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Abstract— The Transverse Function (TF) approach is applied In this paper, we present a controller design for the
to the tracking control problem for a specific nonholonomic  trident snake robot using the framework of thEansverse

mechanical system, called the trident snake robot. To this pur- Function (TF) approachinitiated by Morin and Samson
pose an homogeneous (nilpotent) approximation, also invariant [4], [5]. The objective is topractically stabilizeany given

on a Lie group, of the kinematic equations of the system is - ’ o :
used. The proposed feedback control automatically generates reference trajectory in the space of planar rigid motions
deformations of the mechanism which simultaneously achieve (SE(2)) while avoiding mechanical singularities. The TF
the practical stabilization of a reference frame with arbitrary  approach was originally developed for systems evolving on
position/rotation displacements on the plane and the avoidance Lie groups with left-invariant control vector fields. Altagh

of mechanical singularities. Another original contribution con- . .
cerns the design of the transverse function employed for the the trident snake robot does not belong to this class of

control design. This function is here defined on the rotation Systems, it is always possible —among other possibilities,
group SO(3), instead of the torus T used in previous works —see [7] for instance— to apply the approach to a controllable
on the TF approach. Beside the conceptual interest associated homogeneous (nilpotent) approximation of the system [4],

with this new possibility, and the simplicity of the function [5]. The usual toll, when implementing the control obtained

itself, improvements in terms of control smoothness and stability . thi th qinal t is the | bal
can be observed from numerical simulations performed on the n _'$ way 9” . g original system, is the loss gib _a .
trident snake robot, one of which is reported for illustration ~ Stability and limitations about the allowed rate of vawati

and visualization purposes. of the reference state for which stability is preserved.eNot
that the same can be said about any linear control worked
I. INTRODUCTION out from a controllable linear approximation of a non linear

The trident snake robowas first proposed by Ishikawa System. This is the solution reported here in view of its
[1] as a new kind of planar mobile robot with nonholonomicd€nericity and also of the satisfying results observed in
mechanical constraints. It is simply composed of a triaagul Simulation. Concerning the control design itself, the main
shaped plate with three active joints at its vertices, aneeth Originality introduced by the present study bears upon the
rigid links with a passive wheel at each end (see Fig. 1). [#@troduction and use of a new class of transverse functions,
kinematic model is described by a driftless state equatidiffined on a rotation group0(n) rather than on a torug".
with three inputs (joint angular velocities) and six statel "€ properties of these new functions, and the possibifity o
components (robot’s plate configuration and joint angles _enerallzmg their use to othgr systems, will be the suhgéct
As in the case of other controllable nonholonomic systemélture studies. As for the trident snake example considered
the well-known Brockett's condition [2] tells us that no fike Nere, the proposed transverse functions are defin&ds).
configuration of this system can be asymptotically stabiliz Ney respect the symmetry of the system better than previous
by continuous pure-state feedback, a difficulty of which hafiinctions defined on the torus, and the simulations that we
motivated many feedback control design studies since ttgve performed give them a net advantage in terms of control
early 90's. smoothness and overall stability. These improvements can
This robot is interesting from a theoretical point of view,2lS0 be observed at the numerical integration level. _
not only because of the aforementioned difficulty, but alsn€ paper is organized as follows. The robot's kinematic
because its controllability structure is different fronetone Medel and error state equations are presented in Section
of more conventional wheeled mobile robots. This rendet$: The main contribution is presented in Section Ill, which
the control problem quite challenging, all the more so thatPecifies the control objectives and details the contralpdes
feedback stabilizers have not, to our knowledge, beenetiriymethodology based on the application of the TF approach
before for this type of system. Let us just mention that an ad® &1 homogeneous approximation of the error system and
hoc feedforward control method using a set of periodic isputPn the use of a new family of transverse functions defined

to generate so-called Lie bracket motions was proposed §f SO(3). The validity and performance of the proposed
[1]. controller are demonstrated in Section IV with illustrativ

simulation results. Finally, the concluding Section V gein
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II. MODELING B. Kinematics and State Equations

