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Abstract— The Transverse Function (TF) approach is applied
to the tracking control problem for a specific nonholonomic
mechanical system, called the trident snake robot. To this pur-
pose an homogeneous (nilpotent) approximation, also invariant
on a Lie group, of the kinematic equations of the system is
used. The proposed feedback control automatically generates
deformations of the mechanism which simultaneously achieve
the practical stabilization of a reference frame with arbitrary
position/rotation displacements on the plane and the avoidance
of mechanical singularities. Another original contribution con-
cerns the design of the transverse function employed for the
control design. This function is here defined on the rotation
group SO(3), instead of the torus T

3 used in previous works
on the TF approach. Beside the conceptual interest associated
with this new possibility, and the simplicity of the function
itself, improvements in terms of control smoothness and stability
can be observed from numerical simulations performed on the
trident snake robot, one of which is reported for illustration
and visualization purposes.

I. INTRODUCTION

The trident snake robotwas first proposed by Ishikawa
[1] as a new kind of planar mobile robot with nonholonomic
mechanical constraints. It is simply composed of a triangular-
shaped plate with three active joints at its vertices, and three
rigid links with a passive wheel at each end (see Fig. 1). Its
kinematic model is described by a driftless state equation
with three inputs (joint angular velocities) and six state
components (robot’s plate configuration and joint angles).
As in the case of other controllable nonholonomic systems,
the well-known Brockett’s condition [2] tells us that no fixed
configuration of this system can be asymptotically stabilized
by continuous pure-state feedback, a difficulty of which has
motivated many feedback control design studies since the
early 90’s.
This robot is interesting from a theoretical point of view,
not only because of the aforementioned difficulty, but also
because its controllability structure is different from the one
of more conventional wheeled mobile robots. This renders
the control problem quite challenging, all the more so that
feedback stabilizers have not, to our knowledge, been derived
before for this type of system. Let us just mention that an ad-
hoc feedforward control method using a set of periodic inputs
to generate so-called Lie bracket motions was proposed in
[1].
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In this paper, we present a controller design for the
trident snake robot using the framework of theTransverse
Function (TF) approachinitiated by Morin and Samson
[4], [5]. The objective is topractically stabilizeany given
reference trajectory in the space of planar rigid motions
(SE(2)) while avoiding mechanical singularities. The TF
approach was originally developed for systems evolving on
Lie groups with left-invariant control vector fields. Although
the trident snake robot does not belong to this class of
systems, it is always possible –among other possibilities,
see [7] for instance– to apply the approach to a controllable
homogeneous (nilpotent) approximation of the system [4],
[5]. The usual toll, when implementing the control obtained
in this way on the original system, is the loss ofglobal
stability and limitations about the allowed rate of variation
of the reference state for which stability is preserved. Note
that the same can be said about any linear control worked
out from a controllable linear approximation of a non linear
system. This is the solution reported here in view of its
genericity and also of the satisfying results observed in
simulation. Concerning the control design itself, the main
originality introduced by the present study bears upon the
introduction and use of a new class of transverse functions,
defined on a rotation groupSO(n) rather than on a torusTn.
The properties of these new functions, and the possibility of
generalizing their use to other systems, will be the subjectof
future studies. As for the trident snake example considered
here, the proposed transverse functions are defined onSO(3).
They respect the symmetry of the system better than previous
functions defined on the torus, and the simulations that we
have performed give them a net advantage in terms of control
smoothness and overall stability. These improvements can
also be observed at the numerical integration level.
The paper is organized as follows. The robot’s kinematic
model and error state equations are presented in Section
II. The main contribution is presented in Section III, which
specifies the control objectives and details the control design
methodology based on the application of the TF approach
to an homogeneous approximation of the error system and
on the use of a new family of transverse functions defined
on SO(3). The validity and performance of the proposed
controller are demonstrated in Section IV with illustrative
simulation results. Finally, the concluding Section V points
out a few research directions which could prolong the present
study.



