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Abstract— The transverse function approach, a control de- The TF approach is based on a theorem proved in [1] and
sign method initially developed by the authors for nonlinear  further refined in [2], that shows the equivalence between
driftless systems, is based on a theorem that establishes the y,o fo|10wing properties of a family of smooth vector fields
equivalence between the satisfaction of the Lie algebra rank X X ifoldM i) this familv of v.f. satisfi
condition (LARC) by a family of vector fields and the existence Ly--sm on a maniio : ',), IS Tamily OF V.I. salis |e§
of functions "transverse” to these vector fields, defined on the Lie Algebra Rank Condition (LARC) at some point

a torus of adequate dimension. In this paper we prove the ¢o, i) there exist functionsf : TP — U(q) C M

existence of transverse fun_ctions (_jefined on special orthogdna transverseto X, ..., X,, in the sense that for any ¢ T?,
groups for vector fields which satisfy the LARC at the order X1(£(0)) X, (£(6)) ﬁ(g) ﬂ(ﬂ) span the tan-
’ )y <Am ’ 001 7 90,

one, and we provide an explicit expression of such functions. . .
An example illustrates some of the advantages resulting from 9ent space of/ at f(6). HereT” denotes the-dimensional

the use of these new functions. torus and{(qo) is a neighborhood afy. Given a controllable
control system (1), the existence of "transverse functifms
|. INTRODUCTION this system is ascertained by the above-mentioned theorem.

The transverse function (TF) approach [1], [2] is a control he design of practical stabilizers based on the TF approach
design method developed for so-called “critical” nonlin-relies on the explicit determination of such functions (Ee
ear control systems, i.e., controllable systems with norfor details). In [2], expressions of TF are given. Exploring
controllable linear approximation at equilibrium points. Other possibilities is important because the performarfce o
was originally developed for the control of driftless sysge the controlled system is related to the properties of the TF.

of the form Efforts have already been devoted to the determination of
] i new TF with complementary properties, e.g. to achieve the
7= ZXZ'(‘J)W (1) asymptotic stabilization of feasible trajectories [10f khis

topic is still very open.
with X,... X, smooth vector fields (v.f.) on some man-

. _ /
gggoy_}hqe;Zess;?;,qsaggé c;itis:qélll’\}\;ﬁé;:z)n t-fled(i::qr(‘tr)m TF approach by introducing TF defined on special orthogonal
. Yy - - roups SO(m) instead of toriT?. Given a family of v.f.

Kinematic models of nonholonomic mechanical systemix .
(wheeled robots, rolling spheres, etc) belong to this cla 1.+, Xm} such that the v.EX,, [X;, X;] i, =1...,m
n the tangent space 61 at some pointgy, we prove

: S
of systems, and the TF approach has been applied to Sevetﬁg};r‘existence of TF defined &0 (m) and provide explicit

of them [3], [4], [3], [6], [7]. More recently, it has also bee fxpressions for these functions. A noticeable feature egah

applied to critical underactuated mechanical systems (i inctions is that they present symmetry properties resgect
systems with fewer force/torque control inputs than degre yp Y y prop

of freedom) [8], [9]. With respect to classical feedbaclﬁ
design methods aiming at tlasymptoticstabilization of zero

In this paper we depart from the original formulation of the

f those of the associated control system. Such functions
ave recently been used for the control of the "trident-sfiak
for some tracking error, the primary objective of the TF‘mechanlsr'n (a snake-like robot introduced by M. I;hlkawa
. . AT . in [12]), with improved performance and control efficiency.
approach is to ensug@actical stabilization, i.e. stabilization ; S )
This application is presented in a separate paper [13]. It

of a neighborhood of zero. This allows for new control

solutions endowed with new properties (see [10] for mor& probable that these new TF can also be used for other

details), such as the capability of ensuring the stabitimat mechanical systems. The present study also initiates a long

of any reference trajectory, i.e. not necessarily admissiblé‘(.arr.n research about. the characterization of manifolds on
In addition, the ultimate tracking error can be rendereglvhICh TF can be defined.

arbitrarily small by a proper choice of the control param&te  The paper is organized as follows. Section Il presents
This result comes as an interesting counterpart to the notiie notation and recalls basic definitions associated wigh t
existence of a feedback controller capable of asymptdficaltransverse function approach. An example is addressed in
stabilizing any admissible reference trajectory [11]. Section Il in order to motivate the introduction of the new



TF and provide comparisons with respect to (w.r.t.) cladsicC. Systems on Lie groups
ones. The main results are presented in Section IV. Proofs| ot (7 denote a connected Lie group of dimensianThe

are given in the appendix.

