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Abstract— The transverse function approach, a control de-
sign method initially developed by the authors for nonlinear
driftless systems, is based on a theorem that establishes the
equivalence between the satisfaction of the Lie algebra rank
condition (LARC) by a family of vector fields and the existence
of functions ”transverse” to these vector fields, defined on
a torus of adequate dimension. In this paper we prove the
existence of transverse functions defined on special orthogonal
groups for vector fields which satisfy the LARC at the order
one, and we provide an explicit expression of such functions.
An example illustrates some of the advantages resulting from
the use of these new functions.

I. I NTRODUCTION

The transverse function (TF) approach [1], [2] is a control
design method developed for so-called ”critical” nonlin-
ear control systems, i.e., controllable systems with non-
controllable linear approximation at equilibrium points.It
was originally developed for the control of driftless systems
of the form

q̇ =
m
∑

i=1

Xi(q)ui (1)

with X1, . . . ,Xm smooth vector fields (v.f.) on some man-
ifold M , q the state, andu = (u1, . . . , um)′ the control
vector. These systems are critical whenm < n := dim(q).
Kinematic models of nonholonomic mechanical systems
(wheeled robots, rolling spheres, etc) belong to this class
of systems, and the TF approach has been applied to several
of them [3], [4], [5], [6], [7]. More recently, it has also been
applied to critical underactuated mechanical systems (i.e.
systems with fewer force/torque control inputs than degrees
of freedom) [8], [9]. With respect to classical feedback
design methods aiming at theasymptoticstabilization of zero
for some tracking error, the primary objective of the TF
approach is to ensurepractical stabilization, i.e. stabilization
of a neighborhood of zero. This allows for new control
solutions endowed with new properties (see [10] for more
details), such as the capability of ensuring the stabilization
of any reference trajectory, i.e. not necessarily admissible.
In addition, the ultimate tracking error can be rendered
arbitrarily small by a proper choice of the control parameters.
This result comes as an interesting counterpart to the non-
existence of a feedback controller capable of asymptotically
stabilizing any admissible reference trajectory [11].

The TF approach is based on a theorem proved in [1] and
further refined in [2], that shows the equivalence between
the following properties of a family of smooth vector fields
X1, . . . ,Xm on a manifoldM : i) this family of v.f. satisfies
the Lie Algebra Rank Condition (LARC) at some point
q0, ii) there exist functionsf : T

p −→ U(q0) ⊂ M
transverseto X1, . . . ,Xm in the sense that for anyθ ∈ T

p,
X1(f(θ)), . . . ,Xm(f(θ)), ∂f

∂θ1

(θ), . . . , ∂f
∂θp

(θ) span the tan-
gent space ofM at f(θ). HereT

p denotes thep-dimensional
torus andU(q0) is a neighborhood ofq0. Given a controllable
control system (1), the existence of ”transverse functions” for
this system is ascertained by the above-mentioned theorem.
The design of practical stabilizers based on the TF approach
relies on the explicit determination of such functions (see[2]
for details). In [2], expressions of TF are given. Exploring
other possibilities is important because the performance of
the controlled system is related to the properties of the TF.
Efforts have already been devoted to the determination of
new TF with complementary properties, e.g. to achieve the
asymptotic stabilization of feasible trajectories [10], but this
topic is still very open.

In this paper we depart from the original formulation of the
TF approach by introducing TF defined on special orthogonal
groups SO(m) instead of toriTp. Given a family of v.f.
{X1, . . . ,Xm} such that the v.f.Xi, [Xi,Xj ] i, j = 1 . . . ,m
span the tangent space ofM at some pointq0, we prove
the existence of TF defined onSO(m) and provide explicit
expressions for these functions. A noticeable feature of these
functions is that they present symmetry properties respectful
of those of the associated control system. Such functions
have recently been used for the control of the ”trident-snake”
mechanism (a snake-like robot introduced by M. Ishikawa
in [12]), with improved performance and control efficiency.
This application is presented in a separate paper [13]. It
is probable that these new TF can also be used for other
mechanical systems. The present study also initiates a long
term research about the characterization of manifolds on
which TF can be defined.