II. MODELING

A. Trident Snake Robot

The trident snake robot is a planar mobile mechanism
whose specific structure was proposed by Ishikawa [1]. It is
composed of aroot block and threebranches, as illustrated
in Fig. 1. The root block is an equilateral triangular plate,
with three rotary joints at its verticesP1, P2, P3. Each joint
angle is actuated. The position of the robot is referred to the
centerP (x, y) of the triangle. Without loss of generality, we
choose the angleθ between the segmentPP2 and thex-axis
of a fixed frame to characterize the orientation of the robot.
The configurationof the robot’s body is denoted by

g :=





x
y
θ



 ∈ SE(2). (1)

The directions associated with the vertices are given by the
constant vector of angles:

α :=





α1

α2

α3



 =





−2π/3
0

2π/3



 . (2)

The shapeof the robot is characterized by the joint angles,
i.e.,

φ :=





φ1

φ2

φ3



 ∈ T
3 (3)

whereT
k means the generalized unit torus of dimensionk.

The branches are rigid beams connected to the root block
via the joints. Each branch has a wheel at its end, which
is in contact with the ground without slipping nor sliding
sideways (the classicalrolling-without-slippingassumption).

To simplify the notation, the radius of the circle circum-
venting the triangle, and the distances between each joint and
the corresponding wheel, are assumed to be of unit length.

Branch 1

Branch 3

Branch 2

Root Block

passive
wheel

active
joint

Fig. 1. Trident snake robot

B. Kinematics and State Equations

By combining the fact that the position(xi, yi) of the i-th
wheel is given by

[

xi

yi

]

=

[

x + cos(θ + αi) + cos(θ + αi + φi)
y + sin(θ + αi) + sin(θ + αi + φi)

]

(4)

and the non-slipping assumption on the wheels which yields
the following nonholonomic constraints:

ẋi sin(θ +αi +φi) = ẏi cos(θ +αi +φi), i = 1, 2, 3. (5)

one obtains (see [1] for more details) the kinematic model

ġ = R(θ)A(φ)−1φ̇ (6)

with

A(φ) =





sin(φ1 + α1) − cos(φ1 + α1) −1 − cos φ1

sin(φ2 + α2) − cos(φ2 + α2) −1 − cos φ2

sin(φ3 + α3) − cos(φ3 + α3) −1 − cos φ3





R(θ) =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





which relates the variations of the shape angles to the
variations of the robot’s body configuration. Introducing the
auxiliary control variable

v := A(φ)−1φ̇ (7)

one obtains the following control model associated with this
system

{

ġ = R(θ)v

φ̇ = A(φ)v
(8)

which, after defining the stateξ := (g, φ), may also be
written as

ξ̇ =

3
∑

i=1

Xi(ξ)vi (9)

with vi the i-th component ofv. This is a smooth driftless
control system whose state evolves in the six-dimensional
manifold SE(2) × T

3. One verifies that its control vector
fields (v.f.) X1,2,3 satisfy the classical LARC (Lie Algebra
Rank Condition) at any point, despite singularities in the
Lie algebra structure at points where the shape angles are
such that the matrixA(φ) is non-invertible. Geometrically
these singularities correspond to shapes for which the three
wheels axles either intersect at the same ICR (Instantaneous
Center of Rotation) point, or are parallel. This system is
thus locally controllable everywhere. Note also that this
mechanism may be seen as a parallel mobile manipulator,
with the singularities evoked above corresponding to the
geometric singularities of this type of robot. Since passing
through such singularities is known to be problematic, one
of the control objectives (or constraints, depending on the
point of view) considered here will consist in avoiding them
by keeping all shape angles in the vicinity of zero, where
the matrixA(φ) is invertible.