Il. NOTATION AND RECALLS
A. Vectors and manifolds

The transpose of a vectar € R" is denoted as’, its
i-th component as;, and its Euclidean norm as|. The
i-th vector of the canonical basis B is denoted as;, i.e.
elx = x;. Them x m identity matrix is denoted a5,,. The
tangent space gtof a manifoldM is denoted ag;, M. Given
a family X! = {X3,..., X,,,} of smooth v.f. onM and a
vector ¢ € R™, we denote byX'(q)¢ the tangent vector
>t Xi(q)& € T,M. The special orthogonal gro(m)
is the matrix Lie group{ R € R™*™ : RR' = I,,,,de{R) =
1}. For any smooth curve?(.) on SO(m) and any basis
S1,- 3 Sm(m—1)/2 0f m x m skew-symmetric matrices (i.e.
any basis of the Lie algebea(m) of SO(m)), one hask =
RS(w) with S(w) = >, w;S;, for some time functions; (.).
Finally, given a familyX! = {X;,..., X,,} of smooth v.f.
on a manifold}M, we say thatX! satisfies the LARC at "the
order one” at some poinyfy if

Spar{Xi(QO)a [XHX]](QO) ) Z?] = 1a ce. 7m} = quM (2)
B. Exterior algebra and wedge product

unit element ofG is denoted ag, i.e.Vg € G ge =
eg = g. The inverseg~! of g € G is the (unique) element
in G such thatgg~™! = g~'g = e. The left (resp. right)
translation operator oy is denoted asl (resp. R), i.e.
V(o,7) € G? L,(t) = R;(c) = or. AV X on G
is left-invariant iff V(o,7) € G?, dL,(7)X(7) = X(o7),
with df denoting the differential of a functiorf. The Lie
algebra —of left-invariant v.f.— of the grou@ is denoted as
g. If X € g, exp(tX) is the solution at time& of ¢ = X(g)
with the initial conditiong(0) = e. A driftless control system
g=>1,X:(g9)& on G is said to be left-invariant ol if
the control v.f.X; are left-invariant.

D. Transverse Functions

Definition and general characterization Let X' =
{X1,...,X,,} denote a family of smooth v.fX;, ..., X,,
on a n-dimensional manifold)M and T? denote thep-
dimensional torus. A smooth functiofi : TP — M is
transverse taX'! if, for any 6 € T,

spai{ X1 (f(0)), -, Xm(f(0)), df (O)(ToT")} = Ty9)M

with df the differential of f. Note thatp, the dimension of
TP, must be at least equal fo—m). Given smooth functions

Standard notation and definitions about exterior algebrge : TP — M defined fore € (0,¢¢), with eg > 0, we say
and wedge product are now recalled (see e.g. [14] @hat (f¢) is afamily of functions transverse t&* if Ve €
[15] for more details). Theexterior algebra\ V' of am-  (0,e(), f€ is transverse toX'. Givengqy, € M such that the
dimensional vector spacg over R is a unital associative family X' satisfies the LARC a4, the “transverse function
algebra generated by theeedge productA. The wedge theorem” given in [1] ensures the existence of a family of
product operatiom : (A V)x(AV) — AV is associative, functions transverse t&!, with max, dist(f¢(6), ) — 0
bilinear, and alternating in the sense thah v = 0 for ase — 0, where “dist” denotes any distance locally defined
all v € V. Note that this is equivalent to the propertyin the neighborhood ofy.
vAw = —wAv, VY(v,w) € V2. As a vector spacg) V can The case of invariant v.f. on Lie groupsWhenM = G
be decomposed 8§V = A°VaA' Va---a A"V, with s a Lie group andXj, ..., X,, are independent elemehts
A’V =R, \'V =V, and each)\" V (r > 1) the vector of the Lie algebrag, stronger results can be obtained (see
space generated by elements of the farm\ --- Av,., with  [2] for details). First, provided that the family® satisfies

v1,...,0, € V. One deduces from the alternating propertgthe LARC ate, functions transverse t&' can be defined

of the wedge product that given any basis,...,e,,} of on T"~™, i.e. with the minimal value(n — m) of p.

