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Abstract— Despite their success as optimization methods,
evolutionary algorithms face many difficulties to design artifacts
with complex structures. According to paleontologists, living
organisms evolved by opportunistically co-opting characters
adapted to a function to solve new problems, a phenomenon
called exaptation. In this paper, we draw the hypotheses (1) that
exaptation requires the presence of multiple selection pressures,
(2) that Pareto-based multi-objective evolutionary algorithms
(MOEA) can create such pressures and (3) that the modularity
of the genotype is a key to enable exaptation. To explore these
hypotheses, we designed an evolutionary process to find the
structure and the parameters of neural networks to compute a
Boolean function with a modular structure. We then analyzed
the role of each component using a Shapley value analysis.

Our results show that: (1) the proposed method is efficient
to evolve neural networks to solve this task; (2) genotypic
modules and multiple selections gradients needed to be aligned
to converge faster than the control experiments. This promi-
nent role of multiple selection pressures contradicts the basic
assumption that underlies most published modular methods for
the evolution of neural networks, in which only the modularity
of the genotype is considered.

I. INTRODUCTION

Finding the parameters and the topology of neural net-
works is a complex task that has been successfully tackled
with evolutionary algorithms many times (e.g. [1]–[5]). Al-
though these methods easily lead to good parameters for
many systems, they turn out to be inefficient to evolve
artifacts with arbitrary complex structures. In other words,
current evolutionary algorithms are widely successful op-
timization methods but are bad engineers. This result is
surprising with regard to the complexity reached by living
organisms using “natural” evolution.

These difficulties echo the main criticisms addressed by
early – and current – opponents to Darwin. While it is easy
to admit that natural selection can maintain and improve a
given trait, how do complex characters emerge at first? Put
differently, how natural selection could favor the intermediate
structures required to solve complex tasks? Darwin wrote a
lengthy answer to this challenge in the last edition of The
Origin of Species [6] in which he highlighted that a structure
does not have to be employed for the same purpose during
the whole evolution of a species. Consequently, structures
might originate from an adaptation to a function and then be
opportunistically co-opted to solve a new problem. Darwin
termed this concept preadaptation, but modern evolution-
ary biologists use the less connoted word exaptation [7].
According to current paleontology, exaptation explains, in
particular, crucial steps of the evolution of life such as the
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appearance of the digits of tetrapods, initially adapted to an
aquatic environment [8], or first bones, useful for the storage
of inorganic ions.

Despite the prominent role of exaptation in the evolution
of complex organisms, this phenomenon seems to be, if
not absent, at least rare in artificial evolution. Complex
life forms are subject to many selection pressures such
as the performance of their vision system, the ability to
move faster, the variety of food they can eat, etc. As a
consequence, evolution can improve organisms with respect
to many selection gradients and the obtained adaptations
can later be employed to solve problems raised by another
selection gradient, resulting in an exaptation. Classical artifi-
cial evolution defines only one selection gradient, the fitness
function, thus preventing the evolutionary process to exploit
exaptation to lead to complex artifacts.

Recognizing this problem, several researchers (e.g. [9]–
[12]) proposed to replace the fitness function by an implicit
evaluation scheme in which individuals are situated in an
artificial world. Inhabitants of these simulated environments
compete for limited resources while trying to meet sexual
partners to spread their genotype. These studies provide
many insights about the dynamics of evolutionary systems
and can lead to complex “artificial life forms”; however,
they are not designed to solve concrete problems, such as
creating a neuro-controller for a robot to clean a room or
finding the optimal structure of a bridge. In this paper,
we draw the hypothesis that Pareto-based multiobjective
evolutionary algorithms (MOEA, see [13]) can explicitly
provide multiple selection gradients, thus enabling exaptation
to evolve complex and potentially useful artifacts.

The existence of a selection pressure may not be suf-
ficient to improve a particular trait: if a gene has many
pleiotropic effects1, it may be impossible to improve one
character without altering some other ones; consequently,
the more independent the genes coding for unrelated traits,
the more efficiently a selection gradient can be followed. In
other words, the genotype-phenotype map – how genotype
variations are reflected in the phenotype – should be modular
(see [14]). This intuition is confirmed by a recent theoretical
study [15] that highlights that genotypic modules, phenotypic
modules and selection gradients should be “aligned” to fully
benefit from the advantages of modularity for the evolvability
of complex systems. Moreover, modularity makes easier the
repetition of a functional sub-part in an organism. Such a
duplicated module can then be employed for a new function
without damaging its use in the original context. The impor-

1Pleiotropy occurs when a single gene influences multiple phenotypic
traits.



tance of modularity to evolve complex systems and especially
neural networks has been widely recognized ( [1], [16]–[19])
but, to our knowledge, neural-network modules have never
been explicitly linked to selection gradients.

In this article, we propose an evolutionary process de-
signed to exploit exaptation and modularity to synthesize
complex systems. Our aim is twofold: (1) investigating the
links between evolution, modularity and selection gradients
and (2) introducing a scalable method to evolve complex
systems. We illustrate our ideas by evolving neural-networks
to compute a complex and modular Boolean function, a
problem previously employed in another study about modu-
larity [20].