The paper is organized as follows. Section II presents
the notation and recalls basic definitions associated with the
transverse function approach. An example is addressed in
Section III in order to motivate the introduction of the new



TF and provide comparisons with respect to (w.r.t.) classical
ones. The main results are presented in Section IV. Proofs
are given in the appendix.

II. N OTATION AND RECALLS

A. Vectors and manifolds

The transpose of a vectorx ∈ R
n is denoted asx′, its

i-th component asxi, and its Euclidean norm as|x|. The
i-th vector of the canonical basis ofR

n is denoted asei, i.e.
e′ix = xi. Them×m identity matrix is denoted asIm. The
tangent space atq of a manifoldM is denoted asTqM . Given
a family X1 = {X1, . . . ,Xm} of smooth v.f. onM and a
vector ξ ∈ R

m, we denote byX1(q)ξ the tangent vector
∑m

i=1 Xi(q)ξi ∈ TqM . The special orthogonal groupSO(m)
is the matrix Lie group{R ∈ R

m×m : RR′ = Im, det(R) =
1}. For any smooth curveR(.) on SO(m) and any basis
S1, . . . , Sm(m−1)/2 of m×m skew-symmetric matrices (i.e.
any basis of the Lie algebraso(m) of SO(m)), one hasṘ =
RS(ω) with S(ω) =

∑

i ωiSi, for some time functionsωi(.).
Finally, given a familyX1 = {X1, . . . ,Xm} of smooth v.f.
on a manifoldM , we say thatX1 satisfies the LARC at ”the
order one” at some pointq0 if

span{Xi(q0), [Xi,Xj ](q0) , i, j = 1, . . . ,m} = Tq0
M (2)

B. Exterior algebra and wedge product

Standard notation and definitions about exterior algebra
and wedge product are now recalled (see e.g. [14] or
[15] for more details). Theexterior algebra

∧

V of a m-
dimensional vector spaceV over R is a unital associative
algebra generated by thewedge product∧. The wedge
product operation∧ : (

∧

V )×(
∧

V ) −→
∧

V is associative,
bilinear, and alternating in the sense thatv ∧ v = 0 for
all v ∈ V . Note that this is equivalent to the property
v∧w = −w∧v , ∀(v, w) ∈ V 2 . As a vector space,

∧

V can
be decomposed as

∧

V =
∧0

V ⊕
∧1

V ⊕· · ·⊕
∧m

V , with
∧0

V = R,
∧1

V = V , and each
∧r

V (r ≥ 1) the vector
space generated by elements of the formv1 ∧ · · · ∧ vr, with
v1, . . . , vr ∈ V . One deduces from the alternating property
of the wedge product that given any basis{e1, . . . , em} of
V , and anyr, the set

{ei1 ∧ · · · ∧ eir
: i1 < · · · < ir} (3)

defines a basis of
∧r

V .
Given a linear functionR : V −→ V , a homomorphic

extensionof R to
∧r

V is a linear functionRr :
∧r

V −→
∧r

V such that

Rr(v1∧· · ·∧vr) = (Rv1)∧· · ·∧(Rvr) , ∀(v1, . . . , vr) ∈ V r

(4)
From [14, Th. 2.19.1], any linear functionR can be asso-
ciated (for eachr) with one and only one homomorphic
extension. We will use the following property, the proof
of which results from the fact that (3) is a basis of

∧r
V

whenever{e1, . . . , em} is a basis ofV .

Lemma 1 If a linear functionR : V −→ V is bijective, then
for any r its homomorphic extensionRr is also bijective.

C. Systems on Lie groups

Let G denote a connected Lie group of dimensionn. The
unit element ofG is denoted ase, i.e. ∀g ∈ G : ge =
eg = g. The inverseg−1 of g ∈ G is the (unique) element
in G such thatgg−1 = g−1g = e. The left (resp. right)
translation operator onG is denoted asL (resp. R), i.e.
∀(σ, τ) ∈ G2 : Lσ(τ) = Rτ (σ) = στ . A v.f. X on G
is left-invariant iff ∀(σ, τ) ∈ G2, dLσ(τ)X(τ) = X(στ),
with df denoting the differential of a functionf . The Lie
algebra –of left-invariant v.f.– of the groupG is denoted as
g. If X ∈ g, exp(tX) is the solution at timet of ġ = X(g)
with the initial conditiong(0) = e. A driftless control system
ġ =

∑m
i=1 Xi(g)ξi on G is said to be left-invariant onG if

the control v.f.Xi are left-invariant.