Recall thatSE(2) is a connected Lie group whose group
operation is defined by (with a slight abuse of notation



arising from the identification of an element of the group
with the vector of its components, in the right-hand side of
the following relation)

gḡ := g + R(θ)ḡ

where g and ḡ are any two elements ofSE(2), and θ
is the angle component ofg. The group’s unit element
is e = (0, 0, 0)T , and the inverse ofg = (x, y, θ)T

is g−1 = −R(−θ)g. Now, let gr(t) = (xr, yr, θr)
T (t)

(with t ≥ 0) denote a differentiable reference trajectory in
SE(2) associated with a reference frame that the mechanism
should track with a given precision, and letvr(t) denote
the velocity vector associated with this frame, i.e. the vector
such thatġr(t) = R(θr(t))vr(t), ∀t. Let also g̃ := g−1

r g
(= R(−θr)(g − gr)) denote theerror between the robot’s
configurationg and the reference frame’s situationgr. Then,
using (8), one obtains the following controlerror-system

{

˙̃g = R(θ̃)v + p(g̃, vr)

φ̇ = A(φ)v
(10)

with θ̃ := θ − θr and

p(g̃, vr) = −(vr + (−g̃2, g̃1, 0)T θ̇r) (11)

the drift term produced by the reference frame motion.

III. CONTROL

Given a motion for the reference frame, we would like the
robot’s body to track this frame “as well as possible”. The
equation ing̃ shows that it is theoretically possible to main-
tain a zero tracking error for a certain amount of time, when
starting from a non-singular shape configuration. The pitfall
with this (exact tracking) solution is that the shape variables
are not actively monitored to avoid singularities. As a matter
of fact, it is not difficult to show that simple reference frame
motions make the shape variables converge to a singular
configuration. Consider for instance a straight motion with
constant velocity and constant orientation. Clearly, all three
wheels will tend to get aligned with the motion direction
so that their axles will tend to be parallel (and orthogonal
to the motion direction). This implies that, in the general
case, exact tracking has to be abandoned and replaced by a
more sophisticated control mode capable, at the same time,
of ensuring a “reasonably” good tracking precision for the
robot’s body and the avoidance of shape singularities. These
considerations yield a technical formulation according to
which, given a strictly positiveprecisionindexǫ0, the control
design objective is to derive a feedback law (for the control
input v) which practically stabilizes the pointξ⋆ := (e, 0)
of the error-system in the sense that, for any (bounded)
reference velocityvr(t), one has for the closed-loop system:

• (practical stability)∃α > 0 : dist((g̃(0), φ(0)), ξ⋆) <
α ⇒ dist((g̃(t), φ(t)), ξ⋆) < ǫ0, ∀t ≥ 0, with dist de-
noting a distance function defined in the neighborhood
of this point,

• (practical convergence) the ballB(ξ⋆, ǫ0) of centerξ⋆

and radiusǫ0 is attractive, meaning that all solutions to

the closed-loop system starting from a certain domain
containing this ball are complete and converge to this
ball.

Obviously, in order to avoid the geometric singularities ofthe
mechanism, the precision indexǫ0 should be chosen small
enough to ensure that dist((e, φ), ξ⋆) < ǫ0 implies that the
matrix A(φ) is invertible.
To achieve this control objective, the Transverse Function
approach [4], [5] applies directly in the case where the
control system is left-invariant on a Lie group. In the present
case, it is simple to verify that, due to the equation associated
with the shape variables, this system does not have this
property. Indeed, the invariance property would imply that
the Lie algebra generated by the system’s vector fields be
of the same dimension as the system state (thus equal to
six), whereas it is infinite dimensional. A possibility, among
others, then consists in considering a controllable homo-
geneous approximation [3] of the “non-perturbed” system
at the desired equilibrium point (which is always possible
when the original driftless system is controllable) and work
out the feedback control law on the basis of either this
approximation, when it is invariant on a Lie group, or
on an invariant extension of this approximation otherwise
(see [5] for technical explanations about this specific issue).
Local practical stabilization is then granted provided that the
requested precision is high enough (orǫ0 small enough) and
that the reference velocity is not too large. This possibility
is further detailed next.