By combining the fact that the positida;;, y;) of thei-th
wheel is given by
The trident snake robot is a planar mobile mechanism
whose specific structure was proposed by Ishikawa [1]. It is [ i ] = { T C(_)S(e +oi) + C.OS(G +oit ) (4)
composed of aoot blockand threebranches as illustrated y+sin(0 + ai) +sin(0 + ai + ¢1)
in Fig. 1. The root block is an equilateral triangular plateand the non-slipping assumption on the wheels which yields
with three rotary joints at its verticeB;, P, P;. Each joint the following nonholonomic constraints:
angle is actuated. The position of the robot is referredéo th . . . .
centerP(z, y) of the triangle. Without loss of generality, we sin(f+ai + i) =gicos(+ai+¢i), 1=1,23. (5
choose the anglé between the segmeiit?, and thex-axis one obtains (see [1] for more details) the kinematic model
of a fixed frame to characterize the orientation of the robot.

A. Trident Snake Robot

%

The configurationof the robot's body is denoted by g=R(O)AG)""¢ (6)
. with
g:=| y | eSE®). 1) sin(¢1 + 1) —cos(¢pr +a1) —1—cosgy
0 A(¢) = | sin(¢p2 + aa) —cos(g2 +az) —1 —cos s
sin(¢s + a3) —cos(¢psz +az) —1—cosgps

The directions associated with the vertices are given by the

constant vector of angles: R(6) Cf)Sz —Sine@ 8
= Sin COS
ap —271’/3 0 0 1
=2 | = 0 . (2)  which relates the variations of the shape angles to the

as 2m/3 variations of the robot’s body configuration. Introducirg t

The shapeof the robot is characterized by the joint angles?uxmary control variable

Le., vi=A(9) ' (7
&= z; e 3) one obtains the following control model associated witls thi
s system .
{ g = RO ®)
whereT* means the generalized unit torus of dimension ¢ = Al
The branches are rigid beams connected to the root bloekich, after defining the staté := (g,¢), may also be
via the joints. Each branch has a wheel at its end, whiokritten as
is in contact with the ground without slipping nor sliding : 2
sideways (the classicablling-without-slippingassumption). = Z Xi(©vi ©)

To simplify the notation, the radius of the circle circum- ) o ]
venting the triangle, and the distances between each joiht aWith v the i-th component ofv. This is a smooth driftless

the corresponding wheel, are assumed to be of unit |engt|§_ontrol system whose state evolves in the six-dimensional
manifold SE(2) x T3. One verifies that its control vector

passive Branch 2 fields (v.f.) X, o 3 satisfy the classical LARC (Lie Algebra

wheel

active

Branch 3

Fig. 1. Trident snake robot

Rank Condition) at any point, despite singularities in the
Lie algebra structure at points where the shape angles are
such that the matrixA(¢) is non-invertible. Geometrically
these singularities correspond to shapes for which thesthre
wheels axles either intersect at the same ICR (Instantaneou
Center of Rotation) point, or are parallel. This system is
thus locally controllable everywhere. Note also that this
mechanism may be seen as a parallel mobile manipulator,
with the singularities evoked above corresponding to the
geometric singularities of this type of robot. Since pagsin
through such singularities is known to be problematic, one
of the control objectives (or constraints, depending on the
point of view) considered here will consist in avoiding them
by keeping all shape angles in the vicinity of zero, where
the matrix A(¢) is invertible.

Recall thatSE(2) is a connected Lie group whose group
operation is defined by (with a slight abuse of notation



