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Abstract— A robust dynamic feedback controller is designed
and implemented, based on the dynamic model of the six-wheel
skid-steering RobuROC6 robot, performing high speed turns.
The control inputs are respectively the linear velocity and the
yaw angle. The main object of this paper is to elaborate a sliding
mode controller, proved to be robust enough to ignore the
knowledge of the forces within the wheel-soil interaction, in the
presence of sliding phenomena and ground level fluctuations.
Finally, a 3D simulation is performed with an accurate physical
engine to evaluate the efficiency of this designed control law.

I. INTRODUCTION

The aim of this paper is to control precisely a six wheel
drive skid-steering vehicle. Nevertheless, vehicle systems are
not usually easy to control because of unknowns about their
behaviour and the difficulty to evaluate the forces in the
wheel-soil interaction. Many interaction models developped
by Bakker [3] or by Pacejka [15] try to represent the
complexity of the physical phenomena by using empirical
functions. However, wheel-soil interaction is still one of the
great unknowns in mobile robotic systems. The dynamic of
skid-steering mobile robots has been studied by Caracciolo
in [5], with the use of a dynamic feedback linearization
paradigm for a model-based controller that minimizes lateral
skidding by imposing the longitudinal position of the instan-
taneous center of rotation. In [12], Kozlowski designed a
new algorithm proved to have a high robustness to dynamic
parameters uncertainty. Now, another strategy that uses a
sliding mode controller can be investigated in order to deal
with the skid phenomenon that is inherent to this kind of
vehicle. This controller, developped by Utkin [19], autho-
rizes a decoupling design procedure, a disturbance rejection,
insensitivity to dynamic parameters variations, and a simple
implementation. That is why this control law has been treated
in many ways in the literature. In [11] and in [2] dynamic
control laws are studied, but without taking into account the
complex dynamical model of the vehicle. In [20] and then
in [6] the dynamical model of a unicycle is studied for the
design of a controller by using a nonholonomic constraint,
considering a null lateral velocity. In [9], it is taken into
account that in realistic case, the nonholonomic constraints
are not satisfied. But the problem is addressed for a partially
linearized dynamical model of a unicycle robot.
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Fig. 1. RobuROC6

Here, we suggest an original dynamical model based upon
sliding mode control method for fast autonomous mobile
robots, that controls the torques applied in the wheels. The
main objective is to follow a given path with a relatively
high speed by servoing the longitudinal velocity and the yaw
angle. The terrains considered here are horizontal in theory
and relatively smooth compared to the size of the wheels. If
most of the mobile robots motion controllers found in the
literature use the hypothesis of rolling without slipping, it is
no longer suitable at high speed where wheel slip can not
be neglected. Because of the dynamics of the vehicle and
the saturation of admissible forces by the soil, the slippage
reduces the robot motion stability. So a controller robust
enough is needed

A 3D simulation is performed in a dynamic environment
with robuBOX, a software developed by the ROBOSOFT
company [1] and based on Microsoft Robotics Studio. An
interaction wheel-soil model of forces designed by Szostak
et al in [18], described in the fifth section, is used to permit
a realistic modelling of the system behavior. We will analyze
the motion control of a RobuROC6 represented Fig. 1.

It is an electric mobile robot developed by Robosoft,
for exemple studied in [13], which consists of three pods
steered and driven by two actuated conventional wheels on
which a lateral slippage may occur. The rear and the front
pods are symmetrically arranged about the central pod. They
are attached to this later one by two orthogonal passive
revolute joints providing a roll/pitch relative motion so as
to keep the wheels on the ground to maintain traction of
the pod when driving across irregular surfaces. Note that the
pitch mobility can be actuated by hydraulic cylinders. Two
ultrasonic sensors with a range of 3,4 meters and two bumper
sensors are located in the front and in the rear of the robot.



One inclinometer for each pod and odometric sensors are
also available. A GPS and a gyroscope are needed for the
control law implementation.

A controller based on a complete three dimensional dy-
namic model of this kind of articulated system would be diffi-
cult to investigate, especially the calcul of complex equations
in a limited time if we intend to reach high velocities. That
is the reason why the sliding mode controller is particulary
adapted. The robustness of this controller, according to the
robot dynamic model, permits to stay quite reliable in spite
of the sliding phenomenon and the roll and pitch movements
of the three pods, due to possible fluctuations of the ground
level and of the normal contact.