V, and anyr, the set A family (f¢) of such functions, with the property that
(e A Aei tiy < oe < i) @) maxe dist(f¢(0),e) — 0 ase — 0, is given by

JoO) = 1h(0n) fr1(On) - Fri1(Omsn)
with each f7 defined by

f(6;) = exp ((ea;)™ sin; X ;) + (ebi)? cos GZ-XP(Z-))(6)
for some constant scalarg;,«;,b;,3; and some V.f.
. ) (4) X, X, € g. Given functions f¢ transverse toX!,
(i) p(i)
From [14, Th. 2.19.1], any linear functioRl can be asso- gne can design feedback controls that practically stabi-

ciated (for eachr) with one and only one homomorphic ji,e any reference trajectory, for the associated control
extension. We will use the following property, the proof

X X , system (1). The idea is to asymptotically stabilize=
of which results from 'the fact' that (3) is a basis Af V ¢ 1q(f2(9))~" ate (an easy task due to the transversality
whenever{ey, ..., e} is a basis ofV.

property), which implies the convergence @fto ¢, f(6).
Since maxg dist(f<(6),e) — 0 ase — 0, the ultimate

defines a basis of\" V. ®)
Given a linear functionk : V' — V, a homomorphic
extensionof R to A"V is a linear functionR, : A"V —

A"V such that

R.(viA-+-Avy) = (Rup)A-A(Rvy),  Y(vgy...,v.) € V"

Lemma 1 If alinear functionR : V. — V' is bijective, then

for any r its homomaorphic extensioR,. is also bijective.

1a property equivalent t&1 (e), . . ., Xm (e) being independent.



distance between andgq, can be rendered arbitrarily small Then, it follows from the definition of transversality and (7
via the choice of:. Note the importance of defining® on that f< is a TF iff the square matrix
a compactmanifold, in order to ensure boundedness of the

. . . . I3 ERS(G)
tracking error. This is one of the constraints that compéica S(eRa) 2RS(b)
the design of TF. On the other hand, this manifold does not
have to be a torus. is invertible for any R. Using the fact thatS(Rz) =
RS(xz)R' for any z, one easily verifies that this property

IIl. A MOTIVATING EXAMPLE is satisfied iffe 0 and S(b) — S(a)? is invertible, i.e. if

Let us consider the driftless system e£0anda x b £ 0.
i = u This example illustrates the possibility to define TF on
y = zXu @ SO(3), with simple explicit transversality conditions bearing

_ 5 _ upon the choice of the parametesand b in (10). In
with z,y,u € R® and x the cross produ_ct. 'I_'h|s system can,gition, these TF respect the "symmetry” (see e.g. [17]
be used as an homogeneous approximation of the tridefl; mare details on this topic) of System (7) w.r.t. rotation
snake robot kinematics [16]. Itis of the form (1) with =3,  jqyolved in changes of coordinates. More precisely, given
q = (z,y) and X;(q) = (eil,w’ xei)ii=1,2,3. One easily 5 constant rotation matrix?, and a solution(z,y) to
verifies that the familyX"* = {Xl,X.Q,.Xg,} sa}tlsfles the (7) associated with an input, then (Roz, Roy) is also a
LARC at the order one at any. In addition, (7) is a system gqytion associated with the inputyu. Similarly, for any
on a Lie group with t_he group product betwegn= (z1,%1)  yrve FE(R()) = (FS(R(.)), f5(R(.))) on f5(SO(3)), then
andgz = (z2,y2) defined as (Rof£(R(.)), Rof<(R(.))) is also a curve onf=(SO(3))

012 = (21 + 22,41 + Y2 + T1 X 22) (8) since(Rof;(R), Rof;(R)) = f*(RoR). This type of sym-
i i , Metry is not granted by the TF (9). In particular, the TF
and the unit element = (0,0). Functions transverse 8§ gptained by interchanging the order of the products in the

can be defined according to (5), i.e. right-hand side of (9) are all different, due to the skew-
FE(0) = fE(06) £ (05) £5(04) (9) symmetry of the cross product. This lack of symmetry in

_ turn induces more stringent conditions on the functions’
with parameters in order to ensure the property of transversalit

15(04) = exp(eaq sin 04X + by cos 6, X5)
JE(05) = exp(eas sin 05 X + b cos 05 X3)
1§(0) = exp(eag sin O Xo + cbg cos 05 X3) Let X! = {Xi,..., X,,} denote a family of smooth v.f.
a manifoldM. Throughout this section, we assume that

