
Prediction of user’s intention
based on the hand motion recognition

Miguel Carrasco
Computer Engineering Department

Pontificia Universidad Católica de Chile,
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Abstract—Most methods proposed in the literature for pre-
dicting movements involved in a reach-to-grasp action by human
being are designed using passive methods, i.e, by using a camera
in front of the user. A novel approach to understand the user’s
intentions with computer vision methods is proposed in this
paper. Our solution performs a hand motion estimation using
a wearable system. To realize such system, we employ a camera
beneath the wrist to capture motion from the user’s perspective.
To predict hand intentions, we characterize a hand-movement
trough a Hidden-Markov Model framework. As main result, our
system can predict the movement before the hand can reach an
object with a performance near to 90% in average.

Index Terms—Gesture recognition, motion planning, image
motion analysis, image motion detection.

I. INTRODUCTION

The human beings posses a highly developed ability to grasp
objects under many different conditions, taking into account
variations in position, location, structure and orientation. This
natural ability controlled by the human brain is called the eye-
hand coordination. Normally, a grasp movement is initiated
time before the hand can reach an object, and it is regulated
by the interaction of several sensorimotor systems such as the
visual system, vestibular system and proprioception working
in conjunction with head, eye, hand and arm control systems
[1]. A central part of this activity occurs in different cortical
and subcortical brain regions, taking special importance the
use of our underlying cognitive process, like the attention and
memory. According to Flanagan and Lederman [2], when we
grasp an object, the information perceived by our sensory
signals is the result of our preconceived ideas of the shape
of the object, and the interpretation of perceived, that is,
our brain uses memory representations and visual information
simultaneously to grasp objects. We infer that this dynamic
activity is an exploratory searching, attempting to find the best
solution for planning movements to the target and controlling
the user’s hand. Not as the use of active sensors with the
purpose of capturing data. Researchers in many fields have
been studying this process for many years, trying to understand
the brain mechanism that controls this coordination. However,
up to now there is not an unique theory which explains this
effectively, and furthermore, it is not completely understood
[3, 4]. In spite of this, we observe that this field has spread to
other subjects, specially into the Human-Computer Interaction

(HCI). Within the HCI domain, there is a special interest
on designing computer interfaces by taking advantage of the
human interaction, and one of them is particularly the human
vision.

This paper describes a novel approach to recognize the
user’s intention based on the visual information captured from
the user itself. Our work stands in contrast with classical
methods to recognize hand gestures. Generally, most motion
recognition methods captures the user’s movements by track-
ing body parts. Instead, we develop a system that captures
the scene using the reach-to-grasp movement; thus, implicitly
we infer the user’s intention. The system is composed by one
visual acquisition system: a microcamera beneath the wrist.
Today, with the advent of fast microcameras, it is possible
to use a camera without annoying the user’s interaction. A
general overview of the system is presented in Fig.1

In our problem, the user’s intention is the active conscious
action with the goal to reach-to-grasp an object with a hand.
Generally, we perform grasp actions very fast and precisely;
almost unconsciously because our brain resolves this com-
plex coordination in a small period. The grasp action has a
particular period when the user initiates its movement toward
an object. Based on such observation, our systems exploits
this feature by allowing us to detect the user’s intention. This
work is very challenging because many postures for reaching
a target can be presented in the same user, increasing the
complexity to characterize an unique representation of the
grasp movement. Likewise, due to the high variability involved
in each movement, several assumptions are need it in order to
predict the movement at an early stage. This is the main point
addressed in this paper.

The central question here is, why is relevant to know
the user’s intention? The prediction of the user’s intention
can be used as a key factor within the HCI domain, as in
the work described below: Interactive robots have been used
efficiently in the rehabilitation domain; nonetheless, the co-
manipulation domain is still under-exploited mainly by a lack
of research in this area. Recently an important effort has
been made for designing an active orthosis for aiding people
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Fig. 1. Schematic view of the propose framework with a wearable camera.
(a) Camera beneath the user’s wrist share the same field-of-view (FOV) only
when the user starts the movement to reach-to-grasp. (b) Hand approaching
sequence using the camera beneath the user’s wrist. In time t1 multiple objects
are detected, later, in time ti and tn the field-of-view (FOV) is almost filled
due to the proximity between the hand and an object.

with arm disabilities by the BRAHMA1 project. For realizing
such system, it is critical to know the user’s intention, in
this way, the active orthosis can operate to control the user’s
arm. The rest of the paper is organized as follows: Section
II discusses the prior work on the human gesture recognition;
Section III explains our proposed method; Section IV shows
the experimental results; and finally, Section V presents our
contributions and our future work.

