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Abstract. Knowing that the grid cells in the dorso-lateral band of the
medial enthorinal cortex are a necessary component of rat’s ability to
perform path integration and homing, we explore the idea proposed by
Fiete et al. (2008, J. Neurosci., 28(27):6858) that they might encode the
coordinates of the rat in a Residue Number System. We show that the
decoding network based on a gradient descent they propose to use for
that purpose does not operate satisfactorily, and thus propose a network
using a direct approach derived from the Chinese Remainder Theorem.

1 Introduction

Rodents are able to directly come back to their departure point after having
explored an unknown environment, even in the absence of visual or other al-
locentric cues, exhibiting the so-called homing navigation strategy [1]. They
achieve this using path integration (or dead-reckoning), i.e. the integration of
self-movement information derived from proprioceptive inputs, efferent copy of
movement orders and vestibular information, so as to continously estimate their
position relative to their departure point.

The neural substrate of this integration mechanism is thought to be the
recently discovered grid cells (GC) [2] in the dorso-lateral band of the medial
enthorinal cortex (dMEC). These cells fire according to a repeating equilateral
triangular pattern (fig. 1, left) in the locomotion plane, characterized by a given
period (the distance between two maximal response sites) and a given orientation
(of one of the triangle sides with regard to an allocentric reference). Nearby cells
in the dMEC have the same period and orientation but a different phase and
are thus thought to belong to the same grid, while increasing grid sizes have
been observed when recording cells along a dorsal to ventral axis. This spatial
pattern of activity takes into account self-movement information, as it has been
shown that it is preserved in absence of any visual cue, despite a spreading of the
bumps of activity, caused by accumulation of errors by the integration process.
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The dMEC is an essential part of the path integration/homing system, as it
has been shown that animals with an enthorinal lesion are unable to perform
homing [3]. Interestingly, the hippocampus does not seem to be an essential
component of path integration, as hippocampectomized rats can still perform
homing [4]. Consequently, the intrinsically metric homing navigation strategy
does not require functional place cells –that are a topological code of the rat
position rather than a metric one– to operate. How to perform homing using
the GC activity solely is a yet unanswered question, as most existing models of
navigation including the GCs (like the very first one [5]) use them to generate
place cells, which can then be exploited to navigate with topographical strategies,
like place recognition triggered response or path planning (see [6, 7] for reviews
on this matter). A computational model of homing should be able to extract
directly from the grid cells the current position with regard to the departure
point, so as to be able to generate the opposite locomotor command.

In the following, we propose a computational model able to extract directly
from the activity of a set of grid cells the current coordinates of the animal, that
can be used to control the homing behavior.

2 Model

2.1 The initial idea

In a recent paper, Fiete et al. [8] proposed a new way to interpret the GC activity:
they could be considered as performing the 2D equivalent of modulo operator.
When considering one axis of a given grid, the currently most active neuron in
this grid provides the residue of the division of the current coordinate of the rat
on this axis by the grid period (fig. 1, right). The information from one grid allows
to locate the animal modulo this grid’s period, but the information provided by
a set of N grids of periods (λ1, ..., λN ) corresponds to a well known number
encoding system, the Residue Number System (RNS). The RNS is based on the
Chinese Remainder Theorem (CRT) which states that given a set of residues
(r1, ..., rN ) and a set of pairwise coprimes (λ1, ..., λN ) (with Λ =

∏N
i=1 λi), there

exist a unique integer x modulo Λ so that ∀i ∈ [1, N ], x ≡ ri (mod λi). Thus,
given the N aformentionned λi any number in [0, Λ[ can be encoded as the set of
residues ri. Note that this can be generalized to non coprime pairwise periods,
in which case the Λ is the least common multiple (lcm) of the periods. If we
consider a set of grids of identical orientation and different periods, and use
them as modulo operators, one should be able to extract the coordinate x of
the animal on one of their axes. Doing this operation on two axes of these grids
provides a coordinate system sufficient to locate the animal in space, as long as
it does not travel distances exceeding the periods’ lcm.