arising from the identification of an element of the group  the closed-loop system starting from a certain domain
with the vector of its components, in the right-hand side of  containing this ball are complete and converge to this
the following relation) ball.
_ _ Obviously, in order to avoid the geometric singularitieshe
99:=g+ R(0)g mechanism, the precision indey should be chosen small
where g and g are any two elements oSE(2), and # enough to ensure that digt, ¢),£*) < ¢ implies that the
is the angle component of. The group’s unit element matrix A(¢) is invertible.
is e = (0,0,0)7, and the inverse ofy = (x,y,0)” To achieve this control objective, the Transverse Function
is g7' = —R(—0)g. Now, let g,.(t) = (z,,y.,0,)"(t) approach [4], [5] applies directly in the case where the
(with ¢ > 0) denote a differentiable reference trajectory ircontrol system is left-invariant on a Lie group. In the prése
SE(2) associated with a reference frame that the mechanis@ase, it is simple to verify that, due to the equation assedia
should track with a given precision, and let(t) denote with the shape variables, this system does not have this
the velocity vector associated with this frame, i.e. thetmec property. Indeed, the invariance property would imply that
such thatg,(t) = R(0,(t))v,(t), Vt. Let alsog := g 'g the Lie algebra generated by the system’s vector fields be
(= R(—6,)(g — g»)) denote theerror between the robot’s Of the same dimension as the system state (thus equal to
configurationg and the reference frame’s situatipn Then, Six), whereas it is infinite dimensional. A possibility, ango
using (8), one obtains the following contreiror-system others, then consists in considering a controllable homo-
. ~ ~ geneous approximation [3] of the “non-perturbed” system
{ g = R@O)v+p(gvr) (10) at the desired equilibrium point (which is always possible
¢ = A when the original driftless system is controllable) and kvor
With @ :— 0 — 6. and out the feedback control law on the basis of either this
" approximation, when it is invariant on a Lie group, or
p(g,v,) = —(vp + (—G2.91,0)76,) (11) on an invariant extension of this approximation otherwise
) ) (see [5] for technical explanations about this specificégsu
the drift term produced by the reference frame motion. | ocq) practical stabilization is then granted provided that the
lIl. CONTROL requested precision is high enough ¢grsmall enough) and

, . ) that the reference velocity is not too large. This posgipili
Given a motion for the reference frame, we would like the;s further detailed next.

robot’s body to track this frame “as well as possible”. The ) o
equation ing shows that it is theoretically possible to main-A. Invariant homogeneous approximation
tain a zero tracking error for a certain amount of time, when Define

starting from a non-singular shape configuration. The Ipitfa {1(‘157 9) 5:7A(¢)]?(9)T (12)
with this (exact tracking) solution is that the shape vdgab ¢:=¢— A(d,0)g
are not actively monitored to avoid singularities. As a ®@att 5,4 ote thaté = (3.4) constitutes a new system of

of fact, it is not difficult to show that simple reference fram . dinates for the error-system state. Differentiatingith

motions make the shape variables converge to a singull%rspect to time, and using the error-system equation (10),

configuration. Consider for instance a straight motion Wmﬂ;ive the locally equivalent error-system

constant velocity and constant orientation. Clearly, ladeé )

wheels will tend to get aligned with the motion direction { 7 u+p(g,vr) (13)
so that their axles will tend to be parallel (and orthogonal ¢ = B(j, ¢, Du+q(g,o,v,)

to the motion direction). This implies that, in the general .

case, exact tracking has to be abandoned and replaced bYY' ~

more sophisticated control mode capable, at the same time, u:= R(O)v (14)
of ensuring a “reasonably” good tracking precision for theind

robot’s body and the avoidance of shape singularities.&hes (g b ¢) = [By(b,c)a By(b,c)a Bs(b,c)a)
considerations yield a technical formulation according to Bi(6 é) _ _(Zs_ A a’)(¢ g)

which, given a strictly positiverecisionindexe,, the control T =1 0g T

design objective is to derive a feedback law (for the control BQ(¢’6~) = _(zgfl ’ihz 8@-)(‘25’ 9,) N (19)
input v) which practically stabilizes the point* := (e, 0) By(0,0) = —(im 41’3% - 59)(,0)

of the error-system in the sense that, for any (bounded) ¢(g,¢,v,) := %(@9)5& — A(¢,0)p(g,v,)

reference velocity,.(t), one has for the closed-loop system:,, homogeneous (nilpotent) approximation of the error-
« (practical stability)3a > 0 : dist((g(0),¢(0)),£*) <  system (13), when it is not subjected to the additive pertur-
a = dist((g(t), ¢(t)),£*) < €, Yt > 0, with dist de-  bationsp andq (i.e. whenp = ¢ = 0), about the equilibrium
noting a distance function defined in the neighborhood — (e,0) is
of this point, {
= u

B(ga Oa 0)“ = [B1§ ng B3§] u

« (practical convergence) the bafl({*, ¢y) of center¢*

e . . i (16)
and radius is attractive, meaning that all solutions to

ESHANR
|



whereB; := B;(0,0) for : = 1,2, 3. This latter system may obtained by simply adding the perturbatiopsand ¢ to

also be written as the right-hand side of the homogeneous approximation (16).
. 3 Since the TF approach developed in [5] applies directly to
= in(g)ui this system, we just recall below the main steps involved in

i=1 the synthesis of the control law.