II. RELATED WORK

The gesture recognition can be defined as the problem to
follow body parts over the space-time in order to interpret the
motion behavior as particular gesture. Based on the Aggarwal
and Cai [5] definition, the gesture recognition requires to
perform three general tasks. First, to identify some human
body structure or low-level features such as points, blobs, 2D
contours or 3D-volumes; second, to track human movements
using low-level features by matching between consecutive
frames or using the motion itself; and third, to recognize the
human activity by matching the motion descriptor captured
in the tracking process against the recognition framework.
The last step is considered a higher level task due to, the

1The BRAHMA project is currently being carried out by five French
laboratories with the aim to develop advanced robot technology for as-
sistance to human upper limb motion. More information available in
http://brahma.robot.jussieu.fr/

recognition task requires the classification of varying feature
data over time [6]. The problem of interpreting the human
gestures is defined as a learning process. In the training phase,
some sequences are used to learn the user’s behavior, labeling
as a particular human gesture. Later, in the matching phase
unknowns test sequences are compared against a model so as
to be classified as particular gesture. Most approaches designed
to detect human gestures are based on template matching or
appearance-base models:

A. Template matching

This approach characterizes the human motion as means
of recognition instead of using specific parts of the body.
Thus, the action is represented by one robust vector. Polana
and Nelson [7] were pioneered in applying this approach.
They compute the motion fields between successive frames
by dividing each frame into the spatial grid, forming a high
dimensional feature vector. This feature vector was conformed
by optical flow magnitudes and periodicity flow frames. The
recognition task was performed using a nearest centroid al-
gorithm by comparing a feature vector against a reference
motion template. Bobick and Davis [8] designed a similar
approach, but they extract features using a motion-energy
image (MEI) and motion-history image (MHI). First, they
construct the motion images as a binary representation of
temporal difference between successive frames. These motion
images are accumulated in time forming the MEI. The MHI
is forming by using a temporal decay of each pixel intensity
at that position. Thereby, brighter pixels represents the more
recently motion. In order to get an invariant representation of
the action, they extract invariant features of a set of MHIs
and MEIs. These features are used later to recognize an input
action by calculating the Mahalanobis distance between the
moment description and known actions. In a similar way, but
considering the action template as a space-time 3D volume,
Shechtman and Irani [9] extended the idea of 2D correlation
into a 3D space-time volume by defining the action as a
spatio-temporal geometric structure. For this, they compute the
correlation of a small video by seeking peaks in the behavioral
correlation surface.

B. Appearance-base models

This approach considers the human motion as a set of
local features, where an action is described as a sequence of
images. One common technic employed in this approach is
the Hidden Markov Models (HMM). HMM is a probabilistic
technique to recognize patterns in temporal time series, usually
employed in speech recognition. Starting with the work of
Yamato et al. [10], currently, HMMs has been adopted as
a tool for recognizing the human motion. Yamato et al.
developed the first human recognition method to recognize
six tennis strokes using low-level features as an input to a
HMM learning process. Although, low-level features do not
provide rich descriptions of the motion, Yamato et al. shows
that these features are enough to identify human movements.
In the same line, Starner and Pentland [11] proposed a system



to interprets the American Sign Language (ASL) using an
HMM. They used low-level features such as shape, orientation
and trajectory as input to an HMM without describing the
hand shape. Recently, a novel approach by Achard et al. [12]
proposes to use semi-global features by estimating micro-
movements from 3D spatio-temporal volumes. They deter-
mined invariant 14 moments so as to be used as an input
of an HMM framework. In general, the aim of recognizing
human intentions is to predict the inherent intentions on people
without explicit instructions. In other words, we aim to know
when an user initiates a grasp movement toward an unknown
object. In following section we address this problem with
further details.

III. PROPOSED METHOD

Suppose that a user is performing a grasp movement toward
an object, one can infer that the trajectory remains steady.
Accordingly, all objects in the scene start to disappear from
the user’s FOV until the hand has reached the object required
(Fig.1b). Conversely, if the hand movement is too stochastic,
the probability that a user is performing a reach-to-grasp
movement is reduced because the motion-descriptor does not
have a pattern of approaching. This last statement is the key
point of the hand recognition. The problem now is how to
build a robust pattern of motion. To achieve this goal, a
tracking analysis is performed only for resolving the corre-
sponding problem. Here we use a robust invariant descriptor
called SURF [13]; mainly by its robustness and speed against
variations in scale and rotations. A general overview of the
hand motion recognition is presented in Fig.2.