A. Invariant homogeneous approximation

Define
Ā(φ, θ) := A(φ)R(θ)T

φ̄ := φ − Ā(φ, θ̃)g̃
(12)

and note thatξ̃ := (g̃, φ̄) constitutes a new system of
coordinates for the error-system state. Differentiatingφ̄ with
respect to time, and using the error-system equation (10),
give the locally equivalent error-system

{

˙̃g = u + p(g̃, vr)
˙̄φ = B(g̃, φ, θ̃)u + q(g̃, φ, vr)

(13)

with
u := R(θ̃)v (14)

and

B(a, b, c) := [B1(b, c)a B2(b, c)a B3(b, c)a]

B1(φ, θ̃) := −(
∑3

i=1 Āi1
∂Ā
∂φi

)(φ, θ̃)

B2(φ, θ̃) := −(
∑3

i=1 Āi2
∂Ā
∂φi

)(φ, θ̃)

B3(φ, θ̃) := −(
∑3

i=1 Āi3
∂Ā
∂φi

− ∂Ā
∂θ

)(φ, θ̃)

q(g̃, φ, vr) := ∂Ā
∂θ

(φ, θ̃)g̃θ̇r − Ā(φ, θ̃)p(g̃, vr)

(15)

An homogeneous (nilpotent) approximation of the error-
system (13), when it is not subjected to the additive pertur-
bationsp andq (i.e. whenp ≡ q ≡ 0), about the equilibrium
ξ̃ = (e, 0) is

{

˙̃g = u
˙̄φ = B(g̃, 0, 0)u = [B1g̃ B2g̃ B3g̃]u

(16)



whereBi := Bi(0, 0) for i = 1, 2, 3. This latter system may
also be written as

˙̃
ξ =

3
∑

i=1

Xi(ξ̃)ui

with its control vector fields (v.f.) defined byXi(ξ̃) :=
(si, Big̃) for i = 1, 2, 3, andsi denoting thei-th canonical
unit vector of R

3. It is also simple to verify that the Lie
algebra overR generated byX1, X2, andX3 only contains
linear combinations of these v.f. plus three others given by

X4 = [X1,X2] = (0, B2s1 − B1s2)
X5 = [X1,X3] = (0, B3s1 − B1s3)
X6 = [X2,X3] = (0, B3s2 − B2s3)

with [Xi,Xj ] denoting the Lie bracket ofXi andXj . These
six v.f. thus form a set of generators of the Lie algebra of the
homogeneous system (16). Moreover they are independent
and form a basis of the Lie algebra iff the matrix

C = [B3s2 − B2s3|B1s3 − B3s1|B2s1 − B1s2]

is invertible. The explicit calculation of this matrix and its
determinant shows that such is the case here. From these
facts one deduces that i) the dimension of the Lie algebra
of this approximating homogeneous system is equal to six,
and thus equal to the system’s dimension, ii) the system is
controllable at any point, and iii) the system is left-invariant
on R

3 ×R
3 with respect to some group operation which, as

one can readily verify, is defined by

(ga, φa)(gb, φb) := (ga + gb, φa + φb + B(ga, 0, 0)gb) (17)

with ga, gb, φa, andφb here denoting vectors inR3. From
this definition one also verifies that the inverse of an element
ξ = (g, φ) is

(g, φ)−1 = (−g,−φ + B(g, 0, 0)g).

Let lξ denote left translation operation on the group byξ,
i.e., lξ : η 7→ ξη, and dlξ(η) denote its differential atη.
Likewise, drξ(η) means the differential of right translation
rξ : φη 7→ ηξ at η. Seeing(g, φ) as a vector inR

6, the
differentials are given by

dl(ga,φa)(gb, φb) =

[

I3 03×3

B(ga, 0, 0) I3

]

dr(gb,φb)(ga, φa) =

[

I3 03×3
∑3

i=1 Big2,i I3

]

with I3 and 03×3 denoting the(3 × 3) identity matrix and
the null matrix respectively, andgb,i (i = 1, 2, 3) denoting
the i-th component ofgb. Note that the above two matrices
are always invertible.