_ ) . ~ Let f = (f,, f») denote a function whose componerfis
with its control vector fields (v.f.) defined by; = PIel . . .
(51, Big) for i — 1,2,3, ands; éenc))ting thei—thyéa(rfgnical and f, are (periodic) functions fronT® to a neighborhood
i Dif L ’ of the zero vector irR3. By definition, this function is said

; . : : )
unit vector of R”. It is also simple to verify that the'L|e to betransversalto the control v.f. of the above system if
algebra oveiR generated byX,, X5, and X5 only contains the matrix

linear combinations of these v.f. plus three others given by

I3 —%(ﬂ)
Xy = [X1, Xo] = (0, Bas1 — Bisy) H(B) = B(£,(3).0,0) —%2(3 19)
X5 = [X1, X3] = (0, Bgs1 — Byss) (f4(8),0,0) =55 (6)
Xo = [X2, X5] = (0, B3sy — Bsss) is invertible V3 € T?. The fact that the unperturbed part of

with [X;, X,] denoting the Lie bracket ak; and X ;. These the system (18) is controllable ensures the existence @f suc
19 <X g T J"

six v.f. thus form a set of generators of the Lie algebra of thé function [4]. We will come back on its determination. For
homogeneous system (16). Moreover they are independdig time being, consider the group operation defined in the

and form a basis of the Lie algebra iff the matrix previous section and define theodified error-state: as the
group product of the error-state by the inverse of the chosen
C = [B3sa — Basg|B1s3 — Bssi|Bas1 — Bisa) transverse function, i.e.
is invertible. The explicit calculation of this matrix ants i 2= (3,0)(f,(B), fo(B)) . (20)

determinant shows that such is the case here. From the]sE

. e T
facts one deduces that i) the dimension of the Lie algeb?%sergcfetg'rl%easar?d Vjscitr?r |(nl]lg), ig'ﬁce;;rg;sgggn'twvi\:ﬁh the
of this approximating homogeneous system is equal to six Pe , 9 :

4 . - idvariance of the system’s control v.f. one obtains (see als
and thus equal to the system’s dimension, ii) the system E])

controllable at any point, and iii) the system is left-inaat

on R? x R? with respect to some group operation which, as 2= D(g,¢,B)u+ E(g,,5, vr) (21)
one can readily verify, is defined by with

(9as D) (Gos D) = (ga + G, Ga + B + B(ga, 0,0)gs) (17) D(g,9,8) := dryp)-1(g,#)dl.(f(8))H(B)

: : : E@§,,8,v,) =drss-1(3.8) | ¥ (22)
with g., g, ¢4, and ¢, here denoting vectors iR3. From G @5 2, Ur 1))=Y q
this definition one also verifies that the inverse of an eldmen S — o )
£=(g,0)is andu := [u", ("] an extendeQS|x—d|menS|onaI co_ntrol

vector. Note thaf3 provides us with the extra control inputs
(9,0)"" = (—g,—¢ + B(g,0,0)g). that were lacking in the first place to control the system

easily. By the transversality of the matrix D(g, ¢, 3) is
always invertible. As a consequence it is not difficult to
determine a feedback control which exponentially stabgdiz
z = 0. Take, for instance