I. Feature matching
Most tracking algorithms based on appearance-base models
compute the object trajectory by using a displacement differ-
ence between multiple frames. Those methods are well suited
when the object motion is smooth and without abrupt changes,
as for example methods based on the estimation of optical
flow [14]. Contrariwise, in our problem the hand motion is
particulary fast when a user is performing a reach-to-grasp
action, or too stochastic in other cases. For this reason, we
propose to analyze the motion displacement between interme-
diates frames. In a similar way of the spatio-temporal methods
described in [9], our method use Temporal Slide Windows
(TSW) extracted along the video sequence.

Based on this idea, we propose to build a motion model
of multiple corresponding points in relation with each last
temporal corresponding frame. Unlike the current classical
frame-to-frame correspondences, our method is able to esti-
mate a global motion from each TSW. Firstly we compute
invariant interest-points by means of the SURF algorithm.
This task is performed for each δ-frames contained on a
TSW. This is schematically outlined in Fig.3. For instance,
let pj

1 = [xj
1, y

j
1, 1]> the position of the j-th interest point in

time t = 1 stored in homogenous coordinates. If this interest
point is corresponding with a point pj

n in time t = n it must
have a strong similarity between their features. Likewise, after
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Fig. 2. Proposed hand intention recognition model based on the analysis of
temporal slide windows (TSW) interspaced by δ-frames

δ-frames, a point pj
i is corresponding with pj

n using the same
similarity metric, where i ∈ {1, . . . , n − δ}. Although points
pj

1 and pj
1+δ are corresponding to each other, here we are

not interesting in motion between some small displacement.
Conversely, we seek to compute the global motion. In the
following analysis we consider the first TSW contained on
time t = 1 and t = n. Secondly, once extracted interest
points for some δ-frames, we try to find a vector that relates
the j-th point pj

i 7→ pj
n, for all i ∈ {1, . . . , n − δ}. Here,

the key point is to relate multiple corresponding points with
respect to the set of points extracted in the last frame. If for
some frames this relation does not exist, it is not relevant
while a minimum number of correspondences are established.
As a result, we reduce the motion complexity caused by the
inter-frame approach, and also we assure a single correspon-
dence between multiple frames. To resolve this task, we use
the Nearest-Neighbor with Distance Ratio criterion (NNDR)
[15]. In general, the NNDR criterion reduces the number of
corresponding points when there are noise-points, and when it
does not exist a corresponding point. This last fault normally
occurs when there is a fast motion sequence, as in our problem.

II. Vectorial movement
Once established a set of corresponding points contained in
the TWS, we proceed to determine the motion vector for that
point. For instance, let qj

i,n be an homogenous vector that
crosses the points pj

i 7→ pj′
n defined as qj,j′

i,n = pj
i × pj′

n =
[xj

i , y
j
i , 1]×[xj′

n , yj′
n , 1]. The vector qj,j′

i,n is established between
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Fig. 3. Schematic view of the point correspondence in the time-space. (a) Corresponding points in 3D time-space volume; (b) Corresponding points in 2D
coordinates.

time t = i and t = n only for the j-th point2; however, several
vectors of the same point are required to establish a motion
field along this time. For this, we define the general motion
of multiple vectors that arrive at the point pj

n as

Qj
1 7→n =

[
qj

1, . . . ,q
j
i , . . . ,q

j
n−δ

]>

The matrix Qj
1 7→n defines the motion field of the j-th

point for all frames until time t = n, for each δ-frames.
Nevertheless, this procedure does not assures that in every δ-
frames there is a correspondence, because of high geometric
and photometric distortions, or partial occlusions that could
be present in some frames. To assure that the motion field
is correct, we define a parameter ρ as the minimum number
of rows in the matrix Qj

1 7→n where inliers ≥ ρ is fulfilled.
Conversely, if this last constraint is not fulfilled, we discard
the motion field for that point.

The next step is to derive only one vector that represents
the motion of the j-th point along the time. For this, we map
the angle of the j-th feature point along all inliers-frames as

Fj
1 7→n =

[
Fj

1,n, . . . ,Fj
i,n, . . . ,Fj

n−δ,n

]
,

where Fj
1 7→n is a (1×inlier) vector of feature angles extracted

in different δ-frames for the j-th point. In other words, each
angle Fj

i,n weights the relative significance between features of
points pj

i 7→ pj′
n . Thus, while smaller is the angle between two

vectors, stronger is the relation of the same point. Conversely,
when the angle is maximal, it could be considered as noise.
Based on such observation, we propose to represent each
angle-value as a weight vector after a linear transformation.
Hence, the vector Fj

1 7→n is transformed to a vector F̃j
1 7→n, used

for weighting each motion vector such that

F̃j
1 7→n = 1− αFj

1 7→n

max
(
Fj

1 7→n

) .