B. Control design

A possibility for the control design is to use the following
approximation of the error-system

{

˙̃g = u + p(g̃, vr)
˙̄φ = B(g̃, 0, 0)u + q(g̃, φ, vr)

(18)

obtained by simply adding the perturbationsp and q to
the right-hand side of the homogeneous approximation (16).
Since the TF approach developed in [5] applies directly to
this system, we just recall below the main steps involved in
the synthesis of the control law.
Let f = (fg, fφ) denote a function whose componentsfg

and fφ are (periodic) functions fromT3 to a neighborhood
of the zero vector inR3. By definition, this function is said
to be transversalto the control v.f. of the above system if
the matrix

H(β) :=

[

I3 −
∂fg

∂β
(β)

B(fg(β), 0, 0) −
∂fφ

∂β
(β)

]

(19)

is invertible∀β ∈ T
3. The fact that the unperturbed part of

the system (18) is controllable ensures the existence of such
a function [4]. We will come back on its determination. For
the time being, consider the group operation defined in the
previous section and define themodified error-statez as the
group product of the error-state by the inverse of the chosen
transverse function, i.e.

z := (g̃, φ̄)(fg(β), fφ(β))−1. (20)

Then, seeingz as a vector inR
6, differentiating it with

respect to time and using (18) in combination with the
invariance of the system’s control v.f. one obtains (see also
[5])

ż = D(g̃, φ, β)ū + E(g̃, φ, β, vr) (21)

with

D(g̃, φ, β) := drf(β)−1(g̃, φ̄)dlz(f(β))H(β)

E(g̃, φ, β, vr) := drf(β)−1(g̃, φ̄)

[

p
q

]

(22)

and ū := [uT , β̇T ]T an extendedsix-dimensional control
vector. Note thatβ̇ provides us with the extra control inputs
that were lacking in the first place to control the system
easily. By the transversality off the matrix D(g̃, φ, β) is
always invertible. As a consequence it is not difficult to
determine a feedback control which exponentially stabilizes
z = 0. Take, for instance

ū = −D(g̃, φ, β)−1[kz + E(g̃, φ, β, vr)] with k > 0 (23)

or, more generally (and by omitting function arguments for
the sake of notation simplification)

ū = −
W−1

1 DT zk|z|2

zT DW−1
1 DT z

− D−1E (24)

with W1 denoting a symmetric positive definite matrix-
valued function whose role is to modulate the relative
amplitudes of the components entering the control vectorū
(see [6], for example), given a desired rate of convergence.
Indeed, these two control laws applied to (21) yield the same
closed-loop relation

d

dt
|z|2 = −2k|z|2 (≤ 0)

which in turn implies the exponential stabilization ofz = 0
with the rate of convergence specified byk.



Applied to the original system (8), these feedback controls
will continue to (locally) exponentially stabilizez = 0 when
the reference frame does not move, i.e. whenvr ≡ 0,
provided that the “size” of the transverse functionf is
enough small to prevent the high-order terms discarded in
the homogeneous approximation from becoming dominant.
When the reference frame moves thenz will only converge
to, and remain in, a neighborhood of zero, provided that the
ratio |vr(t)|/k is not too large. Note that, by using the same
family of transverse functions, it is also possible to work out
a control law which ensures the exponential stabilization of
z = 0 for the original system whenvr 6= 0. This alternative
is not presented here because this would complicate the
presentation without bringing a very noticeable difference
in the simulation results reported further in the paper and
a clear practical advantage. Nevertheless, this issue would
probably deserve to be further studied.

C. Transverse functions

The calculation and application of the feedback laws (23)
and (24) require the explicit determination of the transverse
function f = (fg, fφ) entering the expression ofz and the
matrix-valued functionsE andD. There are many possibil-
ities for the design of such a function, and only a few have
been explored to date. One of them, very general because
it applies to any controllable driftless system invariant on a
Lie group, was proposed in [5]. Complying with a common
notation, letexp(X) denote the solution at timet = 1 of
the systemġ = X(g) starting at the origing = 0 at time
t = 0. For the system considered here, the possibility evoked
above consists in definingf as the group product (given by
(17)) of threeelementaryfunctionsf12, f23, andf31, each
depending on a single variable and defined by

fij(β1) := exp(ǫi1 sin(βi)Xi + ǫi2 cos(βi)Xj) (25)

with Xi andβi (i = 1, 2, 3) denoting the control v.f. of the
approximating homogeneous system and the components of
β respectively, andǫij (with i = 1, 2, 3 and j = 1, 2) being
real design parameters chosen to ensure the satisfaction of
the transversality condition, i.e. the invertibility of the matrix
H(β) for anyβ ∈ T