! satisfies the LARC at "the order one” at some point
qo (see Eq. (2)). Based on this assumption we show the
existence of functions transverseXd defined on the special
orthogonal grouBO(m) and provide explicit expressions of
(Xl(fe(g)) Xo(f2(0)) X3(f2(0)) 254 (6) gg: (0) %2(9)) such functions. This is first accomplished for a "canonical

i system” that generalizes system (7).

for any 6. Instead, we show next how another family of TF " ot .. ¢ gm andy € R™(m=1/2_ Sincem(m — 1)/2 =

IV. MAIN RESULTS

There remains to determine an analytical expression of t
function f¢ and find conditions on the,'s and b;’s that
ensure the property of transversality, i.e. the inveitipibf
the square matrix

can be obtained. . ~dim(A*R™) and since a basis gf*R™ is
Let R(.) denote an arbitrary smooth curve on the special
orthogonal groupSQ(3), and w the associated "velocity {eine; 1 1<i<j<m}

vector”, i.e. such thatR = RS(w) with S(w) the skew-

. - . . ) Wi n identifyy with an element R™, j.e.
symmetric matrix associated with the cross product, i.ehsu e can identifyy an element of\ 1€

that S(w)x = w x x, Vo e R3. Consider the set of functions y = Z yijei A e; (12)
f‘E . S@(g) — RG deflned by 1<i<j<m

fE(R) = (f2(R), f;(R) = (¢Ra,e*Rb) (10) Based on this identification, let us consider the system
with a,b € R® some constant vectors. Note that T = u (13)
maxp d(f*(R),e) — 0 ase — 0. By a direct extension Yy = xAu

of the definition of a TF, we say thg¥ is transverse to{!

. From (12), the second equation of (13) can be rewritten as
if, for any R € SO(3),

spar{X1(f*(R)), ..., X3(f*(R)), df*(R)(TrSO(3))} = R° Yo e hey = wie) A uzey)

Along any smooth curveR(.), the function f¢ defined by tsisgsm =t =t

(10) satisfies from which we deduce, by anticommutativity of the wedge
, product,

f(R) = (eRS(w)a,e>RS(w)b) (11)
= —(eRS(a)w,e?RS(b)w) Uij = Tiu; —xju;, 1<i<j<m (14)



This shows how System (13) is a generalization of (7). It is Then, there existsy > 0 such that, for any € (0,¢9)
also of the form (1), with and anyqp € G, the functionf® : SO(m) — G defined by

Xi(q):(eivzxkek/\ei)v i=1,...,m (15)
k=1

One easily verifies that the controllability condition (2) i ' tsisism (19)
satisfied at any point. In particuldrX;, X;1(g) = (0,2¢; A s transverse to{ X1,..., X,,}, with exp(Y)(qo) denoting
ej)2 Vi, 7, Vq. Qne can also verify that (13) is a system oo goution at timet — 1 of the systemj = Y(q) with
a Lie group, with the group product between= (z1,91)  initial condition 4(0) = go.

andgs = (z2,y2) defined by

F7(R) = exp<z QH(RIXi+ 5 S B5(RIX; ij (40)

q1q2 = (z1 + T2, y1 + Y2 + 21 A 22) (16) Equation (19) associates a family of TF with an arbitrary
] point go. These functions can also be deduced, by left
and the unit element = (0,0). translation, from a family of TF associated with the unit

elementqy = e, using the fact that for any left-invariant v.f.
Theorem 1 Consider the v.fXy,..., X,, defined by(15). v, exp(Y)(q0) = qoexp(Y)(e).

Let The determination of the functiorf in (19) requires
m=2 to integrate a differential equation. For most nonlinedy, v.
o°(R) =eRay, (°(R)=¢") (Ra)A(Rars1) (17) this integration is complex and does not yield a closed-
k=1 form expression. To circumvent this difficulty, one can work
with R € SO(m) and {ay,...,am_1} a set of non-zero With local coordinates and replace eah in Formula (19)
orthogonal vectors iRR™, i.e. such thauja; = 0,¥(i,j). ~ Dy anhomogeneous approximatiok; (see [1] for more
Then, for anys # 0, the functionfs : SO(m) — R  details on this issue, and [18] for a survey on homogeneous
defined by approximations of vector fields). Since these homogeneous
F5(R) = (o°(R), 3°(R)) (18) approximationsy, ..., Y, generate a nilpotent Lie algebra,
the exp mapping on this Lie algebra reduces to a finite
is transverse to{ X1, ..., X }. expansion andf¢ can be calculated with a finite number

of algebraic operations.