2For simplicity, we will change the notation qj,j′
i,n as qj

i , assuming a correct
matching between the j-th and j′-th and between time t = i and t = n

The vector F̃j
1 7→n is a scale-value that gives more relevance

to smaller values. That is, the maximal value is zero, and the
smaller value is maximal when α = 1. Experimentally α was
fixed at 0.98 to use all vectors mapped in Fj

1 7→n. Nonetheless,
the vector F̃j

1 7→n is not correctly scaled. To determine a correct
scale measure, we compute Nj

1 7→n as

Nj
1 7→n =

F̃j
1 7→n∑inlier

i=1 F̃j
1 7→n(i)

,

where
∑inlier

i=1 Nj
1 7→n(i) = 1. The resultant vector Nj

1 7→n

gives a correct measure of each angle value by taking into
account the relative significance between the angles contained
in Fj

1 7→n. Finally, we compute the global vector of the j-th
point as the vector

vj
1 7→n = Qj>

1 7→nNj>
1 7→n

where vj
1 7→n is a (1 × 3) vector that maps all Qj

1 7→n(k)
vectors into a single one by giving more value to vectors with
more similarity, based on the weight feature vector encoded
in Nj

1 7→n. More precisely, vj
1 7→n is a directional vector of

the j-th point, as shown in Fig.4a. Additionally, we compute
the normal directional vector in order to detect rotational
movements. For this, let q⊥

j
i,n the normal vector between

points pj
i 7→ pj′

n established between time t = i and t = n,
defined as

q⊥
j,j′
i,n = q⊥

j
i =




xj
i − xj′

n

yj
i − yj′

n

xj′
n · (xj′

n − xj
i ) + yj′

n · (yj′
n − yj

i )



>

.

Based on this, let Q⊥
j
1 7→n be the matrix of the normal motion

field for the j-th point, defined as

Q⊥
j
1 7→n =

[
q⊥

j
1, . . . ,q⊥

j
i , . . . ,q⊥

j
n−δ

]>

Therefore the normal global vector is as follows

v⊥
j
1 7→n = Q⊥

j>
1 7→nNj>

1 7→n.
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to-grasp movement, (b) Once established a central point, a movement analysis
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Note that v⊥
j
1 7→n was computed in the same way as vj

1 7→n,
however in this case the matrix Q⊥

j
1 7→n is composed by an

array of normal vectors.

III. Intersection point
For the sake of simplicity, the last procedure has considered
the motion of the j-th point. We now turn to the problem
of estimating the intersection point of multiple points in
correspondences. Suppose we have determined multiple vΘ

1 7→n

vectors, where Θ = {1, . . . , j, . . . , k} is the set of interest
points detected between time t = 1 and t = n and k is the
last point in correspondence, as is shown in Fig.4a. For this,
let AΘ

1 7→n be a (k× 3) matrix that encodes all motion vectors
as

AΘ
1 7→n =

[
v1

1 7→n, . . . ,vj
1 7→n, . . . ,vk

1 7→n

]>
.

The next step is to estimate a central point using vectors
contained in AΘ

1 7→n. Experimentally, when a reach-to-grasp
movement has been initiated, multiple vectors cross over in
one common point, called intersection point. To estimate the
position of the unknown intersection point, we formulate a
nonhomogeneous system of linear equations, described as
follows

[
AΘ

1 7→n

0 0 1

]

︸ ︷︷ ︸
H




x
y
1


 =

[
0k×1

1

]

︸ ︷︷ ︸
b

. (1)

Changing the notation in matrix terms, (1) can be expressed
as Hm = b, where H is the over determined matrix coeffi-
cients of AΘ

1 7→n vectors; because k ≥ ρ; and m = [x, y, 1]> is
the vector of unknowns (x, y). To resolve this problem we use
the QR transformation because it is numerically more stable
[16]. Therefore, the solution for the nonhomogeneous system,
using the QR transformation is

m̂ = R−1
(
Q>b

)
. (2)

Then, we seek to compute the normal intersection point
defined as the intersection of all normal vectors v⊥Θ

1 7→n. Based
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on the above procedure, firstly we define the matrix A⊥Θ
1 7→n

of all normal vectors contained in Θ as

A⊥Θ
1 7→n =

[
v⊥1

1 7→n, . . . ,v⊥
j
1 7→n, . . . ,v⊥k

1 7→n

]>
.