3 in the present case. Due to the structure
of the Lie algebra these elementary functions can enter
the product in any order, i.e. one can take eitherf(β) :=
f12(β1)f23(β2)f31(β3), or f(β) := f12(β1)f31(β3)f23(β2),
or any of the four other possible combinations. Each of these
products yields a different transverse function, providedthat
the corresponding design parameters are adequately chosen.
Concerning this issue one can show for instance that, for
any of these products there exists a vectorδ ∈ R

6 such
that (ǫ11, ǫ12, ǫ21, ǫ22, ǫ31, ǫ32)

T = ǫδ grants transversality
for any ǫ > 0. Since this latter parameter can be chosen as
small as desired, the “size” of the transverse function can be
rendered as small as needed (see earlier comments on the
usefulness of this feature).
This first (general) possibility will not be developed further
here because we would like to pinpoint another possibility,
never proposed before, which better takes advantage of

the particular structure of the control system’s Lie algebra.
Instead of functions parametrized by elements inT

3, it
involves functions onSO(3) –the group of rotation matri-
ces. This change of parametrization set induces only minor
modifications at the control expression level. More precisely,
by denoting asω ∈ R

3 the angular velocity associated with
a time-varying rotation matrixQ ∈ SO(3)1, one only has to
replace the matrixH(β) of relation (19) by

H(Q) :=

[

I3 −∂fg(Q)
B(fg(Q), 0, 0) −∂fφ(Q)

]

(26)

with ∂f the matrix-valued function defined from the differ-
ential df of f via the relation

d

dt
f(Q) = df(Q)QS(ω) = ∂f(Q)ω.

Moreover, the complementary control vector is no longerβ̇
but ω, so that the extended control vector isū := [uT , ωT ]T

in this case. Let us now proceed with the determination of
the TF itself. The simplest way to do this consists in first
introducing the following “canonical”2 system onR3 × R

3

{

ν̇g = u
ν̇φ = νg × u = S(νg)u

(27)

with νg, νφ and u denoting vectors inR3, and νg × u the
cross-product ofνg by u. Using the following equality

[B1x1 B2x1 B3x1]x2 = [B1x2 B2x2 B3x2]x1 +C(x1×x2)

which holds for allx1, x2 ∈ R
3, it is simple to verify that

this system is globally equivalent to the homogeneous system
(16) via the change of coordinates(νg, νφ) ↔ (g̃, φ̄) =
Ψ(νg, νφ) with

Ψ(νg, νφ) := (νg,
1

2
[Cνφ + B(νg, 0, 0)νg]) (28)

andB andC the matrices defined previously. Since a change
of coordinates preserves the geometrical properties of the
system, one can infer (and easily verify) that the system (27)
is left-invariant onR6, that it is controllable at any point, and
also that iff̄ is a transverse function for this system then the
function f defined by(fg(Q), fφ(Q)) := Ψ(f̄g(Q), f̄φ(Q))
is a transverse function for the system (16).

Proposition 1 Let a and b denote any two non-zero inde-
pendent vectors inR3, then the function̄f : Q ∈ SO(3) 7→
f̄(Q) = (Qa,Qb) ∈ R

3 × R
3 is transversal to the control

v.f. of system(27).