D. Transverse Functions

Definition and general characterization Let X1 =
{X1, . . . ,Xm} denote a family of smooth v.f.X1, . . . ,Xm

on a n-dimensional manifoldM and T
p denote thep-

dimensional torus. A smooth functionf : T
p −→ M is

transverse toX1 if, for any θ ∈ T
p,

span{X1(f(θ)), . . . ,Xm(f(θ)), df(θ)(TθT
p)} = Tf(θ)M

with df the differential off . Note thatp, the dimension of
T

p, must be at least equal to(n−m). Given smooth functions
fε : T

p −→ M defined forε ∈ (0, ε0), with ε0 > 0, we say
that (fε) is a family of functions transverse toX1 if ∀ε ∈
(0, ε0), fε is transverse toX1. Given q0 ∈ M such that the
family X1 satisfies the LARC atq0, the “transverse function
theorem” given in [1] ensures the existence of a family of
functions transverse toX1, with maxθ dist(fε(θ), q0) → 0
asε → 0, where “dist” denotes any distance locally defined
in the neighborhood ofq0.

The case of invariant v.f. on Lie groupsWhenM = G
is a Lie group andX1, . . . ,Xm are independent elements1

of the Lie algebrag, stronger results can be obtained (see
[2] for details). First, provided that the familyX1 satisfies
the LARC ate, functions transverse toX1 can be defined
on T

n−m, i.e. with the minimal value(n − m) of p.
A family (fε) of such functions, with the property that
maxθ dist(fε(θ), e) → 0 asε → 0, is given by

fε(θ) = fε
n(θn)fε

n−1(θn−1) · · · f
ε
m+1(θm+1) (5)

with eachfε
i defined by

fε
i (θi) = exp

(

(εai)
αi sin θiXλ(i) + (εbi)

βi cos θiXρ(i)

)

(6)
for some constant scalarsai, αi, bi, βi and some v.f.
Xλ(i),Xρ(i) ∈ g. Given functionsfε transverse toX1,
one can design feedback controls that practically stabi-
lize any reference trajectoryqr for the associated control
system (1). The idea is to asymptotically stabilizez =
q−1
r q(fε(θ))−1 at e (an easy task due to the transversality

property), which implies the convergence ofq to qrf
ε(θ).

Since maxθ dist(fε(θ), e) → 0 as ε → 0, the ultimate

1a property equivalent toX1(e), . . . , Xm(e) being independent.



distance betweenq andqr can be rendered arbitrarily small
via the choice ofε. Note the importance of definingfε on
a compactmanifold, in order to ensure boundedness of the
tracking error. This is one of the constraints that complicate
the design of TF. On the other hand, this manifold does not
have to be a torus.

III. A MOTIVATING EXAMPLE

Let us consider the driftless system
{

ẋ = u
ẏ = x × u

(7)

with x, y, u ∈ R
3 and× the cross product. This system can

be used as an homogeneous approximation of the trident-
snake robot kinematics [16]. It is of the form (1) withm = 3,
q = (x, y) andXi(q) = (ei, x × ei) ; i = 1, 2, 3. One easily
verifies that the familyX1 = {X1,X2,X3} satisfies the
LARC at the order one at anyq0. In addition, (7) is a system
on a Lie group with the group product betweenq1 = (x1, y1)
andq2 = (x2, y2) defined as

q1q2 = (x1 + x2, y1 + y2 + x1 × x2) (8)

and the unit elemente = (0, 0). Functions transverse toX1

can be defined according to (5), i.e.

fε(θ) = fε
6 (θ6)f

ε
5 (θ5)f

ε
4 (θ4) (9)

with

fε
4 (θ4) = exp(εa4 sin θ4X1 + εb4 cos θ4X2)

fε
5 (θ5) = exp(εa5 sin θ5X1 + εb5 cos θ5X3)

fε
6 (θ6) = exp(εa6 sin θ6X2 + εb6 cos θ6X3)

There remains to determine an analytical expression of the
function fε and find conditions on theai’s and bi’s that
ensure the property of transversality, i.e. the invertibility of
the square matrix
(

X1(f
ε(θ)) X2(f

ε(θ)) X3(f
ε(θ)) ∂fε

∂θ4

(θ) ∂fε

∂θ5

(θ) ∂fε

∂θ6

(θ)
)

for any θ. Instead, we show next how another family of TF
can be obtained.

