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Abstract— In evolutionary robotics, controllers are often

designed in simulation, then transferred onto the real system.
Nevertheless, when no accurate model is available, controller
transfer from simulation to reality means potential performance
loss. It is the reality gap problem. Unmanned aerial vehicles are
typical systems where it may arise. Their locomotion dynamics
may be hard to model because of a limited knowledge about the
underlying physics. Moreover, a batch identification approach
is difficult to use due to costly and time consuming experiments.

An automatic identification method is then needed that builds
a relevant local model of the system concerning a target issue.
This paper deals with such an approach that is based on
coevolution of models and tests. It aims at improving both
modeling and control of a given system with a limited number
of manipulations carried out on it. Experiments conducted with
a simulated quadrotor helicopter show promising initial results
about test learning and control improvement.

I. INTRODUCTION

In evolutionary robotics ([1], [2]), evolutionary algorithms

are used to design controllers or robots’ morphologies: a

selective pressure based on the description of the expected

behavior leads the search to a solution or a set of solutions.

Such an approach relies on the evaluation of the different

solutions on a set of performance objectives. But an experi-

mental setup means in particular that the robot can easily be

set to a given state. The system can also show risky behaviors

when exploring the solution space. To avoid these problems

and, moreover, to speed up the evaluation of the solutions,

this evaluation step is often performed within a simulator

instead of the real system (see [3] for discussion).

Once the algorithm has converged, it may be transferred

onto the real system. But, because of the discrepancies

between the simulator and the real system, this step often

means performance loss or even total loss of the previously

selected behavior. An accurate simulation model of the

system is therefore needed for a good transfer. This transfer

problem, also called reality gap [4], becomes a critical issue

for systems that can’t be easily accurately modeled like bird-

sized unmanned aerial vehicles (UAVs) and small helicopters.

Because of their sizes and their speeds, these flying robots

bring into play little-known dynamics with low/medium

Reynolds numbers ([5]).

In order to get a good simulation model of the system,

one can resort to learning its dynamics with a system iden-

tification method (see e.g. [6]). Such an approach consists
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in performing some experiments on the system to generate

data from which a model is learned. Once an accurate model

is found, it can be used as a simulator of the system, to

design an optimal controller for instance. Nevertheless, a

batch identification approach assumes a convenient mean

to generate data on the system. For physical systems like

UAVs, this assumption requires costly and time consuming

experimental setup (pilot, wind tunnel,...). We want then to

reduce the number of experiments performed on the system.

To this end, the active learning approach (see [7], [8],

[9]) provides an alternative to batch identification: the data

generation becomes part of the identification process in

order to perform only meaningful experiments concerning the

target issue (trajectory tracking, forward locomotion, ...). One

promising way in active learning is coevolution, a method

that relies on evolutionary concepts.

Bongard et al. introduces in [10] an estimation-exploration

algorithm that implements an identification method based on

coevolution of models and tests. The models are evaluated

from previously generated test data and the test (a controller

here) that discriminates at most between these simulators

is transferred on the system to generate new meaningful

identification data. This process is iterated until a good

simulator is found. Such a method allows to reduce the

number of tests required to explore efficiently the state space.

In the same vein, de Jong et al. addresses in [11] theori-

cal issues about a coevolution process with multiobjective

evaluation called Pareto-Coevolution. It brings into play

learners and tests. A learner is evaluated by interaction terms,

reflecting each its quality on a given test. In such a context,

the existence of a minimal set of tests that leads to optimal

learners is proved.

In Bongard’s approach, the models are only evaluated

from a global test dataset by comparing real data generated

from start with predicted ones. But to obtain simulators that

are relevant for the control issue, it seems more intuitive

to evaluate them directly by some interactions with test

controllers, then in a Pareto-Coevolution context.

Our approach is an implementation of the estimation-

exploration algorithm [10] based on Pareto-Coevolution con-

cepts [11] to improve in a joint process both modeling and

control of a robotic system with few experiments carried out

on it. The problem includes then two main goals:

• to obtain a good simulator of the system by local

identification of its dynamics;

• to find a relevant controller for a given task/problem.