This paper is organized as follows. In the second section,
the system dynamical model is given. In the third section,
we describe the design of the sliding mode controller. In
the fourth section, the use of the Robosoft Robubox for
an efficient implementation of the controller is detailed. In
the last section, simulation results using this controller are
presented and analyzed.

II. SYSTEM DYNAMICS MODEL

A dynamic model of a skid-steering vehicle is established
in fixed frame R0 = {O0,x0,y0,z0}. We consider R =
{G,x,y,z0} the frame attached to the vehicle. The vehicle
pose vector is given by [x,y,θ ]T , where [x,y]T is the position
of the center of gravity G and θ is the orientation of R, both
with respect to R0. The representation of the 6WD skid-
steering vehicle is described Fig. 2. The absolute velocity[
ẋ, ẏ, θ̇

]T becomes [u,v,r]T in the local frame, linked by the
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Fig. 2. System dynamics
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The wheel-ground interaction forces are called Fx∗∗ and Fy∗∗
for each one of the six wheels in both the longitudinal x and
the lateral y directions (with f, m and r for front, middle and
rear, and l and r for left and right). The dynamic model of
this mechanical system can be expressed in the local frame
by the following equations:

M (u̇− rv) = Fxrl +Fxrr +Fxml +Fxmr +Fx f l +Fx f r (2)
M (v̇+ ru) = Fyrl +Fyrr +Fyml +Fymr +Fy f l +Fy f r (3)

Jṙ = −wlFxrl +wrFxrr− lrFyrl− lrFyrr

−wlFxml +wrFxmr (4)
−wlFx f l +wrFx f r + l f Fy f l + l f Fy f r

which expresses the dynamics of the main frame considered
as a unique rigid body, and:

Jwω̇ f l = τ f l−RFx f l ; Jwω̇ f r = τ f r−RFx f r ;
Jwω̇ml = τml−RFxml ; Jwω̇mr = τmr−RFxmr ;
Jwω̇rl = τrl−RFxrl ; Jwω̇rr = τrr−RFxrr

(5)

that correspond to the wheels spin dynamics.
M is the mass of the vehicle, R the wheel radius, J the

vehicle inertia on z axis, Jw the wheel inertia, ω̇∗∗ the angular
acceleration of the wheels, τ∗∗ the wheel torques, wl and wr
the left and right width and l f and lr the front and rear length.

III. CONTROLLER DESIGN

Because the lateral dynamics of the vehicle can not be
controlled, we use only the dynamic equations projected
along x and z0 for the decoupling design procedure.

The longitudinal velocity and the yaw angle of the vehicle
are controlled by adding two inputs τu and τθ . The torque
τu is applied equally on the six wheels of the robot, whereas
the value of the torque τθ is of opposite sign for the right
and the left wheels.

The control law architecture is depicted Fig. 3.
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A. Control of the yaw angle θ

1) Design of the control law: Introducing the input τθ ,
equations (4) and (5) give us:

ṙ = λτθ +Λθ ω̇ +Dθ Fy (6)

with:

λ = 3
2

wr+wl
JR ;

Λθ = −Jω

JR

[
−wl wr −wl wr −wl wr

]
;

ω̇ =
[

ω̇ f l ω̇ f r ω̇ml ω̇mr ω̇rl ω̇rr
]T ;

Dθ =
[

l f l f −lr −lr
]

;
Fy =

[
Fy f l Fy f r Fyrl Fyrr

]T
.

As proposed in [8], to drive the vehicle to the path, the
desired yaw angle θd has to be modified as:

θ̃d = θd + arctan
(

d
d0

)
with d0 a positive gain and d the distance to the path.

