1x

� �
; 2

ffiffiffiffiffi
k1
p

;2
ffiffiffiffiffi
k2
p

;
� �

where k1 and k2 are the largest
and smallest eigenvalue of Rk, and ðv1x ; v1y Þ

t is the eigenvector
associated with k1. The computation of the class statistics is de-
scribed by Algorithm 2.
Algorithm 2. Computation of class statistics
for k ¼ 1 to NðtÞ do
Compute statistics lk and Rk of class xk

Model the class xk as an ellipse Ekðck; hk; ak; bkÞ
end for
The algorithm for the first two frames is summarized in Algo-
rithm 3. Fig. 2b shows the recovered ellipses on the three moving
objects using the first two frames of the ‘‘Taxi” sequence.
Algorithm 3. First two frames
t  2
Find the set of samples PðtÞ

Cluster PðtÞ into NðtÞ classes using the k-means algorithm
Class update: Algorithm 2
Xðt�1Þ  fxkgk¼1;...;NðtÞ

Pðt�1Þ  PðtÞ
4.2. Update algorithm

Once the moving objects have been extracted using the first two
frames of the sequence, the update algorithm is called for all the
other frames in the sequence. Given a new frame at time ðtÞ, we
use Algorithm 1 to extract the samples PðtÞ ¼ fpðtÞ1 ; p

ðtÞ
2 ; . . . ; pðtÞNp

g
around the moving areas. For each new sample, we can decide
whether it belongs to one of the classes xðt�1Þ

k of Xðt�1Þ computed
at frame ðt � 1Þ by determining whether the sample is inside the
corresponding ellipse Eðt�1Þ

k . This occurs when a part of the object
in frame ðtÞ overlaps with the same object in frame ðt � 1Þ.



Fig. 2. First two frames of the ‘‘Taxi” video sequence. (a) Left: difference image function; Right: Gabor motion response using a set of r ¼ 3 Gabor filter banks (N ¼ 6
orientations, r ¼ 2). (b) Left: difference image. Middle: Gabor motion response with 300 randomly positioned samples (100 per object); Right: recovered ellipses around the
three moving objects after applying the k-means algorithm with k ¼ 3.

S. Dubuisson, J. Fabrizio / Pattern Recognition Letters 30 (2009) 606–614 609
At each time frame, three situations occur (see Fig. 3 for
illustration):

� Some samples are associated with some classes from Xðt�1Þ,
because the corresponding objects are still moving.

� Some samples cannot be classified into any of the xðt�1Þ
k classes,

because a new object has appeared in the field of view, or an
object already in the field of view has started moving.

� Some classes are such that no new samples were assigned to
them, because an object has left the field of view, or an object
has stopped moving.

All the samples that satisfy the first case are assigned to their
corresponding class and the statistics for all the classes are up-
dated. All the other samples will be revisited at a later stage (see
Section 4.3). Algorithm 4 summarizes the steps of the update
algorithm.
Algorithm 4. Update algorithm
Pnew ¼ ;
Compute PðtÞ using Algorithm 1
for all pi 2 PðtÞ do
if 9xk 2 Xðt�1Þ : pi inside Eðt�1Þ
k then

Classify pi into xk

else
Pnew  pi

end if
end for
Class update: Algorithm 2
XðtÞ  fxkgk¼1;...;NðtÞ

if Pnew–; then
Algorithm 5

end if
Class update: Algorithm 2
XðtÞ  fxkgk¼1;...;NðtÞ

Pðt�1Þ ¼ PðtÞ

Xðt�1Þ ¼ XðtÞ
Fig. 3. Illustration of the three cases that can occur for new samples: previous
computed classes are represented by ellipses and samples in the new frame by
points.
4.3. Classification of new samples

One of the novelty in our method is the handling of new sam-
ples in PðtÞ that do not belong to any of the classes xðt�1Þ

k 2 Xðt�1Þ

from the previous frame (the samples were placed in the set
Pnew). Two possibilities can happen for each sample:
� it can still be associated with a class from the previous frame
because it is close enough to the corresponding ellipse; or

� it is too far from any of the existing classes because it corre-
sponds to a new moving object (that entered the scene or that
started moving).

The new sample classification scheme is given in Algorithm 5. In
the first step, all new samples are clustered into small classes.
Again, we use the k-means algorithm. Since the optimal number
of classes is unknown, we use the method described in Chen
et al. (2005) based on the gravitational clustering idea (Kundu,
1998) to automatically determine the number of classes. The goal
is to apply the k-means algorithm for varying number of classes
and find the optimal number k such that the partition minimizes
a measure of distortion of the spatial distribution of samples in
the clusters. The principle of the gravitational clustering is based
on the notion of a force of attraction between each pair of points
without using a similarity measure. The clusters are formed by
slowly moving each new sample under the effect of those forces.
Samples are merged together when they are too close to each
other. We have chosen such an approach because it has been
shown to be more accurate than k-means, fuzzy k-means or near-
est neighbor classifiers (Jain and Dubes, 1988).