Two populations are brought into play: models and tests.

Tests are made of a controller, an initial state and a target



state. If a test is selected the corresponding trajectory of the

real system is generated. Models are learned from trajecto-

ries’ data. As in Pareto-Coevolution, each model is evaluated

by some interactions, also called performance objectives, one

by test trajectory. The control task is then directly taken into

account for model evaluation. Tests are selected according

to some objectives computed with the set of the best models

like discrimination power as in [10] and, optionally, control

quality concerning the defined issue.

An application to the control of a simulated quadrotor

helicopter based on [12] has then been performed in order

to evaluate our approach. A physical simulator of quadrotor

dynamics plays the role of the “real” system. We want then to

find good models of this simulator according to the selected

tests, which have to be relevant on the specified control task.

After a review of some related works in the next section,

section III deals with the coevolution process and the dif-

ferent elements which are brought into play: the models and

the tests. The implementation of the algorithm is detailed in

section IV, in particular the evaluation objectives for each

kind of elements. Next, section V details the application to

the quadrotor’s control. Section VI shows the main results

obtained with this application that are discussed in section

VII. The paper ends with some conclusions in section VIII.

II. PREVIOUS WORK

System identification is a highly multidisciplinary issue

as it’s resorted to when modeling any partially-known or

unknown system. Whatever the system is, the approach is

similar: data are generated and a model is learned. Never-

theless, the data generation can raise some problems with

systems like UAVs, for which each experiment means costly

experimental setup.

In [6] and [13], a Markov decision process model of an

helicopter is learned with data collected from a trajectory

initially performed by a pilot. The data are then generated

before the identification task. A controller is next designed

from the obtained model used as a simulator before it is

transferred onto the UAV. The approach shows good results,

but such a batch approach is not suitable for more open

behaviors because it requires to collect all experimental data

about the given problem beforehand.

In order to limit the number of experiments, the modeling

process has to be led to meaningful parts of the state space

of the system concerning the addressed issue. To this end,

the data generation can be included in the identification

process with an active learning approach [7], [8], [9]: from

a given target (trajectory, behavior,...) the system explores

effectively its environment to generate pertinent identification

data. The data generation becomes then an integral part of

the identification process. Among active learning methods,

coevolution is a promising approach based on evolutionary

concepts. Coevolution designates the joint evolution of two

(or more) populations affected by their interactions.

Bongard et al. introduce in [10] an estimation-exploration

algorithm that implements a system identification method

based on coevolution of models and tests: the models try

to model at most the system from previously generated

data while the tests try to create new pedagogical data by

discriminating at most between the models. For their robotic

applications, a test means a controller designed from the

learned model for a specified task. The method has been

successfully applied to forward locomotion for a simulated

quadrupedal robot. Models are sets of parameters and control

is provided by neural networks.

The estimation-exploration algorithm has been later imple-

mented on a real four-legged machine [14]: the robot infers

its own structure by performing actions that discriminate at

most between the built models. The models are still sets of

parameters. From these models the machine can generate

forward locomotion. Besides, if a leg is removed, the coevo-

lution process makes models adapt to this new structure and

new locomotion’s behaviors can then be generated again. In

contrary to the previous approach, the tests are only actions

and the controller search is performed after the identification

task.

Such a method leads to two main advantages. First, as

an experiment on the real system is only conducted when

a pertinent test is selected, the number of experiments is

drastically reduced in comparison with a batch identification

approach. The modeling task can secondly be led to mean-

ingful parts of the state space by the evaluation process of the

tests, which affects the data generation. We can then obtain

a local model good enough to design relevant controllers

for a given control task. We can also explicitly improve the

models towards this specific task. The evaluation process can

bring into play interactions with test controllers to quantify

the model’s proximity with the physical system concerning

the control task.

This is the context of Pareto-Coevolution, introduced by de

Jong et al. in [11]. It consists in finding a relevant minimal

set of tests to improve the quality of a learner population

concerning some underlying objectives of a given problem.