Let R(.) denote an arbitrary smooth curve on the special
orthogonal groupSO(3), and ω the associated ”velocity
vector”, i.e. such thatṘ = RS(ω) with S(ω) the skew-
symmetric matrix associated with the cross product, i.e. such
thatS(ω)x = ω×x, ∀x ∈ R

3. Consider the set of functions
fε : SO(3) −→ R

6 defined by

fε(R) = (fε
x(R), fε

y (R)) = (εRa, ε2Rb) (10)

with a, b ∈ R
3 some constant vectors. Note that

maxR d(fε(R), e) → 0 as ε → 0. By a direct extension
of the definition of a TF, we say thatfε is transverse toX1

if, for any R ∈ SO(3),

span{X1(f
ε(R)), . . . ,X3(f

ε(R)), dfε(R)(TRSO(3))} = R
6

Along any smooth curveR(.), the functionfε defined by
(10) satisfies

ḟε(R) = (εRS(ω)a, ε2RS(ω)b)
= −(εRS(a)ω, ε2RS(b)ω)

(11)

Then, it follows from the definition of transversality and (7)
that fε is a TF iff the square matrix

(

I3 εRS(a)
S(εRa) ε2RS(b)

)

is invertible for any R. Using the fact thatS(Rx) =
RS(x)R′ for any x, one easily verifies that this property
is satisfied iffε 6= 0 and S(b) − S(a)2 is invertible, i.e. iff
ε 6= 0 anda × b 6= 0.

This example illustrates the possibility to define TF on
SO(3), with simple explicit transversality conditions bearing
upon the choice of the parametersa and b in (10). In
addition, these TF respect the ”symmetry” (see e.g. [17]
for more details on this topic) of System (7) w.r.t. rotations
involved in changes of coordinates. More precisely, given
a constant rotation matrixR0 and a solution(x, y) to
(7) associated with an inputu, then (R0x,R0y) is also a
solution associated with the inputR0u. Similarly, for any
curvefε(R(.)) = (fε

x(R(.)), fε
y (R(.))) on fε(SO(3)), then

(R0f
ε
x(R(.)), R0f

ε
y (R(.))) is also a curve onfε(SO(3))

since(R0f
ε
x(R), R0f

ε
y (R)) = fε(R0R). This type of sym-

metry is not granted by the TF (9). In particular, the TF
obtained by interchanging the order of the products in the
right-hand side of (9) are all different, due to the skew-
symmetry of the cross product. This lack of symmetry in
turn induces more stringent conditions on the functions’
parameters in order to ensure the property of transversality.

IV. M AIN RESULTS

Let X1 = {X1, . . . ,Xm} denote a family of smooth v.f.
on a manifoldM . Throughout this section, we assume that
X1 satisfies the LARC at ”the order one” at some point
q0 (see Eq. (2)). Based on this assumption we show the
existence of functions transverse toX1 defined on the special
orthogonal groupSO(m) and provide explicit expressions of
such functions. This is first accomplished for a ”canonical
system” that generalizes system (7).

Let x ∈ R
m and y ∈ R

m(m−1)/2. Sincem(m − 1)/2 =
dim(

∧2
R

m) and since a basis of
∧2

R
m is

{ei ∧ ej : 1 ≤ i < j ≤ m}

we can identifyy with an element of
∧2

R
m, i.e.

y =
∑

1≤i<j≤m

yijei ∧ ej (12)

Based on this identification, let us consider the system
{

ẋ = u
ẏ = x ∧ u

(13)

From (12), the second equation of (13) can be rewritten as

∑

1≤i<j≤m

ẏijei ∧ ej = (
m
∑

i=1

xiei) ∧ (
m
∑

j=1

ujej)

from which we deduce, by anticommutativity of the wedge
product,

ẏij = xiuj − xjui , 1 ≤ i < j ≤ m (14)



This shows how System (13) is a generalization of (7). It is
also of the form (1), with

Xi(q) = (ei,

m
∑

k=1

xkek ∧ ei) , i = 1, . . . ,m (15)

One easily verifies that the controllability condition (2) is
satisfied at any point. In particular,[Xi,Xj ](q) = (0, 2ei ∧
ej) , ∀i, j, ∀q. One can also verify that (13) is a system on
a Lie group, with the group product betweenq1 = (x1, y1)
andq2 = (x2, y2) defined by

q1q2 = (x1 + x2, y1 + y2 + x1 ∧ x2) (16)

and the unit elemente = (0, 0).