Let C ¼ fc1; . . . ; cng be the set of n classes obtained after classi-
fication of the new samples. The distance between a new class cj

and an existing class xðtÞk 2 XðtÞ is defined as the average distance
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between all points in class cj and the ellipse EðtÞk corresponding to
wðtÞk : Dðcj;xkÞ ¼ 1

ncj

Pncj

i¼1 distðpi; E
ðtÞ
k Þ, where ncj

is the number of
samples pi in cj and distð:; EÞ is the distance from a point to an el-
lipse E (see (Eberly, 2000) for more details). The class cj 2 C is
merged with class xðtÞk 2 XðtÞ if mink¼1;...;NðtÞDðcj;xðtÞk Þ < T , where T
is a threshold depending on the size of the image and on the vari-
ance of samples in xðtÞk : a new sample can be added to a class only
if its meaning distance to the samples belonging to this class cor-
responds to the meaning distances between these samples. Other-
wise, cj is too far from the other classes: this corresponds to a new
class (e.g. moving object). After all the samples have been assigned
to a class (new or updated), the statistics and ellipses are updated
for all classes (Section 4.1). At each frame, some classes wðt�1Þ

k from
the previous frame were not assigned any samples. These classes
are not added to the current set of classes XðtÞ, and therefore are
abandoned.
Algorithm 5. Classification of new samples
Fig. 4. Computation times for the processing of the ‘‘Ant” sequence (see exam
of images in Fig. 5). The recursive scheme of k-means algorithm makes dec
computation times, comparing to a classical k-means algorithm.

Fig. 5. Results on the ‘‘Ant” sequence. Detection of moving ants on frames
sequence.
n 1
repeat
n nþ 1
Cluster Pnew into n classes (k-means algorithm)

until all classes cj have a plausible density according to (Chen et al.,
2005)
for j ¼ 1 to n do

if 9xk 2 XðtÞ: Dðcj;xkÞ < T then

Merge cj and xk

else
XðtÞ  cj

NðtÞ  NðtÞ þ 1
end if

end for
Fig. 4 shows comparative results of time computing of k-means
algorithm and recursive k-means algorithm for the first 10 frames
on the ‘‘Ant” sequence (see examples of images on Fig. 5). For this test,
Np ¼ 1800 samples have been positioned on moving objects (about
ples
rease

5 and 52.
300 per object). We can see the interest of using a recursive scheme
for the classification of new samples: for each new frame, the k-means
algorithm classifies 1800 samples, while our recursive scheme classi-
fies, in mean, 400 samples. This is an important save of time.

Table 1 shows the advantage of using our approach of recursive
clustering to improve tracking when two objects get close. For
example, we can see that when the distance between two objects
is smallest than five pixels, we correctly classify 88% of the new
samples, when the k-means only classify 66% of these samples.

Considering these two tests, we can affirm that our approach
gives a better classification rate of motion samples, giving a more
robust object tracking, with a save of time.

5. Results

We have tested our method on several sequences and the algo-
rithm was able to track all the objects in all the sequences. For all
these sequences, the difference images between consecutive
frames were filtered using a set of Gabor filter banks with param-
eters: r ¼ 3; f0 ¼ 0:14;r ¼ 2 and N ¼ 6. Some motion Gabor re-
sponse examples are shown in Fig. 2b on the ‘‘Taxi” sequence. In
this section, we present some interesting results obtained on com-
plex sequences, in and beyond the visible spectrum, to illustrate
the robustness of our approach. In each sequence, we have manu-
ally pointed moving objects (and fit an ellipse around them) to
generate the real trajectory of them. We then can compare our
tracking results with these trajectories by calculating the meaning
pixel-level error between the real positions of objects and our esti-
mations of them.

5.1. Qualitative results

The ‘‘Ant” sequence shows ants moving on a flat surface. Each
ant has a complex movement: translation while walking and defor-
mations while moving its head, abdomen, or antennas. In addition,
there is a hole in the middle of the flat surface from which ants can
disappear and reappear. The sequence contains 74 frames. We
have tested our algorithm on this sequence using 1800 samples
and all the ants were tracked properly throughout the sequence.
Some results are shown in Fig. 5. The right most picture shows
the trajectories of all the ants during the sequence. It can be seen
that the trajectories are fairly complex and the ants get very close
The rightmost image contains the trajectories of all the ants during the 74 frame

Table 1
Illustration of the advantage of our recursive clustering approach. New sample
classification error rate when two moving objects get close (the distance between
objects is given in pixel).