As these objectives are often unknown, the learners are

evaluated by a set of interactions with tests. Each interaction

evaluates the performance of one learner on a given test: each

test gives rise to an objective in a multiobjective meaning.

In this Pareto-Coevolution context, it is then proved that a

minimal set of tests that distinguishes at most between the

models’ interaction values is an ideal evaluation set and leads

the learners to a maximization of the underlying objectives.

There is nevertheless a difference concerning the im-

plementation of the coevolution process between Pareto-

Coevolution and estimation-exploration’s approach. Coevo-

lution is a priori simultaneous in Pareto-Coevolution context,

that is, both populations are evaluated in the same time. In

[10], this simultaneity aspect is replaced by a more sequential

coevolution in two main phases. Our approach, detailed in

the next section, is based on this sequential process that we

call double evolutionary loop.

III. APPROACH

The coevolution process relies on two populations: model

and test populations. We first describe what is meant by test



Fig. 1. Outline of the whole algorithm - A test is made of a controller, an initial state and a target state - Besides, a selected test also contains the
corresponding trajectory of the real system.

before detailing the modeling issue. After the description of

these elements, our approach is introduced. An outline of the

whole method is shown on Figure 1.

Notations: at time t, the state of the system is called ηt

and ωt designates a vector of motor commands.

A. Test description

A candidate test Υ is made up of a controller, an initial

state, a target state. A controller C is a function which returns

motor commands ωt from the current state ηt and the target

state of the system ηd:

• ωt = C(ηt, ηd)

A controller C can be evaluated on the real system as

follows: with a given initial state η1 and a given target state

ηd, the command returned by C is applied on the system at

each time step and the successive states of the system are

recorded. The corresponding trajectory T is then summed

up by a dataset:

• T = {(ωt, ηt, ηt+1), t ∈ [0, n]}, where n is the length

(i.e. the number of steps) of the control sequence

If a candidate test is selected, the controller is transferred

onto the real system, the corresponding trajectory is gener-

ated and the data are linked to the selected test structure. A

whole test is thus generated by each experiment performed

on the real system.

For simplicity, we assume in this paper that a candidate test

can be summed up by N parameters: proportional-integral-

derivative (PID) controller’s gains, neural network’s weights,

initial state, target state, etc. Three evolutionary operators can

then be defined on this vector representation:

• a mutation operator modifies the value of one parame-

ter;

• a crossover operator builds a new candidate test by

mixing two parameter vectors of the current population;

• a reproduction operator copies a candidate test of the

current population to the next one without change.

B. Model description

A model M is a function that predicts η̂t+1, the next

state of the system, from its current state ηt and the applied

commands ωt:

• η̂t+1 = M(ωt, ηt)

The models are evaluated on the selected test trajectories.

The model structure doesn’t take any prior information on

the system into account. Moreover we assume that the model

structure allows to define three operators: mutation, crossover

and reproduction. Nevertheless, as the definition of these

operators is highly dependent on the model structure, we’ll

only detail them in the application description (see V-A).

C. A double evolutionary loop

In order to initialize the algorithm, we assume that an

initial test Υ0 is available, that is a controller C0, an initial

state η0
1 , a target state η0

d and the corresponding trajectory

T0 of the real system. We define then a set of selected tests

Ω. At the initialization, Ω = {Υ0}.

The models are learned from test data and evaluated by

comparing their prediction to each selected test trajectory.

The test management is a little bit more complicated. The

candidate tests are ranked thanks to a set of objectives

concerning the models. As in [10], candidate tests that

discriminate at most between the models are selected. But

test evaluation can include other objectives too like control

performance in order to lead the search to more efficient

controllers and then the identification to more meaningful

state space areas concerning the control issue. The influence

of such a quality objective will be discussed later.

The coevolution process, or double evolutionary loop, is

implemented by the sequence below and iterated as long as

no good pair (model, controller) is found:

1) model loop: the best models are looked for from data

of the selected tests’ set Ω (step 1 in Figure 1), next

saved (step 2);

2) test loop: candidate tests are evolved from the previ-

ously found best models (step 3);

3) data generation: one among the more relevant candi-

date tests is transferred onto the real system (step 4)

and added with the generated data to Ω (step 5).