When M = R™ or when the v.f.X; are expressed in
local coordinates, one can also use an approximation of the
B°(R) = €*(Ray) x (Ray) = e*R(a; x as) function (19) obtained by expansion of the exponential map.
More precisely, one can show that

Examples: Whenm = 3, the wedge product is isomorphic
to the cross product so that, from (17),

The functionf¢ defined by (18) is thus given by
F5(R) = (eRa1, 2 R(ay X as)) FE(R) = o + L(id)(q0) + %LZ(LZ(id))(QO)

This is the same function as in (10), with= a; X as.
Whenm = 2, any element? € SO(2) can be identified
with the rotation matrix of some anglt i.e. m

also defines a TF for small enough, with

1 1 1>
cosf —sinf Z=3 0i(R)Xit5 > F(RXL X))
R = R(e) = . i=1 1<i<j<m
sinf  cosf
Let a; = e1. Since3*(R) = 0 whenm = 2, (18) yields id tf}g identliéy function orR™ and, for any smooth function
0 no___ n,
ecosf
“(R) = (¢Re1,0) = . , 0
i = ereno = ((2522) o) La(en)a)
This function coincides with the transverse function (6) Lz(¢)(q0) = :
defined onT, with the specific choicel; = b, = «; = Lz(¢n)(q0)

61‘ =1, XA(’L) = Xo, anpr(i) = X;.

A generalization of Theorem 1 to any family of left- with Lz () the Lie derivative ofp, along the v.f.Z, i.e.
invariant v.f. on a Lie group that satisfies (2) is stated nextLz(¢x)(q0) = 652,’“ (90)Z(qo).

Finally, let us remark that Theorem 2 can itself be general-

Theorem 2 Let X;,...,X,, denote left-invariant vector ized to any family of v.f. on a manifold (i.e. not necessarily
fields on a Lie groups, that satisfy the LARC at the order a Lie group) that satisfies (2) at a poigf. In particular,
one at the unit element of G. Denotea$, ¢ = 1,...,m  Formula (19) is still valid in this case and the above remarks
the coordinates of® in the basis{e; : i = 1,...,m}, and concerning the approximation of the functigii, either by

7, 1 < i < j < m the coordinates of3* in the basis approximation of the v.fX; or by approximation of thexp

{eine; 1 <i<j<m}, witho® and 5° defined by(17). mapping, also apply.




CONCLUSION {ai1,...,a,} forms an orthogonal basis &™. We param-

We have derived TF defined on special orthogonal grougferize the matrixS(w) as follows:
for fa_lr_nilies of y.f. that sa_tisfy a fir_st-order controllaibyl S(w) = Z wiiSij . Sij = (aid; — a;d)
condition. Possible extensions to this study are sevena¢ O e
of them concerns the extension of this result to systems f . e . .
which higher-order Lie brackets are necessary to geneilate@ne easﬂy ver|f|_es that the r.natr'C&J form a.ba3|s of
directions of the tangent space. Another issue concerns t e(m)' Using th|s”param1eter|zat|on,. one obta|_ns _the fol-
characterization of manifolds that can be used as domains'af "9 decompogltlon _Oﬁl(w) as a linear combination of
TF. The use of these functions to control various nonholo- ements; A a; (i < j):

1<i<j<m

nomic and/or underactuated mechanical systems also Offelﬁl Z Awr ja1 A a;
a large domain of investigation. 1<j
m— m—1
APPENDIX —Z ZAj+lwi,j+lai A aj +Z Z )\j,lwi,j,lai A a;
Proof of Theorem 1: j=2 i<j j=2 i<j—1
By definition, the property of transversality is satisfied if =2 m-1
for any R € SO(m), the mapping DD Airwinn @ Aag Y Y Niciwio1,ai Aay
i=1 i+1<j i=2 i<j
S E
( ) qul R))+/f¢(R) = ( 6(;)7;\0‘ (RB)E(R)> with \; = |a;|?. This expression in turn allows one to
@ ut determine the coordmatesu( ) of hi(w) in the basis

is onto, withw related toZ by the relation = RS(w) (see 1%/ @+ 7 < 9} of /\ R™, i.e.