Finally, the problem of estimating the normal intersection
point can be expressed as H′m⊥ = b′, where m⊥ is a
non-homogenous vector that encodes the intersection point of
normal vectors. Again, using the QR transformation applied
to the matrix H′, such as H′ = Q′R′, the normal intersection
point is

m̂⊥ = R′−1
(
Q′>b′

)
. (3)

IV. Featured extracted
Below is an explanation of eight features proposed to predict
different hand motions. Namely, approaching, distancing, ro-
tational and translational invariant movements. Recall that in
this stage we are not interested in detecting the object by itself
nor detecting grasp movements.
a. Grasp motion: The first two features proposed are related
with the grasp action. In general, the grasp motion can be split
up in two different events. Zoom-in: when the hand is going
to reach an object; and Zoom-out: when the hand is moving
away of an object. Here, we propose a simple procedure to
infer whether a hand is reaching an object or not based on the
intersection point estimated in (2), and the motion transition
along the TSW.

Firstly, let Pj
1 7→n be a (inliers×3) matrix representing the

2D position in time [1, . . . , n] for each δ-frames; computed in
the same way of matrix Qj

1 7→n.

Pj
1 7→n =

[
pj

1, . . . ,p
j
i , . . . ,p

j
n

]>
.

Namely, the matrix Pj
1 7→n codes the motion of the j-th

point until the last (n − δ) frame. Then, we re-map motion
points taking into account variations in its features matching
as

pj
1 7→n = Pj>

1 7→nNj>
1 7→n , (4)
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where pj
1 7→n is a weighted mean position within vector vj

1 7→n

as is illustrated in Fig.4b. Extending this procedure for all Θ-
points, let pΘ

1 7→n be the motion of each points in the TSW
[1, . . . , n], and let pΘ

n be the final position of each point,
defined as,

pΘ
1 7→n =

[
p1

1 7→n, . . . ,pj
1 7→n, . . . ,pk

1 7→n

]>

and
pΘ

n =
[
p1

n, . . . ,pj
n, . . . ,pk

n

]>

Since vector pΘ
1 7→n codes the initial weighted position, let d1

be the Euclidean distance of each vector pΘ
1 7→n in relation with

the intersection point m̂, and let dn be the Euclidean distance
of each final position pΘ

n in relation with same intersection
point m̂ as,

d1,m(j) = ‖pΘ
1 7→n(j)− m̂‖ , dn,m(j) = ‖pΘ

n (j)− m̂‖ (5)

The Euclidean distance d1,m and dn,m represent the tem-
poral movement around the intersection point m̂, as shown in
Fig.5b. Since we know the estimated position of the initial,
final, and intersection point, the next step is to determine
whether motion is toward the center or not. Based on these
values, we define the function v(j), as the number of nearest
points to the intersection point, as follows,

v(j) =

{
1 if dn,m(j) ≥ d1,m(j)
0 otherwise.

Finally, from v(j), we extract the mean f1 and the second
central moment f2, as follows

f1 = µ(v) (6)

f2 = σ2(v) , (7)

where µ(·) is the mean and σ2(·) is the variance. The above
features indicate that the movement is toward an object if f1 7→
1; and conversely, the movement is against an object if f1 7→ 0.
To confirm this prediction, the variance σ2 should be low in
any case.

b. Rotational motion: The rotational motion feature gives a
temporal variation of each point in correspondence. The main
idea is to capture rotational movements independently of its
turn direction, and thus, to compute the angle velocity of each
point.

Firstly, suppose that the link between pj
i 7→ pj

n and pj
λ 7→

pj
n exists. Therefore, sj

i and sj
λ are two consecutive slopes of

the j-th point separated by λ-frames respectively, defined as,

sj
i =

yj
i − yj

n

xj
i − xj

n

, sj
λ =

yj
λ − yj

n

xj
λ − xj

n

.