Considering cdθ the control law and n
(
θ ,r, ṙ,d, ḋ, d̈

)
the

function of uncertainties depending on θ , r, ṙ, d, ḋ and d̈ in
the dynamic equations, we have the following relationship:

ṙ = cdθ −n
(
θ ,r, ṙ,d, ḋ, d̈

)
(7)

We define the yaw angle control law as:

cdθ = ˙̃rd +Kθ
p εθ +Kθ

d ε̇θ +σθ (8)

with:
• ˙̃rd the second derivative of θ̃d , being an anticipative

term;
• εθ = θ̃d−θ the yaw angle error;
• Kθ

p and Kθ
d two positive constants that permit to define

the settling time and the overshoot of the closed-loop
system;

• σθ the sliding mode control law.

2) Error state equation establishment: If we calculate the
second derivative of εθ :

ε̈θ = ˙̃rd− ṙ
= ˙̃rd− cdθ +n
= ˙̃rd−

(
˙̃rd +Kθ

p εθ +Kθ
d ε̇θ +σθ

)
+n

= −Kθ
p εθ −Kθ

d ε̇θ +(n−σθ )

(9)

We define the error state vector x =
(

εθ

ε̇θ

)
. So, we have

the state equation:

ẋ = Ax+B(n−σθ ) (10)

with: A =
(

0 1
−Kθ

p −Kθ
d

)
; B =

(
0
1

)
.

If σθ = 0, the system is linear and we choose the value
of Kθ

p and Kθ
d as Kθ

p = ω2
n and Kθ

d = 2ξ ωn in order to
define a second order system. ωn is the pulsation and ξ the
damping factor. To define numerical values, the 5% settling
time Tr is introduced: Tr = 4,2

ξ ωn
.

3) Stability analysis: To guarantee the stability of this
closed-loop system, the problem of tracking the desired yaw
angle θ̃d can be solved by using the Lyapunov candidate
function V = xT Px, with P a positive definite symetric
matrix. Based on the Lyapunov theorem ([17]), the state x =
0 is stable only if:

V (0) = 0 ; ∀x 6= 0 V (x) > 0 and V̇ (x) < 0 (11)

The first two equations are verified. We have to establish the
third one. Using the equation 10, we calculate the derivative:

V̇ (x) = ẋT Px+xT Pẋ
=

(
xT AT +nBT −σθ BT

)
Px

+xT P(Ax+Bn−Bσθ )
= xT

(
AT P+PA

)
x+2xT PB(n−σθ )

(12)

Then, we calculate P in order to obtain the Lyapunov
equation:

AT P+PA =−Q (13)

with Q a defined positive symetric matrix. Equation (12)
becomes:

V̇ =−xT Qx+2xT PB(n−σθ )

To maintain the stability, V̇ has to be negative. The first
term is negative and the second one is null if x belongs to
the kernel of BT P. We define the sliding variable s = BT Px.
s = 0 is the sliding surface. If s = 0, the error state vector x
becomes null.

The sliding mode controller σθ is defined as σθ (s = 0) = 0
and for s 6= 0, σθ = µ

s
‖s‖ , with µ a positive scalar large

enough to allow the stability of the controller. That allows
to have:

sT (n−σθ ) = sn−µ
s2

‖s‖
= sn−µ ‖s‖ ≤ ‖s‖(‖n‖−µ)

If we assume the model error is bounded: ‖n‖ ≤ nMax < ∞,
the selection of µ > nMax allows to verify the Lyapunov
theorem hypothesis.

4) Solution of the Lyapunov equation: To solve the equa-
tion (13), the matrix Q is choosen as:

Q =
(

a 0
0 b

)
with a > 0 and b > 0.
Knowing the value of the parameters of the matrix A, the
matrix P is:

P =

 1,05·b
ξ 2·Tr

+ 5·a·ξ 2·Tr
21 + a·Tr

16,8
a·ξ 2·Tr

2

35,28
a·ξ 2·Tr

2

35,28
b·Tr
16,8 + a·ξ 2·T 3

r
296,352

 (14)

B. Control of the longitudinal velocity u

Introducing the input τu, equations (2) and (5) give us:

u̇ = γτu +Λu∑ ω̇ + rv (15)

with: γ = 6/RM ;
∑ ω̇ = ω̇ f l + ω̇ f r + ω̇ml + ω̇mr + ω̇rl + ω̇rr ;
Λu = −Jω/RM.