Both loops are evolutionary algorithms and bring into play

the three operators presented above. There is a question left:

considering one model and a set of selected tests, how can

this model pertinently be evaluated? Likewise, how can we



select the best candidate test to transfer onto the system? The

next section details the evaluation and selection processes for

both populations.

IV. EVALUATION PROCESS

As models and tests are evaluated on a set of objectives,

each evolutionary loop boils down to a multiobjective search

of optima in a given objective space. In this section, some

concepts and tools concerning multiobjective problems are

introduced first in order to describe next the evaluation

objectives of each population.

A. Multiobjective concepts & NSGA-II ranking method

Let i be an individual evaluated by the objectives obji
j to

minimize, j ∈ [1, N ]. The dominance relation between the

individuals is a partial order relation defined as follows:

• i1 dominates i2 ⇐⇒

{

∀j ∈ [1, N ], obji1
j ≤ obji2

j

∃j ∈ [1, N ], obji1
j < obji2

j

For a given problem, the set of the non-dominated indi-

viduals, i.e. the best solutions, is called Pareto front, noted

P . On a given population, a non-dominated set S can be

defined that contains its non-dominated individuals.

An ideal point z∗ [15] can be defined on a given set of

objectives. Its coordinates z∗j are the minimal values for each

objective on the Pareto front P :

• z∗j = mini (obji
j), j ∈ [1, N ], i ∈ P

As the non-dominated set S of a population is an approx-

imation of P , an approximate ideal point ẑ∗ can be defined

too:

• ẑ∗j = mini (obji
j), j ∈ [1, N ], i ∈ S

From these definitions, a multiobjective evolutionary algo-

rithm addresses two issues:

• to make S converge to the Pareto front P ;

• to maintain a good spread of solutions in S.

Among the recent multiobjective evolutionary algorithms,

NSGA-II shows good performance on both issues with an

reasonable computational cost (see [16] for discussion). The

algorithm we used in model and test loops is based on the

NSGA-II ranking method1.

The NSGA-II ranking method [17] is based on the dom-

inance relation between individuals. For a given population,

the individuals of the non-dominated set S get 1 as rank

value. If these individuals are temporarily removed from the

population, we can define a new non-dominated set on it.

The corresponding individuals get 2 as rank value and so

forth.

Such a ranking method doesn’t explicitly maintain diver-

sity among the non-dominated sets. Deb et al. suggest the

use of a crowding-distance term which favours individuals in

lesser crowded regions of the objective space [17]. Moreover,

individuals located on the edges of the non-dominated set are

given an infinite crowding distance and thus systematically

selected.

1The selection method is not the same as in [17], but as our approach is
a priori not dependent on this implementation choice, it shouldn’t have a
strong influence on the results

Both evolutionary loops are designed as follows: three

steps are iterated for a certain number of generations.

1) construction of the offspring of the current population

based on elitism and ranking selection with the three

operators: mutation, crossover, reproduction (for de-

tails, see parts III-A and III-B);

2) evaluation of the new individuals by the corresponding

set of objectives;

3) sorting of the new population according to the NSGA-

II ranking method and addition of the non-dominated

individuals to the non-dominated set S.2

At the end of each loop, the approximate ideal point ẑ∗

is constructed from the found non-dominated set. For each

non-dominated set, we define then a best trade-off for our

specific issue by choosing the nearest individual to ẑ∗ in S
according to an Euclidean distance.

From this shared loop structure, the two populations differ

by their evaluation objectives, that are described in the next

parts.

B. Models’ evaluation objectives

As described in part III-B, the models are learned from the

selected test trajectories. An objective can then be defined

that reflects the prediction performance of a given model

against the data of a trajectory (see Figure 2). We call it

open-loop objective and its value is the Mean Squared Error

(MSE) of the model prediction on the whole trajectory.

Fig. 2. Outline of the open-loop process.