Theorem 1 Consider the v.f.X1, . . . ,Xm defined by(15).
Let

αε(R) = εRa1, βε(R) = ε2
m−2
∑

k=1

(Rak) ∧ (Rak+1) (17)

with R ∈ SO(m) and {a1, . . . , am−1} a set of non-zero
orthogonal vectors inRm, i.e. such thata′

iaj = 0 ,∀(i, j).
Then, for anyε 6= 0, the functionfε : SO(m) −→ R

n

defined by
fε(R) = (αε(R), βε(R)) (18)

is transverse to{X1, . . . ,Xm}.

Examples: Whenm = 3, the wedge product is isomorphic
to the cross product so that, from (17),

βε(R) = ε2(Ra1) × (Ra2) = ε2R(a1 × a2)

The functionfε defined by (18) is thus given by

fε(R) = (εRa1, ε
2R(a1 × a2))

This is the same function as in (10), withb = a1 × a2.
When m = 2, any elementR ∈ SO(2) can be identified

with the rotation matrix of some angleθ, i.e.

R = R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

Let a1 = e1. Sinceβε(R) = 0 whenm = 2, (18) yields

fε(R) = (εRe1, 0) =

((

ε cos θ
ε sin θ

)

, 0

)

This function coincides with the transverse function (6)
defined onT, with the specific choiceai = bi = αi =
βi = 1, Xλ(i) = X2, andXρ(i) = X1.

A generalization of Theorem 1 to any family of left-
invariant v.f. on a Lie group that satisfies (2) is stated next.

Theorem 2 Let X1, . . . ,Xm denote left-invariant vector
fields on a Lie groupG, that satisfy the LARC at the order
one at the unit elemente of G. Denoteαε

i , i = 1, . . . ,m
the coordinates ofαε in the basis{ei : i = 1, . . . ,m}, and
βε

ij , 1 ≤ i < j ≤ m the coordinates ofβε in the basis
{ei ∧ ej : 1 ≤ i < j ≤ m}, with αε and βε defined by(17).

Then, there existsε0 > 0 such that, for anyε ∈ (0, ε0)
and anyq0 ∈ G, the functionfε : SO(m) −→ G defined by

fε(R) = exp





m
∑

i=1

αε
i (R)Xi +

1

2

∑

1≤i<j≤m

βε
ij(R)[Xi,Xj ]



(q0)

(19)
is transverse to{X1, . . . ,Xm}, with exp(Y )(q0) denoting
the solution at timet = 1 of the systemq̇ = Y (q) with
initial condition q(0) = q0.

Equation (19) associates a family of TF with an arbitrary
point q0. These functions can also be deduced, by left
translation, from a family of TF associated with the unit
elementq0 = e, using the fact that for any left-invariant v.f.
Y , exp(Y )(q0) = q0 exp(Y )(e).

The determination of the functionfε in (19) requires
to integrate a differential equation. For most nonlinear v.f.,
this integration is complex and does not yield a closed-
form expression. To circumvent this difficulty, one can work
with local coordinates and replace eachXi in Formula (19)
by an homogeneous approximationYi (see [1] for more
details on this issue, and [18] for a survey on homogeneous
approximations of vector fields). Since these homogeneous
approximationsY1, . . . , Ym generate a nilpotent Lie algebra,
the exp mapping on this Lie algebra reduces to a finite
expansion andfε can be calculated with a finite number
of algebraic operations.

When M = R
n or when the v.f.Xi are expressed in

local coordinates, one can also use an approximation of the
function (19) obtained by expansion of the exponential map.
More precisely, one can show that

f̄ε(R) = q0 + LZ(id)(q0) +
1

2
LZ(LZ(id))(q0)

also defines a TF forε small enough, with

Z =

m
∑

i=1

αε
i (R)Xi +

1

2

∑

1≤i<j≤m

βε
ij(R)[Xi,Xj ]

id the identity function onRn and, for any smooth function
ϕ : R

n −→ R
n,

LZ(ϕ)(q0) =







LZ(ϕ1)(q0)
...