Distance between
objects

k-mean clustering
(%)

Recursive k-means clustering
(%)

30 Pixels 0 0
20 Pixels 1 0
10 Pixels 5 0
5 Pixels 15 5
2 Pixels 33 12
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to each other during the sequence. Nevertheless, the algorithm was
always able to resolve the ambiguities. In our test, the meaning
pixel-level error is 5.08.

The ‘‘Parking” sequence shows moving cars and pedestrians. All
kinds of complicated cases are present in the sequence: some of
these objects leave the field of view, others stop and restart their
motion, some moving objects occlude other moving objects, the
contrast is not always very clear between the background and
the moving object. Fig. 6 shows some of the frames in the 2500
frame sequence. Despite all the complicated situations, the algo-
rithm is always able to correctly track all the moving objects.

The OTCBVS benchmark dataset collection contains infrared
videos. Fig. 7 shows some of the results on three of the sequences.
It can be seen that despite numerous people entering and leaving
the field of view, the proposed method was always successful in
tracking all the moving people.

We also have worked in a part of the sequence ‘‘Tennis” where
the player bounces the ping pong ball on his racket (approxima-
tively 25 frames), because this is the only part where the camera
does not move. The motion of the ball is not regular (acceleration
during descendant phase, deceleration during ascendant phase).
The use of a multi resolution and orientation filtering makes our
algorithm robust to the speed changes. Moreover, when the ball
bounces off of the racket, two classes (one for the ball and one
for the racket) are well detected and differentiated. Fig. 8 shows
Fig. 6. Results obtained on the ‘‘Parking” sequence (from left to right, from top to bottom
(left) and a pedestrian is leaving (right); 4. car stopping (center); 5. people entering the fie
classes are separated again; and 8. car backing up and starting in the opposite direction

Fig. 7. Results obtained on the OTCBVS benchmark dataset collection for different dat
Dataset 05: Terravic Motion IR Database (outdoor motion and tracking); and 3. last row
tracking results on several images of this sequence, with
Np ¼ 600 samples. Fig. 9 shows the number of misclassified sam-
ples along the sequence. We can notice that this number increases
in frames 16–20, because the ball and the racket are very close in
these frames. However, the meaning error is 23.68 samples among
the 600 used in this test, giving a meaning rate of 0.03.

The ‘‘Hall” sequence shows people walking alone or in groups in
an hallway. A part of the hall is exposed to the sun that induces a
changing in illumination. In this test we have used 1000 samples.
In Fig. 10, we show the result of our algorithm on the part of the
sequence where a man is walking around the sunlit area. Despite
the changing in illumination, the man has been correctly tracked
(Fig. 10, images 1–3). Moreover, we can see a group of people that
split and a new class is well detected (Fig. 10, image 4). Fig. 11
shows the number of misclassified samples along the sequence.
During frames 15–30, there is a changing in illumination. We can
see the number of misclassified samples does not increase. Be-
tween frames 40 and 60, two groups of people are getting closer,
then merging. Number of misclassified samples first increases, un-
til a fusion process is performed by our algorithm. Similarly, this
group of person is splitting between frames 100 and 120. After
few frames, the two classes are detected and the number of mis-
classified samples decreases. Our algorithm is first disturbed by
merging and splitting events, but can quickly change the number
of classes to deal with these new situations.
): 1. initialization; 2. same number of classes; 3. one car entering the field of view
ld of view (right); 6. during occlusion (center), classes are merged; 7. after occlusion,
(right).

asets: 1. first row: Dataset 01: OSU Thermal Pedestrian Database; 2. middle row:
: Dataset 05: Terravic Motion IR Database (indoor hallway surveillance).



Fig. 11. ‘‘Hall” sequence. Misclassified sample along the sequence.

Fig. 8. Results on the ‘‘Tennis” sequence: from left to right: 1. detection of the ball with a quasi null motion (top of the parabola of the trajectory); 2. the ball is accelerating:
the racket, the ball and the hand are well detected; and 3. contact between the ball and the racket, two classes are still detected.
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5.2. Comparisons with particle filter