Fiete et al. did not provide a computational implementation of their idea, but
suggested to decode the activity of a set of grids using a neural network model
proposed by Sun & Yao [9]. However, this model computes x by performing a
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Fig. 1. Left: Grid cell firing pattern schema. A grid cell recorded while the rat locomotes
(here in a circular arena) fires with an equilateral triangular pattern characterized by
a period and an orientation. Right: Grid cells as a modulo operator. Considering the
1D case, with a grid of period 3, the current rat position is encoded (plain arrow) by
neuron 2, but neuron 2 represents all positions 2 modulo 3 (hashed arrows), adapted
from [8].

Fig. 2. Left: The Sun & Yao [9] model fails to decode correctly all the encoded values,
errors, away from the diagonal, are highlighted by hashed ellipses. Right: Decoding
errors (in cm) generated by our model on a 100× 100m surface.

gradient descent on an discontinuous energy function with multiple local minima:

E(r) =
N∑
i=1

1
2
|x mod λi − ri|2 +

1
2AR

x2 (1)

Such a function being unadequate for a gradient descent, it work quite poorly as
it easily get stuck in local minima. For example, with a set of periods 2, 3, 5, 7,
fig. 2 (left) shows the decoding of all the positions in [0, Λ = 210[, where numer-
ous values are not correctly decoded.

2.2 TRC-based model

We propose a decoding scheme based on an explicit use of the basic mathematics
associated to the CRT. Consider the λ̂i = Λ

λi
=

∏
j 6=i λj : they are pairwise

coprimes, and according to Bezout’s theorem, ui and vi exist such that uiλi +
viλi = 1. If we define ei = viλ̂i, x can be computed as the following weighted
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Fig. 3. Grid cells decoding model. The speed V of the simulated animal displaces the
activity in the four grids (25 × 25 neurons), the gains Gi define the grid periods (38,
50, 62 and 74cm). The circular barycenters ri and r′

i of the grid activities projected on
one of their axes are the residues used with the ei weights to decode the coordinates
(x, x′) (note that this reference frame is not orthogonal).

sum:

x =
N∑
i=0

eiri (2)

A similar solution holds when using non-pairwise coprime periods.
We built a computationel model to show the efficiency of the Fiete et al. RNS

idea, using the direct RNS computation (eqn. 2). This model (fig. 3) operates
in 2D and uses real residue values extracted from grid cells. It uses velocity
inputs provided to 4 grids , based on the model proposed in [10]. These grids
have realistic periods of 38cm, 50cm, 62cm and 74cm, theoretically allowing
the unique decoding of values over more than 5km; they all have the same
orientation, which also seems to be realistic [11]. The position of the maximum
activity on two of the three axes of the grids is obtained by summing the activity
of all cells projected on these axes and computing the circular barycenters of the
resulting vectors. These values correspond the residues ri, which are then sent
to two neurons, whose synaptic weights were set to ei.

The simulations performed with this model show that a simulated rat is able
to compute its position in 2D. The errors, caused by the discretization of the
grids, have an average of 0.39cm (std = 0.19) (fig. 2, right), a value which seems
acceptable with regards to the size of a rodent.

3 Discussion & Conclusion

Based on the idea –proposed by Fiete et al. [8]– that the grid cells could be
considered as an encoder of the position of animal using a residue number system,
we propose a computational model performing the decoding of this position, to
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be used as a command for the locomotor system in a homing navigation strategy.
We also establish that the residue-to-decimal decoder proposed in [9] does not
operate efficiently.

Our simulations were conducted without noise in the speed measurements.
In reality, such noise affects the grid updating and is fought with resets of the
grid activity in places identified by learnt allocentric cues [2]. Such stabilization
mechanisms are present in most GC models, and are either based on direct
visual inputs or on interactions with the multimodal place cells [12]. This does
not affect the validity of proposed decoding scheme, which should of course be
connected to a grid cell model including a stabilization mechanism.

Finally, a computational model –anterior to the discovery of the grid cells
[13]– proposed to learn the coordinates corresponding to each place cell of a
hippocamp model, so as to thereafter enable metric navigation. We showed here
that the grid cells, providing inputs to the place cells, are sufficient to perform
metric navigation, with the advantage that no prior associative learning phase
is necessary, in accordance with observations of homing behavior performed by
rodents in new and unexplored environments.
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