LZ(ϕn)(q0)







with LZ(ϕk) the Lie derivative ofϕk along the v.f.Z, i.e.
LZ(ϕk)(q0) = ∂ϕk

∂x (q0)Z(q0).
Finally, let us remark that Theorem 2 can itself be general-

ized to any family of v.f. on a manifold (i.e. not necessarily
a Lie group) that satisfies (2) at a pointq0. In particular,
Formula (19) is still valid in this case and the above remarks
concerning the approximation of the functionfε, either by
approximation of the v.f.Xi or by approximation of theexp
mapping, also apply.



CONCLUSION

We have derived TF defined on special orthogonal groups
for families of v.f. that satisfy a first-order controllability
condition. Possible extensions to this study are several. One
of them concerns the extension of this result to systems for
which higher-order Lie brackets are necessary to generate all
directions of the tangent space. Another issue concerns the
characterization of manifolds that can be used as domains of
TF. The use of these functions to control various nonholo-
nomic and/or underactuated mechanical systems also offers
a large domain of investigation.

APPENDIX

Proof of Theorem 1:
By definition, the property of transversality is satisfied if,

for any R ∈ SO(m), the mapping
(

u
ω

)

7→

m
∑

i=1

uiXi(f
ε(R))+ḟε(R) =

(

u + α̇ε(R)

αε(R) ∧ u + β̇ε(R)

)

is onto, withω related toṘ by the relationṘ = RS(ω) (see
Section II-A for the notation). One verifies that this is equiv-
alent to the property of the mappinghε

R : R
m(m−1)/2 −→

∧2
R

m defined by

ω 7→ hε
R(ω) = β̇ε(R) − αε(R) ∧ α̇ε(R) (20)

of being onto. It follows from (17) thathε
R = ε2h1

R so that
it is sufficient to prove thath1

R is onto. Furthermore, since
h1

R is linear and dim(ω) = dim(h1
R(ω)) = m(m−1)/2, this

property is itself equivalent to the injectivity ofh1
R. From

(17),

h1
R(ω) =

m−2
∑

k=1

(Ṙak) ∧ (Rak+1) +

m−2
∑

k=1

(Rak) ∧ (Ṙak+1)

−Ra1 ∧ Ṙa1

=

m−2
∑

k=1

(RS(ω)ak) ∧ (Rak+1)

+

m−2
∑

k=1

(Rak) ∧ (RS(ω)ak+1) − Ra1 ∧ RS(ω)a1

= R2

(

m−2
∑

k=1

(S(ω)ak) ∧ ak+1

+

m−2
∑

k=1

ak ∧ (S(ω)ak+1) − a1 ∧ S(ω)a1

)

with R2 the homomorphic extension ofR on
∧2

R
m, as

defined by (4). It follows from Lemma 1 that the property
of transversality is satisfied whenε 6= 0 iff the mappingh1

I

defined by

h1
I(ω) =

m−2
∑

k=1

((S(ω)ak) ∧ ak+1 + ak ∧ (S(ω)ak+1))

−a1 ∧ S(ω)a1

is injective.
By assumption{a1, . . . , am−1} are non-zero orthogo-

nal vectors in R
m. Therefore, there existsam so that

{a1, . . . , am} forms an orthogonal basis ofRm. We param-
eterize the matrixS(ω) as follows:

S(ω) =
∑

1≤i<j≤m

ωi,jSi,j , Si,j = (aia
′
j − aja

′
i)

One easily verifies that the matricesSi,j form a basis of
so(m). Using this parameterization, one obtains the fol-
lowing decomposition ofh1

I(ω) as a linear combination of
elementsai ∧ aj (i < j):

h1
I(ω) =

∑

1<j

λ1ω1,ja1 ∧ aj

−

m−2
∑

j=2

∑

i<j

λj+1ωi,j+1ai ∧ aj +

m−1
∑

j=2

∑

i<j−1

λj−1ωi,j−1ai ∧ aj

−

m−2
∑

i=1

∑

i+1<j

λi+1ωi+1,jai ∧ aj +

m−1
∑

i=2

∑

i<j

λi−1ωi−1,jai ∧ aj

with λi = |ai|
2. This expression in turn allows one to

determine the coordinatescij(ω) of h1
I(ω) in the basis

{ai ∧ aj : i < j} of
∧2

R
m, i.e.