Section II-A for the notation). One verifies that this is equi ch w)ai Aa; 21)
alent to the property of the mappirg, : R™(m-1/2
A\’ R™ defined by

Wi he(w) = F(R) — af(R) AGS(R)  (20)

c a Na; =
of being onto. It follows from (17) thaks, = 2k}, so that Z Li(@)ar A ay
it is sufficient to prove thah}, is onto. Furthermore, since
L . ) T )\ ANa; — A ay A
B is linear and dinw) — dim(hl (w)) = m(m —1)/2, this L Z“’l s Nay = e ) g jar N

i<j
In particular, one has

1<y 2<yj

property is itself equivalent to the injectivity dfl,. From m—2 m—1
(7), — Z Ajriwr a1 Aaj + Z Aj_1wrj—1a1 A aj
m—2 m—2 Jj=2 Jj=3 (22)
hi = Ra) A (R + (Rax) A (R
r(W) ;( ar) A (Rag+1) ; ar) A (Ragq1) and, for anyi > 1,
—Rai N Ra1 m
m—2 Z Cij (w)ai Naj =
= > (RS(w)ax) A (Ray+1) =it
n]ii% )\2‘_1 Zwi_mai A a; — )\1‘_;,_1 Z .wi_,_l’jai A a;
+ 3 " (Ray) A (RS(w)aks1) — Ray A RS(w)ay s’ s
k=1 2 — Z )\j+1wi7j+1ai Na;+ Z )\j,lwm,lai N a;
=R, (S(w)ar) A ags1 =i = (23)
k=1 From (22) one gets
+ ap N (S(w)ak41) — a1 A S(w)cq)
k=1 Z)\ w1 JCLJ )\12)\ wlj )\22/\](4}1 jW2 5
1 2
with R, the homomorphic extension aR on /\2 R™, as <7 <7 (24)

defined by (4). It follows from Lemma 1 that the propertyand from (23) one gets, for any> 1,
of transversality is satisfied when+ 0 iff the mappingh}

defined by D Nwije(w) =
m—2 j=it1 (25)
h}(w) = ((S( )ak) A Ak+1 + ag AN (S(w)ak+1)) >\i—1 Z )\jwi’jwi_l,j — )‘i-‘rl Z )\jwiijiﬂyj
k=1 i<j i+1<j
—a A S(w)ar It follows from (24) and (25) that
is injective. m
By assumption{a;,...,a,,—1} are non-zero orthogo- Z i Z Ajwijcij(w) = )\%ZAjwij (26)

nal vectors inR™. Therefore, there exists,, So that — j=it1 1<j



The injectivity of k! easily follows from the above relations. [3]
Indeed, suppose that (w) = 0 and let us show that = 0.
We proceed by induction. By (21}; ;(w) = 0 for any (4, j)

4
so that, by (26)wi; = 0 Vj, since all\;’s are strictly “
positive numbers. Now assume thaf ; = 0 for any k = 5]
1,...,% and anyj > k, thenw;; ; = 0 for any j > i + 1.

This follows from (22) wheni = 1, and from (23) when
i > 1, using the fact that alt; ;'s are equal to zero. R [6]

Proof of Theorem 2:
Recall the classical formula [19, Pg. 105] for the derivativ [7]
of the exponential mapping on Lie groups:

4 exp(X + sY)s—0 = (¢(adX),

T Y)(expX)  (27)  [g]
with . o]
= (-1
¢(2) =) =%
G+ 1)
=0 [10]
Consider any smooth curve+~—— R(t) on SO(m). Then, 1]
using (27), one obtains the following expression f&r:=
dfe(R(t))/dt:
. [12]
f* = (9(adz1), Z5)(f°) (28)
[13]
with
i (14]
Zy =Y of(R)X;+ Y B5(R)[X;, X]]
i=1 i<j [15]
Zy =Y &5(R)X; + ) B (R)[Xi, X] (el
i=1 i<j

By expanding the right-hand side of (28) up to the order w8

in £ one gets
[18]

za +§z J (R
1<j
—fza z,za

_ZO‘ )

X, X51(f°) [19]

f7) +o(e?)

+3 Z( afai—aidf)(m) X X))
—|—0(52)]

The second equality is obtained by using the anticommu-
tativity of the Lie bracket operation. From this expression
one deduces that the property of transversality is satisfied
for £ small enough, provided that for arfy € SO(m) the
mappingh$, defined by (20) is onto. This latter property was
established in the proof of Theorem 1. |
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