Since both points are pointing to the last point pj
n in time

t = n, as depicted in Fig. 6a; therefore, by transitivity, also
implies that pj

i 7→ pj
λ, where tλ > ti. Thereby, the angle

between these consecutive slopes is

θj
i,λ = arctan

∣∣∣∣∣
sj

i − sj
λ

1 + sj
is

j
λ

∣∣∣∣∣ ,

Based on this result, we calculate the angular velocity ω
between pj

i and pj
λ so as to compute the motion variation

along the time, defined as

ωj
i,λ =

4θj
i,λ

4ti,λ
,

for all i = 1, . . . , inliers; where 4ti,λ is the time difference
between two consecutive frames. Clearly, the angular velocity
ω is a useful feature to estimate the motion rate of each point
along the TSW. Combining the above value with the Euclidean
distance between points pj

i and pj
λ we propose an invariant

feature that distinguish rotational and translational movements
as follows

f3 =

∑k
j=1

∑inlier
i=1 σ2(ωj

i,λ)
∑k

j=1

∑inlier
i=1 σ2(‖pj

i − pj
λ‖)

, (8)

The feature f3 tends to zero when the movement is transla-
tional. This happens when the hand is moving constantly in the
same direction; independently of its angle direction. Thus, the
variance of the Euclidean distance is high and the variance
of the angular velocity is low. Conversely, when motion is
rotational, f3 tends to be greater than one. Accordingly, the
variance of the Euclidean distance tends to be low as well as
the variance of the angular velocity, since every point describes
the same angular rotation.

c. Rotational area: In the same line as the above feature, we
propose to compute the area covered by central intersection
point (2), the weighted mean position (4) and the final end
position of each point as a measure to compute variations of
the area along the time, as shown in Fig.6b. More formally,
let φj

1 7→n be the angle between pj
1 7→n and pj

n on point m̂.
The log-area variation of multiple points along the TSW is as
follows
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f4 = log


 1

2k

k∑

j=1

d1,m(j)dn,m(j) sin(φj
1,n)


 (9)

where d1,m(j) and dn,m(j) are the Euclidean distance with
respect to the point m̂ of the j-th point, estimated previously
in (5) contained in Θ. The above feature computes the relative
area between the camera and the hand. In general, its variations
along the time is a useful way to estimate if motion is toward
an object or not. Herein, we compute log-area so as to reduce
its scale variation.
c. Rotational Normal variation: When movement is purely
rotational, the intersection point m̂ does not represent the real
center of motion. In a similar way to the last feature, firstly
we propose to compute the Euclidean distance to the normal
intersection point m̂⊥, defined as,

d1,m⊥(j) = ‖pΘ
1 7→n(j)− m̂⊥‖ , dn,m⊥(j) = ‖pΘ

n (j)− m̂⊥‖
(10)

where d1,m⊥(j) and d1,m⊥(j) are the temporal distance of the
j-point around the normal intersection point m̂⊥. Secondly,
we compute the angle ρj

1,n between pj
1 7→n and pj

n in regard
to the point m̂⊥, as shown in Fig.7. Using the above values,
we compute the log-area of the rotational normal movement
as,

f5 = log


 1

2k

k∑

j=1

d1,m⊥(j)dn,m⊥(j) sin(ρj
1,n)


 (11)

Normally this variation is high when motion is not rotational
because the intersection of normal vectors does not exist.
However, when motion starts to be rotational there is a point
m̂ that intersects all normal vectors v⊥Θ

1 7→n. Consequently,
all points have the same spin angle and a similar variation.
Experimentally, this rotational detector can differentiate lineal
movements from rotational movements.

A consequence of the above result is that we have obtained
two angle variations. Namely the angle variation ρj

1,n for the
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Fig. 8. (a) Different angles are found when the motion is rotational (b)
Similar angles are found when the motion is purely translational

j-point with regard to the normal intersection point m̂⊥, and
the angle variation φj

1,n with regard to the intersection point
m̂. Combining both angles in one feature allows us to get a
variation of motion over time, defined as follows

f6 =

∑k
j=1 φj

1,n∑k
j=1 ρj

1,n

(12)

For example, for rotational movements, f6 remains constant
with a low value along the time. In case of lineal movements,
f6 tends to be high, and finally, for zoom in or zoom out
movements, f6 varies according to each movement growing
or declining respectively.
d. Parallel angles: The parallel angles gives the relative
variation between the angles of each weighted mean position
and its final end position, as is illustrated in Fig.8. The key
point of this feature is to detect only translational movements,
independent of its angle direction and orientation of the
movement. Firstly, we compute the angle variation ψj of each
j- points as,

ψj = arctan

∣∣∣∣∣
yj
1 7→n − yj

n

xj
1 7→n − xj

n

∣∣∣∣∣

where pj
1 7→n = [xj

1 7→n, yj
1 7→n] is the weighted mean position

described previously, and pj
n = [xj

n, yj
n] is the final end posi-

tion. Combining the above angle and the Euclidean distance,
we compute the parallel variation as follows

f7 = log

(∑k
j=1(‖pj

1 7→n − pj
n‖)

kσ2(ψ)

)
(13)

In contrast to the feature f3, the above feature tends to zero
when motion is rotational and is only high when motion is
purely translational, because the angle variation is very low
and the distance of each weighted point remains constant. In
all other cases, the angle variation is high, and the Euclidean
distance varies according to the type of movement.
e. Acceleration: The last feature computes the acceleration
of each corresponding point encoded in the vector PΘ

1 7→n.