Let [ denote left translation operation on the group &y
i.e., le : n — &n, anddl¢(n) denote its differential at).
Likewise, dr¢(n) means the differential of right translation
re @ ¢n — né atn. Seeing(g,¢) as a vector inRS, the
differentials are given by u=—D(g,¢,8) 'kz+ E(G,6,0,v,)] with k>0 (23)

dl (g, ) = I3 03x3 or, more generally (and by omitting function arguments for
(9000190 2= B(g,,0,0) I the sake of notation simplification)
I3 033 AT 2
dr(g,,¢s) (Jas $a) = 3 ]  Wi'DT k|| .
’ ’ > Biga: I -1 =7 "7 _pDlE 24
21:1 g2, 3 U zTDWleTz (24)

with I3 and 033 denoting the(3 x 3) identity matrix and
the null matrix respectively, angh,; (¢ = 1,2, 3) denoting
the i-th component ofy,. Note that the above two matrices
are always invertible.

with W, denoting a symmetric positive definite matrix-
valued function whose role is to modulate the relative
amplitudes of the components entering the control veator
(see [6], for example), given a desired rate of convergence.
B. Control design Indeed, these two control laws applied to (21) yield the same

- L . closed-loop relation
A possibility for the control design is to use the following P

approximation of the error-system i|z|2 = 9k (<0)
dt -
u+p(g; or) (18) which in turn implies the exponential stabilization of= 0
B(g,0,0)u + q(g, ¢, vr) with the rate of convergence specified by

- Q-
|



Applied to the original system (8), these feedback controlthe particular structure of the control system’s Lie algebr
will continue to (locally) exponentially stabilize = 0 when Instead of functions parametrized by elementsTif, it

the reference frame does not move, i.e. when= 0, involves functions orSO(3) —the group of rotation matri-
provided that the “size” of the transverse functighis ces. This change of parametrization set induces only minor
enough small to prevent the high-order terms discarded modifications at the control expression level. More prdgjse
the homogeneous approximation from becoming dominarity denoting ass € R? the angular velocity associated with
When the reference frame moves thewill only converge a time-varying rotation matrix) € SO(3)?, one only has to

to, and remain in, a neighborhood of zero, provided that theplace the matrix7(3) of relation (19) by

ratio |v,.(t)|/k is not too large. Note that, by using the same I —0£,(Q)

family of transverse functions, it is also possible to wotk o H(Q) := B(f (65) 0,0) —c’)fg(Q) (26)

a control law which ensures the exponential stabilizatibn o gren T ¢
z = 0 for the original system when,. # 0. This alternative with 0f the matrix-valued function defined from the differ-
is not presented here because this would complicate tlatial df of f via the relation

presentation without bringing a very noticeable differenc

d
in the simulation results reported further in the paper and /(@) = df(QQS(w) = 0f(Q)uw.
a clear practical advantage. Nevertheless, this issuedwoul ) .
probably deserve to be further studied. Moreover, the complementary control vector is no longer
but w, so that the extended control vectoriis= [u”, w?]T
C. Transverse functions in this case. Let us now proceed with the determination of

The calculation and application of the feedback laws (23he TF itself. The simplest way to do this consists in first
and (24) require the explicit determination of the transeer introducing the following “canonicaf’system onR?® x R?
function f = (f,, f4) entering the expression af and the { o=

y =

Vg = vgxu=>S(vyu (27)

matrix-valued functiongZ and D. There are many possibil-
ities for the design of such a function, and only a few have
been explored to date. One of them, very general becauséh v,, v, andu denoting vectors ifR?, andv, x u the
it applies to any controllable driftless system invarianta cross-product of,, by «. Using the following equality
Lie group, was proposed in [5]. Complying with a commo
notation, letexp(X) denote the solution at time = 1 of
the systemg = X (g) starting at the originy = 0 at time  which holds for allz;, 2z, € R?, it is simple to verify that

t = 0. For the system considered here, the possibility evoketlis system is globally equivalent to the homogeneous syste
above consists in defining as the group product (given by (16) via the change of coordinatés,,v,) < (§,6) =
(17)) of threeelementaryfunctions fi2, f23, and f31, each  U(vy,v,) with

depending on a single variable and defined by

fij(B1) = exp(ein sin(B;) X; + €2 cos(5i) X) (25)

with X; and 3; (i = 1,2, 3) denoting the control v.f. of the
approximating homogeneous system and the components
(3 respectively, and;; (with i = 1,2,3 andj = 1,2) being

n[Bl.%‘l ngl Bg&?ﬂiﬂz = [31$2 BQ.Q?Q Bg(L‘Q].’L’l—f—C(.’El X$2)