We have compared our results with those obtained with parti-
cle filter based approach on the ‘‘Ant 2” sequence (102 frames) on
which motion is unknown and highly nonlinear and erratic (see
Fig. 5 for examples of images). We use the parameters described
at the beginning of this Section for our method and have used 15
frames as observations for the particle filter. We have compared
with the Joint Probability Data Association Filter (JPDAF) (Bar-Sha-
lom and Fortmann, 1988), that uses a weighted sum of all mea-
surements near the predicted state, each weight corresponding
to the posteriori probability for a measurement to come from a tar-
get. JPDAF provides an optimal data solution in the Bayesian
framework filter. Fig. 12 shows the comparative results when we
use 600 particles (or samples) for JPDAF and our algorithm. If we
compute the meaning pixel-level error computation we obtain
7.8 for particle filter, and 5.08 for our method. The error given by
JPDAF inscrease when ants change their direction or get closer
(see Fig. 13), showing that our algorithm is more robust in such
cases. Fig. 13 gives a comparison of meaning pixel-level error be-
tween particle filter and our method. We can see this error is more
important when using particle filter, especially when ants are get-
ting closer (see for example error given in frames 7–10 and 34–40).
Fig. 14 shows the computing time provided by JPDAF and our ap-
proach. We can see our method is less time consuming. This is
due to the fact that for JPDAF, the number of possible hypothesis
Fig. 10. Results on the ‘‘Hall” sequence (from left to right): 1. two classes are detected: on
to bright) around the moving person; 3. the two classes are close to each other; and 4. ch
of a group: three classes are detected.

Fig. 9. ‘‘Tennis” sequence. Number of misclassified samples along the sequence.
increases rapidly with the number of targets, and also the number
of particles requiring prohibitive amount of time calculating.
e group of two people and one person alone; 2. changing in illumination (from dark
anging in illumination (from bright to dark) around the moving person and splitting

Fig. 12. Comparison tests on the ‘‘Ants” sequence: dotted lines show trajectories
obtained with particle filter, and solid lines the trajectories obtained with our
method. 600 particles (samples) are used.



Fig. 13. ‘‘Ant” sequence. Comparison of meaning pixel-level error between particle filter and our method for the first 74 frames. 600 particles (samples) are used.
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Fig. 15 shows the meaning pixel-level error among the sequence,
depending on the number of particles (or samples) used in JPDAF
and in our algorithm. For both approaches the error is important
when the number of particles (or samples) is small. We can how-
ever see our algorithm provides a reasonable error despite a small
number of samples (around 500 for the six moving objects) used
comparing to JPDAF. JPDAF and our algorithm give similar errors
when the number of particles is greater than 2000. In this particu-
lar sequence, the error is due to the proximity of ants.
Fig. 14. ‘‘Ant” sequence. Comparison of computing time depending on the number
of particles (samples in our algorithm), between JPDAF and our approach.

Fig. 15. ‘‘Ant” sequence. Comparison of meaning pixel-level error depending on the
number of particles (samples in our algorithm), between JPDAF and our approach.
6. Conclusion

In this article, we have proposed a new approach for object
tracking in video sequences in and beyond the visible spectrum
with a static camera that can deal with multiple targets, occlusions,
non-rigid motions, objects entering and leaving the field of view,
objects stopping and starting, and moving objects getting really
close to each other. The novelty of this method is that motion sam-
ples are not only classified in each frame, but classes are also up-
dated in every frame. This is like a recursive clustering. This
updating makes the classification step more robust, since in each
frame, the approximate locations of the motion classes are known
(from the previous frame). In addition, this recursive k-means algo-
rithm saves time since we do not have to classify all the samples
every time. The scheme is quite simple but highly robust.

Results that have been published in the literature demonstrate
that particle filters are the best tools currently available to robustly
track multiple objects, with deformations, occlusions, entry and
exit of objects in the scene. The algorithm that we propose can also
handle these situations. In our case, we do not need to know any
motion model (via a transition function) for objects contrary to
the particle filter. In fact, without any transition function, the par-
ticle filter would fail because the particle would not be propagated
in good directions, and the update step would cause the degener-
acy of particles. This is not the case of our algorithm: particles
are regenerated in each frame on high motion area and then asso-
ciated to classes (i.e. moving objects). Another advantage of our
method over particle filters is that there is no need to learn the
appearance (color, shape) of the objects that have to be tracked.
Also, the changes in illumination are taken into account in our ap-
proach because we are working on the difference image Gabor re-
sponse, which also means that the tracked objects can change their
color over time without affecting the tracking results. In other
words, our approach only focuses on movement detection inde-
pendently of the shape, color, size, etc. of the object. Finally, our
algorithm can handle erratic motions (see results on ‘‘Ant” se-
quence). Gabor filtering can be time consuming that is why we
have used the recursive scheme that was proposed in Sudan
et al. (2007) to speed it up. Our tests on different complicated se-
quences have shown that this method is very robust. In the future,
we attempt to improve the algorithm, that now does not differen-
tiate an object that stops and restarts from an object that appears.
In both situations, the object is seen as a new object. We are cur-
rently conducting more research to label objects and identify
whether an existing object has stopped and restarted or a new ob-
ject has appeared. This is done using probabilities of appearance in
regions of the images. Our method also does not handle occlusions.
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Finally, we could determine the motion sample number (before the
classification step) in an adaptive way, so that dense motion area
could be more characterized. This would give a best compromise
between speed and characterization.
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