Unlike the time 4ti,λ relates the time different between two
consecutive frames; here we compute the time difference in
regard to the last temporal frame pΘ

n for each point contained
in the set Θ; in other words, we compute 4ti,n so as to
normalize the velocity to a single unit of time. For instance,
let vj

x and vj
y be the temporal velocity respect to point pj

n

taking into account the temporal difference ti,λ as follows

vj
x(i) =

xj
n − xj

i

4ti,n
vj

y(i) =
yj

n − yj
i

4ti,n
(14)

Based on the above results, the acceleration of the j-th point
in time t = i is defined by

ax(i) =

∑k
j=1 vj

x(i)−∑k
j=1 vj

x(i− λ)
k4ti,λ

(15)

ay(i) =

∑k
j=1 vj

y(i)−∑k
j=1 vj

y(i− λ)
k4ti,λ

(16)

In the above case, we compute the time 4ti,λ because
we seek the relative acceleration between consecutive frames.
Based on these results, we propose the following feature to
quantify the global acceleration as

f8 =
σ2(ax)

σ2(ax) + σ2(ay)
, (17)

where ax and ay are a two vector containing the relative
acceleration from each slide window.
f. Feature vector: In the previous steps we have proposed
eight features descriptors that encode different aspects of point
motion. Namely rotational acceleration, linear acceleration,
angle variation, area variation and motion direction. These
features are later used as an input for the HMM system as
shown in the following section.

For simplicity, the above analysis has considered a TSW in
time [t = 1, . . . , t = n]. Thus, the first feature vector o1 is
composed as follows,

o1 ≡ o1 7→n = [f1, f2, f3, f4, f5, f6, f7, f8]> , (18)

nevertheless, to infer the user’s intention it is necessary to
get multiple TSWs. Recall that each TSW is composed by a
sequence of δ frames, as shown in Fig.2. Therefore, a sequence
is represented by a sequence of slide windows, each one
composed by eight features.

O = [o1,o2, . . . ,oT ] , (19)

where T is the total frame number of the video sequence and
O is the observed symbol sequence.

V. Training HMM for recognition
Below, we briefly describe the principal component of an
HMM based system used for recognize the user’s intentions.
For a comprehensive review we refer to Rabiner [17]. HMM is
a type of stochastic signal model composed by a Markov Chain
whose states cannot be observed directly, but can be observed

through the sequence of observations. Currently, HMMs have
been employed in a wide range of applications. Specially in
those where it is necessary to deal with time-series with spatial
temporal variabilities, as for example, intention and gesture
recognition [10–12, 18].

More formally, HMM is composed by a number of N -
states {S1, S2, . . . , SN} connected by transitions, where each
transition has associated a probability, defined by matrix A; an
emission distribution probability, or the probability of emitting
an observation given a state, defined by matrix B; and an initial
state distribution π = {πi}. That is, using a compact notation
a HMM is fully specified by the triplet λ = (A,B, π) where:

• A = {aij} where aij = Pr(qt+1 = Sj |qt = Si), 1 ≤
i, j ≤ N is the state transition probability distribution,
and qt represent the state at time t.

• B = {b1(o), b2(o), . . . , bN (o)} correspond to the ob-
servation probability for each state. In our problem,
observations are modeled with a Gaussian distribution
bj(O) = N(o, µj , σj) where o is the feature vector
extracted in the last step.

• Π ≡ {π1, π2, . . . , πN} where πi = p(q1 = Si), 1 ≤ i ≤
N is the initial state distribution.

Based on the above parameters, the problem is to classify
each class defined as a particular user’s intention. Firstly,
we create a HMM for each category using the well known
Forward-Backward algorithm [17] in order to find the best
parameters for each HMM. This is a generalized Expectation-
Maximization (EM) algorithm by maximizing the probability
of observation sequence given each HMM model for all
training sequences.