Nevertheless, the simulation model and the system have

to show similarities that concern the control issue too. We

introduce therefore a closed-loop objective, computed in a

closed-loop process as schematized in Figure 3. With several

elements of a given test - a controller C, an initial state η1, a

target state ηd - and a given model M, the two calculations

below are iterated for t ∈ [1, n]:

1) ωt = C(ηt, ηd);
2) η̂t+1 = M(ωt, ηt).

The trajectory T ′ obtained in this way can be compared

with the true trajectory T of the test: the MSE between the

predicted states η̂t+1 of T and ηt+1 of T ′ is the value of the

closed-loop objective.

These two objectives seem relatively close, but some

preliminary results have shown that they are not redundant.

As the closed-loop objective is computed from a temporal

sequence of system states, it accumulates the model’s errors

while the open-loop one doesn’t. Let N be the number of

tests at the beginning of the loop, a model is then evaluated

by 2N objectives.

2An individual that becomes dominated by another one is, of course,
removed from S .



Fig. 3. Outline of the closed-loop process.

As the model Pareto front P i
M

at the ith iteration is

contained in P i+1

M

3, the model population is randomly

generated only once at the beginning of the algorithm. It

allows to extend the non-dominated set found at i in the

additional dimensions.

Notations: the model non-dominated set is called SM and

the corresponding best trade-off, M∗.

C. Tests’ evaluation objectives

The test loop takes place like the model one. It boils down

to the choice of a controller, an initial state and a target

state to generate a new trajectory of the real system, i.e. new

pertinent data. To that end, we want to select a new candidate

test that discriminates at most between the individuals of the

model non-dominated set SM [10].

Let M be a model and Υ a candidate test. The corre-

sponding simulated trajectory can be built according to the

previously described closed-loop process. Given the control

task, each trajectory can be summed up by the distance δΥ
M

between the final state reached by the system ηn and the

target state ηd of the test:

• δΥ
M

= ‖ ηn − ηd ‖

The first objective we introduce is the discrimination

power of a test [10]. A test Υ is even more discriminating

as the variance of the δΥ
M

values is large on the set PM.

The objective value to minimize is then the inverse of this

variance.

But, with this objective only, candidate tests whose trajec-

tories are near instabilities of the system are preferred [18].

The neighborhoods of the instabilities are indeed parts of the

state space where two models can easily be discriminated,

even if they are very close. Moreover, it is difficult to model

the system’s behavior near an instability. To avoid such

modeling problems, we assume that the relevant behaviors

we look for stay away from instabilities. A second objective

is then needed to take into account this assumption.

Consider a model of the system, the best trade-off M
∗

for instance. Consider the candidate test generated from the

triplet Υ = (C, η1, ηd). A corresponding trajectory T can be

built with M∗. Consider yet the candidate test generated from

Υ′ = (C′, η1, ηd), where C′ is a slightly mutated version of

C. The corresponding trajectory T’ built with M∗ is expected

to be similar to T. If it’s not, there is an instability nearby.

The second objective to minimize is then the variance of

the distances δΥ
′

M∗ values computed each with a mutant C′ of

3A non-dominated individual remains non-dominated when a new objec-
tive is added.

the evaluated controller C. This value is even smaller as the

corresponding trajectory stays away from the instabilites of

the system.

A third objective can be added: the control quality of the

test. As we want to obtain a pertinent controller for the

system, the use of such an objective is indeed attractive. The

term δΥ
M

defined above can be used to quantify this objective

to minimize. Its usefulness will be discussed later.

By choice, the controller population is randomly generated

at each beginning of the test loop. The addition of a selected

test between the iterations i and i+1 can indeed modify a lot

the computation of the discrimination power once this new

test is learned. Nevertheless, as the multiobjective algorithm

used here doesn’t resort to archives, we could also use the

population of the previous test loop as initial population.

Notations: the test non-dominated set is called SΥ and the

corresponding best trade-off Υ∗ = (C∗, η∗

1 , η∗

d).