The proof of this proposition is simple. By forming the
time-derivatives off̄g(Q) = Qa and f̄φ(Q) = Qb one
gets ˙̄fg = QS(ω)a = −QS(a)ω and ˙̄fφ = QS(ω)b =
−QS(b)ω. Therefore∂f̄g(Q) = −QS(a) and ∂f̄φ(Q) =

1i.e. the vector such thaṫQ = QS(ω), with S(.) the skew-symmetric
matrix operator associated with the cross-product inR

3 (i.e. such thatx1×
x2 = S(x1)x2, ∀x1, x2 ∈ R

3)
2in the sense that it is the simplest six-dimensional driftlesssystem with

three inputs whose Lie algebra is entirely generated by the control v.f. of
the system and their first-order Lie brackets



−QS(b). Now, in view of the equations (16) and (27), the
transformation of the first homogeneous system into the
canonical representation of this class of systems formally
involves the replacement ofB(g, 0, 0) by S(g) in the control
matrix which pre-multiplies the control vectoru. This means
that the matrix (26), in the case of the canonical system and
the specific functionf̄ considered in the proposition, writes
as

H(Q) :=

[

I3 QS(a)
S(Qa) QS(b)

]

so that, using thatS(Qa) = QS(a)QT , det(Q) = 1, and
that S(a) is skew-symmetric

det[H(Q)] = det[QS(b) − S(Qa)QS(a)]
= det[S(b) + S(a)T S(a)].

If the semi-positive matrixS(b) + S(a)T S(a) was singular
there would existx 6= 0 such that[S(b)+S(a)T S(a)]x = 0,
and thus such thatxT [S(b)+S(a)T S(a)]x = ‖S(a)x‖2 = 0.
This means thatx would be colinear witha. We would also
have S(b)x = 0, so thatx would be colinear witha and
b simultaneously. This would contradict the assumption of
independence ofa andb.

A corollary of the above proposition is that the function
f defined by

(fg(Q), fφ(Q)) := Ψ(f̄g(Q), f̄φ(Q))
= (Qa, 1

2 [CQb + B(Qa, 0, 0)Qa])
(29)

is a transverse function for the approximating error-system
(13) and that it can thus be used in the controls (23)
and (24). From its expression, specified above, a simple
complementary calculation yields

∂fg(Q) = −QS(a)
∂fφ(Q) = − 1

2CQ[S(b) − S(a)2] − B(Qa, 0, 0)QS(a).

Using these relations the transversality off can also be
checked by forming the corresponding matrix (26) and
showing that it is invertible∀Q.
Remark :The possibility of designing transverse functions
that are parametrized by elements inSO(m) for a class of
systems which are invariant on a Lie group, is here pointed
out and illustrated in the case ofSO(3) and six-dimensional
controllable systems whose Lie algebra is generated by the
system’s v.f. and their first-order Lie brackets. It finds a
natural generalization to systems of higher dimensions. This
extension is presented in a separate paper.

IV. SIMULATION RESULTS

For the simulation reported here, the time history of the
reference frame velocityvr is summarized in the following
table.

t ∈ (s) vr = (m/s, m/s, rad/s)T

[0, 5) (0, 0, 0)T

[5, 15) (0.5, 0.5, 0)T

[15, 25) (−cν sin(ν(t − 15)), cν cos(ν(t − 15)), 0)T

[25, 35) (−cν sin(ν(t − 25)), cν cos(ν(t − 25)), 0)T

[35, 45) (0.5,−0.5, 0)T

[45, 50) (0, 0, 0)T

with c = 2.5 and ν = π
10 . Although there is no theoretical

necessity for this, the reference orientation is purposefully
kept constant (i.e.θ̇r(t) = 0, ∀t) in order to facilitate the
visualization of the motions of the reference frame and of
the robot. The control (24) is used withk = 1 and

W1 =

[

Ā(φ, θ̃)T Ā(φ, θ̃) O3,3

O3,3 100 I3

]

.

This particular choice of the “weight” matrix-valued function
W1 takes into account the fact that the physical kinematic
control vectorφ̇ is related tou via the relationφ̇ = Ā(φ, θ̃)u.
The transverse function used in the control is given by (29),
with the two orthogonal vectorsa = −0.4s3, b = 0.4s1.
Vectors with smaller norms could also be used to improve on
the tracking precision, but this would yield higher-frequency
maneuvers.