VI. Prediction HMM for recognition
Once established the HMM parameters, our goal is to rec-
ognize an observed symbol sequence as a particular class or
user’s intention. Suppose that each λi where i = 1, . . . , C, is
a model parameter defined for i-class on C classes. Given
a sequence of observations O, we calculate p(O|λi) for
each HMM λi and we choose the class with the maximum
probability as:

class = arg max
i

(p(O|λi)). (20)

IV. EXPERIMENTAL RESULTS

In our experiments we have defined four movements in-
dependently of each object involved in the sequence such
as: zoom in, zoom out, lineal and rotary movements. Since
each movement is valid in a sequence of frames, our goal is
to detect if each movement has been correctly predicted as
the real movement performed by an user. In this experiment
we use a HMM system for predicting user’s intentions. In
order to build a HMM we performed an action several times
using one object in the scene. The goal is that providing
more testing sequences, for each class, we can increase the
probability to classify correctly an unknown sequence. In
our experiments we employed video sequences at 30 fps



digitalized into 320x200 pixel with 256 gray-level images. An
example of the video sequence is shown in Fig.9.

To evaluate the performance, we consider that an action is
correct if motion contained in each TSW has been predicted
correctly. Additionally, the system must be independent of
objects contained in the scene. In general, the performance
of a HMM varies according to the data used for testing.
Therefore, in our experiments we used the cross-validation
method with k = 10. Here we are not interested on evaluating
the performance of the testing data used for training the HMM.
Our goal is to evaluate the performance in videos with other
objects. For this reason we have tested each HMM on five
different objects performing each particular action with one
object at once. Namely a cup, bottle, mug, box, deodorant.
As we will show later, a HMM can be useful to predict the
movement in sequences even with multiple objects.

Our solution uses TSWs with the aim of analyzing the
temporal motion contained in this period. Using this idea we
can reduce the number of frames analyzed about 67%, because
each TSW is interspaced by δ-frames with δ = 3. As shown
in Table I, 7131 TSWs were analyzed from 21544 frames of
five video sequences. In order to evaluate its performance of
the HMM trained, we have classified manually each of 7131
TWSs. With respect to the data for training, we have classified
1466 TSWs from a mug without markers on the surface.

The performance of each HMM using different training
sets shows that the Zoom-out movement has, in average
the best performance near to 90%, as shown Fig.10. Also,
the lower performance has been detected in the Zoom-in
movement, because it is normally incorrectly classified as a
rotary movement. In the same line, this performance can vary
according to the object analyzed. For example, in the case of
the bottle used for testing, the performance was lower because
the SURF algorithm was unable to detect a large number of
descriptors. Therefore, fewer descriptors can not be able to
build a robust TSW. On the other hand, the mug analyzed had
the best performance because a large number of descriptors
were detected (Fig.11b).

In our experiments we also used the best HMM generated
with the cross validation method. For this task, we have
selected the best performance of each action taking as a
criterion the best F-Score and TPR performance. The results
shows that we can increase the performance by 2% with the
best F-Score and over 4% with the best TPR, as shown
Fig.11b-c.

V. CONCLUSIONS

The main contribution of this work lies into perform a
motion prediction using only a hand motion estimation. This
results can be applied on the project BRAHMA as a method
to predict the user’s intention. Specially on people with neural
degenerative disorders. In these, the control movements are
altered causing motion termor, slow movements, etc. Despite
the visual functions on these people have not been altered, the
control system can not be able to plan a correct movement
without any disruption. In our experiments we have shown

(a)

(b)

(c)

(d)

Fig. 9. Real image sequence with one object performing four actions(a)
zoom in, (b) zoom out, (c) lineal and (d) rotary movements

TABLE I
TSW ANALYZED OVER EACH HAND MOTION VIDEO

Zoom in-out Rotation motion Lineal motion
Object Frames TSW Frames TSW Frames TSW

Cup 1876 622 1226 405 1051 347
Bottle 1894 628 1211 401 726 240
Mug II 2231 739 1221 404 1016 336
Box 2393 792 1209 400 942 312
Deodorant 2414 799 1200 397 934 309∑

10808 3580 6067 2007 4669 1544
Mug I (†) 2292 759 1208 400 928 307

†: training data

that it is possible to detect hand intentions using only the
objects contained in the scene, and without special markers
on the object surface. However, the performance of this task
varies according to the points of interest detected by the SURF
method. Even if the object has been occluded, the system is
able to detect it because our approach uses a combination of
frames called Temporal Slide Windows (TSW). This approach
allows us to increment the temporal features of the same object
on time, therefore the paradigm of frame-by-frame comparison
has been replaced by TSW-by-frame approach. Our future
work is to improve the performance of the grasp intention
by improving the matching step. This task can be conducted
by searching a matching between both views.
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