V. APPLICATION TO THE QUADROTOR’S CONTROL

UAVs’ study is currently an important robotic field because

of their various applications. Moreover, UAVs are systems

that can hardly be accurately modeled and experiments on it

means costly facilities like a wind tunnel. Batch identification

methods are then difficult to use.

We have envisaged an application to quadrotor control

from Adigbli et al. [12], which designed controllers tested

with a physical model of the UAV. To validate our approach

in a relatively simple context, the “real” system we want to

model and control is this physical model. We have then two

main points to check:

1) the best models we obtained are good simulators of the

“real” system in a neighborhood of the test trajectories;

2) the controllers of the selected tests are relevant con-

cerning the given control task.

We use Linear Genetic Programming as learning method

and detail it in the first part. The section deals then with the

physical model and the used controller.

A. A learning method: LGP

A system identification approach goes always with a

learning method. In evolutionary context, it is often resorted

to Genetic Algorithms for parametric identification ([19],

[20]) and (often tree-based) Genetic Programming (GP) for

symbolic/non-parametric identification ([21], [22]).

Here, we are only interested in non-parametric identi-

fication. We have selected a page-based Linear Genetic

Programming (LGP) [23], that is a linear version of GP.

Previous comparisons between tree-based GP and LGP on

various problems (see [24]) show indeed very promising

results with LGP and LGP’s implementation is simple.

Fig. 4. Example of a LGP model - (X1, X2) in input, X3 as output -
marked instructions are introns.



A model is then a sequence of instructions as pictured in

Figure 4, i.e. elementary calculations (addition, subtraction,

multiplication, division) involving the inputs and constants.

In such a program, the same symbol can represent the

corresponding input or a temporary vector. Each model

contains 5 pages and each page is made up of 10 instructions.

LGP brings into play three operators:

• a mutation operator modifies single instructions of a

model;

• a page-based crossover swaps single pages between two

models [25];

• a reproduction operator copies a model of the current

population to the next one without change.

As in tree-based GP methods, an individual contains

introns, instructions that don’t affect its prediction whatever

the inputs. In LGP, the intron sequences are yet easier to

detect and to remove temporarily. It allows then to accel-

erate significantly the evaluation step with a low additional

computational cost.

B. Physical model of the quadrotor - Backstepping controller

A quadrotor helicopter is an UAV that is propelled by

four rotors as schematized in Figure 5. In this part, we only

address the issue of modeling and controlling the quadrotor’s

attitude4, that is the angles Φ, Θ and Ψ. The state vector ηt

is thus :

• ηt = (Φt, Θt, Ψt, Φ̇t, Θ̇t, Ψ̇t)

Fig. 5. Outline of the quadrotor helicopter.

As shown in [12], let Ix (resp. Iy or Iz) and τΦ (resp. τΘ

or τΨ) be respectively the moment of inertia and the torque

applied, both about the axis x (resp. y or z), let JR be the

torque of inertia of each rotor, the attitude’s dynamics can

be modeled by the equations below. In the application, this

model is the “real” system we want to simulate and control.

Φ̈ = τΦ

Ix
− JR π

Ix
Θ̇ + Θ̇ Ψ̇ (

Iy−Iz

Ix
)

Θ̈ = τΘ

Iy
− JR π

Iy
Φ̇ + Φ̇ Ψ̇ ( Iz−Ix

Iy
)

Ψ̈ = τΨ

Iz
+ Φ̇ Θ̇ (

Ix−Iy

Iz
)

From the applied torques τΦ, τΘ, τΨ and the current state

of the system ηt, we can compute its next state by applying

4For any details concerning the physical model and the backstepping
controller, see [12].

the fourth-order Runge-Kutta method to the model and cal-

culating first the new rotational speeds Φ̇t+1, Θ̇t+1, Ψ̇t+1,

then the new angles Φt+1, Θt+1, Ψt+1.

The used controller is derived from the backstepping

controller described in [12]. It consists in one proportional-

integral-derivative controller (PID) controller per angle. Each

controller can therefore be summed up by 9 parameters: 3

gains per angle. The torque vector τctrl obtained with the

PID controllers is next translated in a command vector ω

with a conversion chart. The control sequence lasts 2 seconds

and commands are sent to the motors each 20 ms.