As previously, cu is the control law and m(u, u̇) the function
of uncertainties depending on u and u̇ in the dynamic
equations. We have the following relationship:

u̇ = cu−m(u, u̇) (16)

The longitudinal velocity control law is:

cu = u̇d +Ku
pεu +σu (17)

with:

• u̇d an anticipative term;
• εu = ud−u the velocity error;
• Ku

p a positive constant that permits to define the settling
time of the closed-loop system;

• σu the sliding mode control law.

Using the Lyapunov candidat function V = 1
2 ε2

u , it can
be immediately verified that the stability of the system is
guaranteed by the choice of the sliding mode control law
σu = ρ

εu
‖εu‖ , with ρ a positive scalar, large enough.

C. Expression of the global control

In practice, uncertainties about the dynamic of the system
to control have for consequence an unknown about the
real sliding surface s = 0. As a consequence s 6= 0 and
the sliding control law σ , which has a behavior similar to
a sign function, induces oscillations while trying to reach
the sliding surface s = 0 with a null time in theory. These
high frequency oscillations around the sliding surface, called
chattering, increase the energy consumption and can damage
the actuators. In order to reduce them, we can replace the
sign function by an arctan one or, as chosen here, by adding
a parameter with a small value β in the denominator.

Finally, the following torques are applied to each one of
the six wheels:

τ f l = τml = τrl = τu− τθ

2 ;
τ f r = τmr = τrr = τu + τθ

2
(18)

with τu and τθ defined by:

τu =
1
γ

(
u̇d +Ku

pεu +ρ
εu

‖εu‖+βu
−Λuω̇− rv

)
(19)

τθ =
1
λ

(
˙̃rd +Kθ

p εθ +Kθ
d ε̇θ + µ

BT Px
‖BT Px‖+βθ

−Λθ ω̇−Dθ Fy) (20)

To estimate the value of the lateral forces Fy, a Pacejka [15]
theory could be used by taking into account the slip angle.
But, because of the robustness of the sliding mode control,
we can consider that Fy is a perturbation to be rejected,
and we do not include it in the control law. A slip angle
measure being in practice not very efficient, this solution is
better.

IV. USING ROBUBOX TO IMPLEMENT THE
CONTROLLER

The sliding mode controller is implemented with Robosoft
robuBOX [16], a software package that allows re-usable
development and deployment of robotic applications. It
is built on top of Microsoft Robotics Studio (MSRS)
and is provided by all Robosoft robots. The robuBOX
software can also be used without any hardware platform,
it runs indifferently on real robotic platforms or in realistic
simulations. Using reference designs of architectures
provided with robuBOX, the controller algorithm is easily
encoded and tuned. Then, we can re-use any existing service
within a new architecture.

During the simulation, the RobuROC6 robot is provided
with 3D models including the graphic 3D meshes and
the physics and dynamics properties. Every joint of this
multi-body mobile robot is properly encoded.

Fig. 4. Graphic model of the
RobuROC6

Fig. 5. Physical model of the
RobuROC6

Complex environments using a height field entity for the
ground are also simulated.

V. SIMULATION

The simulation is executed with RobuBOX, using MSRS
and Ageia PhysX [7], a highly realistic 3-dimensional dy-
namic environment. An advanced tire slip based friction
model is used in this simulator. It separates the overall
friction force into longitudinal and lateral components. Each
component is represented by the function depicted Fig.6, the
force being in N and the composite slip, taking into account
the longitudinal slip of the tire and the slip angle, without
unity. A stiffness factor is also added. This positive gain is
the base amount of ”grip” of the tire in the specified direction
(longitudinal or lateral) [14].

A

B

Extremum

Asymptote

Force [N]

Composite Slip [ ]

Fig. 6. Friction Model



We use here the following parameters:
• Coordinates of the Extremum point A: (1.0;0.02);
• Coordinates of the point B, beginning of the Asymptote:

(2.0;0.01);
• Longitudinal stiffness factor = 10000.0;
• Lateral stiffness factor = 10000.0.
The controller parameters are chosen as: Ku

p = 1.00s−1,
Kθ

p = 12.00s−2, Kθ
d = 0.10s−1, ξ = 0.70, Tr = 2s, βu =

0.01ms−1, βθ = 0.01, a = 0.10 and b = 0.10 (a and b being
the two positive constants defining the matrix Q, solution of
the Lyapunov equation). The value of the torques applied
on the axis of the wheels are figured with the control law
designed in section III.