h1
I(ω) =

∑

i<j

cij(ω)ai ∧ aj (21)

In particular, one has
m
∑

j=2

c1,j(ω)a1 ∧ aj =

λ1

∑

1<j

ω1,ja1 ∧ aj − λ2

∑

2<j

ω2,ja1 ∧ aj

−

m−2
∑

j=2

λj+1ω1,j+1a1 ∧ aj +

m−1
∑

j=3

λj−1ω1,j−1a1 ∧ aj

(22)
and, for anyi > 1,

m
∑

j=i+1

ci,j(ω)ai ∧ aj =

λi−1

∑

i<j

ωi−1,jai ∧ aj − λi+1

∑

i+1<j

ωi+1,jai ∧ aj

−

m−2
∑

j=i+1

λj+1ωi,j+1ai ∧ aj +

m−1
∑

j=i+2

λj−1ωi,j−1ai ∧ aj

(23)
From (22) one gets

m
∑

j=2

λjω1,jc1,j(ω) = λ1

∑

1<j

λjω
2
1,j − λ2

∑

2<j

λjω1,jω2,j

(24)
and from (23) one gets, for anyi > 1,

m
∑

j=i+1

λjωi,jci,j(ω) =

λi−1

∑

i<j

λjωi,jωi−1,j − λi+1

∑

i+1<j

λjωi,jωi+1,j

(25)

It follows from (24) and (25) that
m−1
∑

i=1

λi

m
∑

j=i+1

λjωi,jci,j(ω) = λ2
1

∑

1<j

λjω
2
1,j (26)



The injectivity ofh1
I easily follows from the above relations.

Indeed, suppose thath1
I(ω) = 0 and let us show thatω = 0.

We proceed by induction. By (21),ci,j(ω) = 0 for any (i, j)
so that, by (26),ω1,j = 0 ∀j, since all λi’s are strictly
positive numbers. Now assume thatωk,j = 0 for any k =
1, . . . , i and anyj > k, thenωi+1,j = 0 for any j > i + 1.
This follows from (22) wheni = 1, and from (23) when
i > 1, using the fact that allci,j ’s are equal to zero.

Proof of Theorem 2:
Recall the classical formula [19, Pg. 105] for the derivative

of the exponential mapping on Lie groups:

d

ds
exp(X + sY )|s=0 = (φ(adX), Y )(exp X) (27)

with

φ(z) =

∞
∑

j=0

(−1)j

(j + 1)!
zj

Consider any smooth curvet 7−→ R(t) on SO(m). Then,
using (27), one obtains the following expression forḟε :=
dfε(R(t))/dt:

ḟε = (φ(adZ1), Z2)(f
ε) (28)

with

Z1 =
m
∑

i=1

αε
i (R)Xi +

∑

i<j

βε
ij(R)[Xi,Xj ]

Z2 =

m
∑

i=1

α̇ε
i (R)Xi +

∑

i<j

β̇ε
ij(R)[Xi,Xj ]

By expanding the right-hand side of (28) up to the order two
in ε one gets

ḟε =

m
∑

i=1

α̇ε
i (R)Xi(f

ε) +
1

2

∑

i<j

β̇ε
ij(R)[Xi,Xj ](f

ε)

−
1

2
[

m
∑

i=1

αε
i (R)Xi,

m
∑

j=1

α̇ε
j(R)Xj ](f

ε) + o(ε2)

=
m
∑

i=1

α̇ε
i (R)Xi(f

ε)

+
1

2

∑

i<j

(

β̇ε
ij(R) − (αε

i α̇
ε
j − αε

j α̇
ε
i )(R)

)

[Xi,Xj ](f
ε)

+o(ε2)

The second equality is obtained by using the anticommu-
tativity of the Lie bracket operation. From this expression,
one deduces that the property of transversality is satisfied,
for ε small enough, provided that for anyR ∈ SO(m) the
mappinghε

R defined by (20) is onto. This latter property was
established in the proof of Theorem 1.
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