As described in III-A, a test contains an initial state and

a target state too. In order not to increase unnecessarily the

number of parameters for this application, we address the

issue of the attitude stabilization from the initial state η = 0

to the target state ηd = (−30◦, 30◦, −70◦, 0, 0, 0). Thus,

only the 9 controller parameters are needed to define one

test.

VI. RESULTS

In this section, we want first to show some important

points on test learning. In the first part, the tests are evaluated

with two objectives only. Some results on the addition of a

control quality objective are next presented in a second part.

The parameter values used for the performed experiments

are shown in Table I (values in brackets are only used in the

second part).

TABLE I

MAIN PARAMETER VALUES.

global model loop test loop

process

number of number of population number of population number of

iterations generations size generations size objectives

7 15000 250 500 (750) 100 2 (3)

A. Global results on the learning of test trajectories

The first points to verify concerns the learning method

LGP: does it allow to learn a good model of the physical

simulation on a test trajectory? To answer this question, we

record the closed-loop objective values obtained with the test

Υ0 and the best trade-off models selected at each iteration

of the double loop process in 5 runs5. The corresponding

means and standard deviations are shown in Table II.

TABLE II

CLOSED-LOOP OBJECTIVE VALUES OBTAINED ON Υ0 WITH THE BEST

TRADE-OFF MODEL M∗ SELECTED AT EACH ITERATION.

it. 0 1 2 3 4 5 6 7

mean 0.204 0.024 0.029 0.129 0.341 0.357 0.394 0.389

st.dev. 0.175 0.030 0.030 0.167 0.250 0.327 0.265 0.403

The test Υ0 is significantly learned after the first and the

second iterations. Moreover, the models contain in average a

higher percentage of intron sequences to 50%. These results

5The best trade-off model at the iteration 0 is the best model of the initial
random population.



validate the choice of LGP as learning method and the size

of the models.

Nevertheless the later iterations are accompanied with a

performance loss. In fact, only one run performs badly from

the 3rd iteration, but 4 runs do from the 4th and 5th ones. The

last one doesn’t show any significant loss. This perfomance

loss is mainly due to the growing objectives number. After

some iterations, the model evaluation space becomes indeed

too high. The non-dominated set can’t converge efficiently to

the Pareto front in the model loop with the specified number

of iterations. Thus, we often find models that are on the edges

of the model Pareto front, then good on some test trajectories

and bad on the others.

It is difficult to calculate relevant stastitics on several runs

for the other selected tests as they are often different between

two runs. The Figure 6 shows information on the selected

tests for the more successful run among the 5 ones. Each

line corresponds to the closed-loop objective values on a

given selected test computed with the successive best trade-

off models.

Fig. 6. Graph of the closed-loop objective values on the selected tests
computed with the best trade-off model selected at each iteration of the
evolutionary double loop.

According to the Figure 6, in this run, not only the first

test but also the next ones are learned on a permanent basis.

A little performance loss appears at the 6th iteration with

the addition of the test Υ5. Nevertheless, it shows that the

algorithm can find relatively good trade-off models in spite

of the growing objective number.

B. Influence of a control quality objective

The second main point that we want to achieve consists

in finding relevant controllers for the “real” system. To that

end, we compare two versions of the algorithm concerning

the test evaluation:

1) with two objectives;

2) with a control quality objective more.

To compare these two versions, we have conducted 25

runs of the test loop for each version on a same model non-

dominated set, that is after the same run of the model loop.

The control quality value have then been recorded on the

“real” trajectory of the test selected at the end of the test

loop. Some statistics are shown in Table III.

TABLE III

STATISTICS ON CONTROL QUALITY WITH EACH VERSION.

number of control quality control quality

experiments mean standard deviation

version 1 25 0.72 3.11

version 2 25 0.19 0.29

The tests selected in the version 2 show control quality

values significantly lower than in the version 1. This is

mainly due to the fact that in version 1, selected tests

can be relevant about the discrimination power and the

instability proximity issues, but totally irrelevant concerning

the control task. The addition of a control quality objective

is then necessary to lead the search to meaningful control

trajectories.