W(vg,06) = (0, 5Cvs + Blry,0,0))  (28)

and B andC' the matrices defined previously. Since a change
oéfcoordinates preserves the geometrical properties of the
system, one can infer (and easily verify) that the system (27

real design parameters chosen to ensure the satisfaction'3 lfefttr:n\{a_l]crl_a\_nt O?R , that it 'f Co?trol:cabliat an): po"t-'r:' ant(:]
the transversality condition, i.e. the invertibility ofettmatrix also that Iff Is a transverse function for this system then the

H () for any3 € T? in the present case. Due to the structur(l;umtIon f defined by(fg(Q), f4(Q)) = V(/4(Q), [6(Q))

of the Lie algebra these elementary functions can enth @ transverse function for the system (16).

the product in any order, i.e. one can take eitfies) = Proposition 1 Let a and b denote any two non-zero inde
J12(B1) f23(B2) f31(Bs), or f(B) == f12(581)f31(Bs) f23(B2), ) o ) i
or aEny)of tr(le f)our(oth)er pos(sit))le comt()ina)ltiorfs. I)Eacr(1 of)the ndent vectors ik, tghen ”;e. functiory : @ € SO(3) —
products yields a different transverse function, provitheat (Q) = (Qa,Qb) € R” x R” is transversal to the control
the corresponding design parameters are adequately chosvek of systen(27)

Concerning this issue one can show for instance that, for tpe proof of this proposition is simple. By forming the
any of these products there exists a vedloe R® such ime-derivatives off,(Q) = Qa and f4(Q) = Qb one
that (11, €12, €21, €22, €31, €32)7 = €d grants transversality P _ . _
for any e > 0. Since this latter parameter can be chosen a_itg;{{é); ?hi(roejggreé f. (gf(i)w—gr;j((jf a;d%?(zdc);; ;
small as desired, the “size” of the transverse function @n b ' g ¢
rendered as small as needed (see earlier comments on thge. the vector such thah = QS(w), with S(.) the skew-symmetric
usefulness of this feature). matrix operator associated vgith the cross-produdtin(i.e. such that:; x
This first (general) possibility will not be developed fuath #2,= S(z1)2, Va1, 22 € R?) o . .
h b Id like to pinpoint another possibilit in t_he sense that it is the S|m_plest _S|x-d|men5|ona| driftesgem with
ere because we wou ) pinp p Yhree inputs whose Lie algebra is entirely generated by tmral v.f. of
never proposed before, which better takes advantage té system and their first-order Lie brackets



—QS(b). Now, in view of the equations (16) and (27), thewith ¢ = 2.5 andv = ;. Although there is no theoretical
transformation of the first homogeneous system into theecessity for this, the reference orientation is purpdbsefu
canonical representation of this class of systems formalkept constant (i.ed,(t) = 0, Vt) in order to facilitate the
involves the replacement @(g, 0,0) by S(g) in the control visualization of the motions of the reference frame and of
matrix which pre-multiplies the control vectar This means the robot. The control (24) is used with= 1 and

that the matrix (26), in the case of the canonical system and

the specific functionf considered in the proposition, writes W — A(¢,0)TA(¢,0) O3
| =
as 03,3 100 Ig
H(Q) := I3 QS(a)
] S(Qa) QS(b) This particular choice of the “weight” matrix-valued furost

W takes into account the fact that the physical kinematic
control vectorp is related tou via the relationp = A(¢, 6)u.

The transverse function used in the control is given by (29),
with the two orthogonal vectora = —0.4s3, b = 0.4s;.
Vectors with smaller norms could also be used to improve on
the tracking precision, but this would yield higher-freqag
maneuvers.