Fig. 2 shows the evolution of the norm of the modified
error-statez with respect to time. If the control was perfect,
‖z(t)‖ would converge to zero. One can observe that this
convergence occurs here only when the reference frame does
not move. This was expected because the control has been
designed from an approximated model of the mechanical
system. Nevertheless, due to the robustness of the control
with respect to modeling errors, the amplitude of this variable
is kept small all the time, after the initial transient phase.

0 5 10 15 20 25 30 35 40 45 50

−1.0

−0.5

0.0

0.5

1.0

+ time (s)

‖z‖

Fig. 2. ‖z‖ vs. time

Fig. 3 shows the(x, y) trajectories of the origin of the
reference frame and of the originP of the robot’s frame.
Both frames coincide initially (at timet = 0) and start from
the lower tip of the “heart” on the figure.

The evolution of the difference of orientatioñθ between
the two frames is shown on Fig. 4, and the time-evolution
of the components of the shape angle vectorφ is shown on
Fig. 5, followed by Fig. 6 which focuses on the first linear
sectiont ∈ [8, 12].

Note that all angle amplitudes remain smaller thanπ
3 , well

within the domain where the matrixA(φ) is invertible, i.e.
away from the mechanism’s geometrical singularities.
Finally, Fig. 7 shows the time-evolution of the components of
the shape angle velocity vectorφ̇, here taken as the system’s
control input. As expected, all velocities tend to zero when
the reference frame stops moving.



Fig. 3. Reference trajectory(xr(t), yr(t)) and robot’s trajectory
(x(t), y(t))
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Fig. 4. Orientation error̃θ vs. time

0 5 10 15 20 25 30 35 40 45 50

−1.0

−0.5

0.0

0.5

1.0

+

φ (rad)

time (s)

Fig. 5. Shape anglesφ vs. time

V. RESEARCH DIRECTIONS

There are several avenues to prolong the work reported in
the present study. One of them is the experimental validation
and tuning of the proposed feedback control on a physical
prototype of the trident snake robot. Another one is the
adaptation of the TF approach to other snake-like mecha-

Fig. 6. Shape anglesφ vs. time (t ∈ [8, 12], linear section)
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Fig. 7. Shape control̇φ vs. time

nisms, either equipped with wheels or using crawling motion.
A third one is the study of the potentialities offered by
generalized transverse functions defined on rotation groups,
in relation to the structure of the Lie algebra generated by
the system’s control vector fields, and their application tothe
control of various physical systems.

REFERENCES

[1] M. Ishikawa. Trident snake robot: locomotion analysis and control.
In Proc. of the 6th IFAC Symp. on Nonlinear Control Systems
(NOLCOS2004), pages 1169–1174, 2004.

[2] R.W. Brockett. Asymptotic stability and feedback stabilization. InDif-
ferential Geometric Control Theory, vol. 27, pages 181–191. Springer
Verlag, 1983.

[3] H. Hermes. Nilpotent and high-order approximations of vector field
systems. In SIAM Review, vol. 33, pages 238–264, 1991.

[4] P. Morin, C. Samson. A characterization of the Lie AlgebraRank
Condition by transverse periodic functions, In SIAM J. on Cont. and
Opt., vol. 40, no. 4, pages 1227–1249, 2001.

[5] P. Morin, C. Samson. Practical stabilization of driftless systems on
Lie groups: the Transverse Function approach, In IEEE Trans. on
Automatic Control, vol. 48, pages 1496–1508, 2003.

[6] P. Morin, C. Samson. Control of nonholonomic mobile robots based
on the Transverse Function approach. In IEEE Trans. on Robotics,
accepted for publication, 2009.

[7] P. Morin, C. Samson. Transverse Function control of a class of non-
invariant driftless systems. Application to vehicles with trailers, In
Proc. of the 47th IEEE Conference of Decision and Control (CDC08),
pages 4312–4219, 2008.

[8] P. Morin, C. Samson. Stabilization of trajectories for systems on Lie
groups. Application to the rolling sphere, In Proc. of the 17th IFAC
World Congress (IFAC08), pages 508–513, 2008.