Nevertheless, in both versions, a controller significantly

better than C0 is rarely found. There are two main explana-

tions. On the one hand, due to the evaluation space that grows

with the number of iterations in the model loop, the algorithm

has been run with a low number of iterations (7). On the other

hand, the initial tests have been designed from not so bad

controllers that perform relatively well in simulation, then

tests with control quality of the same order are often found,

but better ones aren’t.

VII. DISCUSSION

As tests and models are evaluated by several factors, an

intuitive and meaningful way to address model and test selec-

tions was to translate our problem into a multiobjective one:

each learning/control goal becomes a full-fledged objective.

But, an iterative addition of tests raises some questions in

such a context.

The first point concerns multiobjective algorithms.

Roughly, the actual algorithms are indeed relevant with a

number of objectives less than 5, a limit already reached at

the 3th iteration of the evolutionary double loop, that is after

the addition of 2 tests only. An important issue is then to

reduce the number of objectives. To that end, one can try

to merge the open-loop objective on all trajectories because

this objective can be defined on any dataset and not only

on a trajectory. Nevertheless, it would not solve the whole

problem. Another solution consists in limiting the number of

tests. We’ll come back to this issues later on.

The second point involves the number of generations used

for the model loop. The higher the number of tests is,

the higher the model evaluation space is and the more it

takes time to explore efficiently the model Pareto front from

the previous one. On the one hand, too few generations

don’t allow the convergence of the non-dominated set to the

Pareto front. Thus, no good trade-off is found. On the other

hand, a too high number of generations leads to overfitting

on the first trajectories and the model non-dominated set

can’t be efficiently extended in the added dimensions. These



issues are all the more crucial that the NSGA-II ranking

method favours individuals that are on the edges of the non-

dominated set thanks to an infinite crowding distance term.

To address both problems, one can resort to a number of

generations that grows with iterations, but there is no easy

way to design such a function. A more pertinent approach

introduces a diversity term that encourages models to spread

over the Pareto front by adding a new evaluation objective

[26]. Although it adds one more objective, in contrary to the

crowding-distance this method allows to favour individuals

that would be dominated else, but which are yet pertinent as

good trade-offs between the different objectives.

Another approach consists in using a vector of tests with

a constant size. At each double loop iteration, some new

tests are added to this vector by replacing the oldest ones. It

will then fix the evaluation space dimension of the models.

Moreover, as old data are progressively “forgotten”, such

a method would allow the models to adapt to changes

of the system dynamics like system damages, collisions,

addition/removal of system parts, etc. The process could

become less dependent on the initial test Υ0 too.

The test evaluation can also be improved. On the one hand,

staying away from instabilities is convenient, but it penalizes

perhaps some relevant behaviors depending on the system.

On the other hand, objectives that evaluate if a trajectory is

risky or not can be meaningful when transferring onto the

real system.

A last unsolved question deals with the first test Υ0. In the

application, we design indeed not so bad first controllers C0

from [12]. It would be interesting to use worse controllers,

or even incomplete initial trajectories in order to study

the robustness of the coevolution process in more realistic

situations. This issue will be examined in future work.

VIII. CONCLUSIONS AND FUTURE PROSPECTS

This paper addressed the reality gap problem in the case of

controller transfer, an important issue in robotics. An iden-

tification method of nonlinear systems based on coevolution

of models and tests has been implemented. The goal consists

finally in automatically modeling and controlling systems (or

parts of a system) without the need of an accurate prior model

and/or a lot of experiments.

The application to the control of the simulated quadrotor

helicopter shows promising results on the modeling and the

control issue. Nevertheless, in spite of its intuitive advan-

tages, the iterative addition of tests asks some problems in

a multiobjective context. An alternative with a fixed number

of tests could be considered. Moreover, previous works on

neural networks controllers [27] might be used to address

the control issue in a more generic way.
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