Fig. 2 shows the evolution of the norm of the modified

This means that would be colinear withz. We would also €fror-statez with respect to time. If the control was perfect,
have S(b)x = 0, so thatz would be colinear witha and [2(t)[| would converge to zero. One can observe that this
b simultaneously. This would contradict the assumption dgfonvergence occurs here only when the reference frame does
independence of andb. not move. This was expected because the control has been
A corollary of the above proposition is that the functiondesigned from an approximated model of the mechanical
f defined by system. Nevertheless, due to the robustness of the control
- - with respect to modeling errors, the amplitude of this Valga
(f4(Q): f6(Q)) = U(fe(Q), [(Q)) i i initi i
is kept small all the time, after the initial transient phase
= (Qu30Qb+B(Qa.0.0Qa)) P P

is a transverse function for the approximating error-syste .
(13) and that it can thus be used in the controls (23)
and (24). From its expression, specified above, a simple
complementary calculation yields

0fy(Q) = —QS(a)

9fs(Q) = —3CQ[S(b) - S(a)’] = B(Qa,0,0)Q5(a).
Using these relations the transversality pfcan also be
checked by forming the corresponding matrix (26) and
showing that it is invertible/Q.

Remark :The possibility of designing transverse functions
that are parametrized by elementsS®(m) for a class of
systems which are invariant on a Lie group, is here pointed
out and illustrated in the case 80)(3) and six-dimensional
controllable systems whose Lie algebra is generated by theFig. 3 shows thex,y) trajectories of the origin of the
system’s v.f. and their first-order Lie brackets. It finds aeference frame and of the origiR of the robot's frame.
natural generalization to systems of higher dimensiongs ThBoth frames coincide initially (at timeé = 0) and start from
extension is presented in a separate paper. the lower tip of the “heart” on the figure.

IV. SIMULATION RESULTS The evolution of the difference of orientatidghbetween

For the simulation reported here, the time history of the fhe two frames is shown on Fig. 4, and the time-evolution

Bf the components of the shape angle vegtas shown on
reference frame velocity, is summarized in the following Fig. 5, followed by Fig. 6 which focuses on the first linear

so that, using that(Qa) = QS(a)QT, det(Q) = 1, and
that S(a) is skew-symmetric

det[H(Q)] = det[QS(b) — S(Qa)QS(a)]
= det[S(b) + S(a)" S(a)].
If the semi-positive matrixS(b) + S(a)”S(a) was singular
there would existr # 0 such thatS(b) +S(a)? S(a)]x = 0,
and thus such that” [S(b)+S(a)? S(a)]z = ||S(a)z||* = 0.

[

°

time (s)

5

Fig. 2. ||z vs. time

table. sectiont € [8,12].
te(s) | o= (mT/s m/s, rad/g’ Note that all angle amplitudes remain smaller tfarwell
[0,5) (0,0,0) . within the domain where the matriX(¢) is invertible, i.e.
[5,15) | (0.5,0.5,0) - away from the mechanism’s geometrical singularities.
[15,25) | (—evsin(v(t —15)), cv cos(v(t —15)), O)T Finally, Fig. 7 shows the time-evolution of the componerits o
[25,35) | (—cvsin(v(t - 25)), cv cos(v(t — 25)),0) the shape angle velocity vector here taken as the system’s
[35,45) | (0.5, —0.5, 0) control input. As expected, all velocities tend to zero when
[45,50) | (0,0,0) the reference frame stops moving.




Fig. 3.
(z(t), y())

Reference trajectoryx,(t), y-(t)) and

robot’s trajectory

0 (rad)

O
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time (s)

time (s)

Fig. 5. Shape anglesg vs. time

V. RESEARCH DIRECTIONS

12
time(s]

Fig. 6. Shape angleg vs. time ¢ € [8,12], linear section)

9 (rad/s)

20

-107

time (s)

Fig. 7. Shape contraj vs. time

nisms, either equipped with wheels or using crawling motion
A third one is the study of the potentialities offered by
generalized transverse functions defined on rotation group
in relation to the structure of the Lie algebra generated by
the system'’s control vector fields, and their applicatiothi
control of various physical systems.

(1]

(2]

(3]
(4]

(5]

(6]

(7]

There are several avenues to prolong the work reported i
the present study. One of them is the experimental validatio
and tuning of the proposed feedback control on a physical
prototype of the trident snake robot. Another one is the
adaptation of the TF approach to other snake-like mecha-
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