TABLE I
ROBOT PARAMETERS

Description Symbol Value
Length l 1.5m
Width w 0.80m
Height h 0.474m
Mass M 140Kg
Inertia J 188Kg ·m2

Radius of the wheels R 0.234m
Mass of the wheels Mw 3Kg

Inertia of the wheels (also including
the inertia of the geared motors) Jw 0.364Kg ·m2

A. Path following with a horizontal ground

The first simulation consists of following a curved path on
a horizontal ground. In this test, the vehicle is commanded
to travel at 3m.s−1. The sliding mode control law gains are
so settled: ρ = 1.0ms−2 and µ = 18.00. The displacements
of the RobuROC6 are displayed Fig.7. Time evolution of the
exerted torques τu and τθ are displayed Fig.8 and Fig.9 and
the evolutions of resulting εθ and εu with the sliding mode
controller are displayed Fig.11 and Fig.10. With a kinematic
controller, the vehicle has some difficulties to join the desired
path because of the sliding phenomenon in the wheel-soil
interaction, not taken into account.
As a consequence, the skidding robot joins the path slowly
after a curve.

After adding the sliding mode controller, the robot goes
along the path adequately, the torques being continuously
corrected. Nevertheless, we can see Fig.11 some oscillations
in the yaw angle error plot, what is the chattering phe-
nomenon which can also be seen Fig.10. To reduce steady
state error, we can increase the value of the sliding mode
controller gains, which increases the value of the robust
control input term. But, increasing these gains, the chattering
phenomenon increases and the process could present non
acceptable vibrations. The best behavior with a good fol-
lowing of the path and with acceptable chattering is plotted
for the values reported here. A maximal yaw angle error
absolute value of 0.2rad when turning and the longitudinal
speed error absolute value always less than 0.4ms−1 remain
quite satisfactory. Notice that this controller is quite robust

because the friction is not constant and some phenomena
(e.g. the elasticity of the tire) are not taken into account.

Fig. 7. Robot Position
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Fig. 8. Torque τu
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Fig. 9. Torque τθ
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Fig. 10. Longitudinal Speed Error
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Fig. 11. Yaw Angle Error

B. Path following with a sinusoidal ground

In this simulation, we suggest to follow the same path
as previously with the same velocity, but with a not
horizontal ground in order to investigate the robustness of
our controller according to this kind of disturbance. The
selected ground has a sinusoidal shape with an amplitude
of 0.2m, a little less than the half of the RobuROC6 height,
and a period of 2m, a bit longer than its length, as it can be
seen Fig.12.

As a result, the path is approximately followed as properly
as before. The difference between the position errors of
the two simulations, with and without horizontal ground, is
plotted Fig.13.

We can see that the curve of the position error with a
sinusoidal terrain reaches higher values, due to the added
disturbances. But the fluctuations are not significant com-
pared to the vehicle dimensions. So, the controller shows the



Fig. 12. RobuROC6 on a sinusoidal ground
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Fig. 13. Position errors

same efficiency as previously with a position error increasing
when the robot is turning. Finally, we can conclude that the
sliding mode controller is a robust one for the RobuROC6
system, that has its capability, even with disturbances due to
fluctuations of the level of the ground.

VI. CONCLUSIONS AND FUTURE WORKS

A sliding mode controller was designed and implemented
on the simulated RobuROC6 robot. Using RobuBOX and
MSRS, it became easy and fast to develop his own con-
trol algorithms and include them in an existing re-usable
architecture. The simulations performed with an accurate
physical engine have shown the robustness of the control
law even without any knowledge about the forces in the
wheel-soil interaction and with some fluctuations of the
ground level. Next, we will experiment this controller in real
conditions. To limit the chattering in the control signals, a
second order sliding mode controller may be investigated, as
it was already done in [10]. Furthermore, it could be tested
in an unstructured environment to evaluate the limits of the
controller robustness. In this paper, we have not studied the
possibility of varying the sliding mode control law gains. So,
we will investigate this possibilty, based on stability criteria
like the lateral law transfer (LLT), for exemple already used
by Bouton in [4].
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