The remainder of this paper is organized into four parts.
Section II is an overview of the related previous work.
Section III describes our approach, from the definition of
a modular genotype-phenotype map to the use of MOEAs
to create multiple selection gradients. Section IV details our
experiment and analyzes the results using the Shapley value.
The last section is a brief discussion.

II. PREVIOUS WORK

Only a few papers explicitly deal with exaptation and
preadaptation in the evolution of artificial systems [11], [21]–
[23]. De Oliveira [11] studies an artificial ecosystem of
two-dimensional cellular automata designed to make difficult
adaptations by natural selection. Exaptation was possible by
exploiting a sequence of non-adaptations caused by genetic
drift. Studying the evolution of neural networks, Miglino et
al. [22] noticed that some changes of the neural networks
were non-adaptive – and consequently only selected by
chance – but were later required to increase the fitness.
Miglino et al. conclude that this phenomenon was an ev-
idence of artificial preadaptation. While these two papers
report observations of preadaptation in an artificial context,
Graham and Oppacher [23] proposed a process designed
to exploit exaptation to improve existing evolutionary algo-
rithms. Tackling a toy problem, the authors designed four
fitness functions of increasing difficulty and associated them
to four niches. Individuals of each niche were evaluated
using the corresponding fitness but they were allowed to
migrate between niches at the end of each generation. At the
beginning of their experiments, individuals were viable only
in the simplest niche but, after a few hundred generations,
they managed to migrate from niches to niches to finally
solve the most complex problem. These results demonstrate
the power of exaptation to solve difficult tasks by providing
different fitness gradients.

Using intermediate steps to evolve solutions for complex
problems is often referred to as incremental evolution [4],
[24]–[26]. In these works, the task is split into stages of
increasing complexity. Candidate solutions are first selected
using a first fitness function and, once a convergence criterion
is reached, the experimenter changes the fitness to a more
complex one. Despite its practical successes, this manual
approach has several drawbacks (see [27]) such as the need
to find a good switch criterion, the necessity to follow

designer’s ordering of sub-problems, the inability to explore
multiple hypotheses and the absence of explicit selection
pressures on the previous sub-tasks.

Mouret et al. [27] show that these drawbacks can be ef-
ficiently overcome by defining a multiobjective optimization
problem in which each objective corresponds to a sub-task
and by then solving it using a Pareto-based MOEA (see
[13]). At the beginning of the process, individuals obtain
a non-minimal fitness only for the simplest objectives. As
they improve with respect to these objectives, they will
reach the minimal performance for the sub-tasks required
to try the more complex ones. As a consequence of the
Pareto sort, individuals that obtain a non-minimal fitness on a
previously unreachable sub-task will be non-dominated – and
consequently selected – but best individuals for the simpler
sub-tasks will be non-dominated too. Thus, the evolutionary
process will automatically switch to complex tasks as soon as
possible, while maintaining a selection pressure on previous
tasks and while not depending on any a priori ordering of
sub-tasks. Moreover, a part of the population may dominate
with respect to one of the intermediate sub-tasks while
another part can improve along another selection gradient;
the process can thus simultaneously explore different evo-
lutionary paths. Each selection gradient in this case relies
on complete solutions features and has no direct impact on
sub-parts of it. This differs from natural evolution, in which
particular evolutionary pressures can shape specific organs.
This difficulty will be addressed in the present paper by
introducing modules in candidate solutions.

The evolution of modular systems and especially modular
neural networks has drawn considerable attention in the last
few years because of the intuitive hypothesis that they are
more evolvable than monolithic ones. Most papers about
the evolution of modular neural networks deal with the
design of modular encodings with different approaches. For
instance, Gruau [1], Hornby and Pollack [28] and Mouret
and Doncieux [29] derive techniques from evolutionary pro-
gramming to exploit the intrinsic modularity of tree-based
representations; Doncieux and Meyer [30] and Reisinger
et al. [19] use simpler representations based on a list of
modules, directly encoded, and a blueprint that specifies
how modules are connected. In these papers, the authors
implicitly assume that modular systems will be favored by
the evolutionary process. Consequently, they do not propose
any explicit link between the selection pressures and the
modules.

Nevertheless, this hypothesis is questionable. As noticed
in [31], monolithic neural networks are often more efficient
and easier to obtain than their modular counterpart. The ob-
servation that living organisms are highly modular, and that it
explains at least a part of their success, raises the question:
how modularity did emerge in nature? Wagner et al. [32]
review many proposed explanations and conclude that the
direct selection for evolvability, i.e. the implicit hypothesis
behind modular encodings, is one of the less likely ones.
Recent papers in theoretical biology emphasize the role of



the selection pressure to explain the modular organization
of organisms. In particular, Lipson et al. [33] and Kashtan
and Alon [20] employ numerical models to show that rapid
changes of evolutionary pressures induce modular structures.
In another theoretical study, Altenberg [15] concludes: “My
main proposal is that the evolutionary advantages that have
been attributed to modularity do not derive from modularity
per se. Rather, they require that there be an ‘alignment’
between the spaces of phenotypic variation, and the selection
gradients that are available to the organism.”

III. METHOD

A. Modular genotype-phenotype map

Definitions of what a module is are multiple and rather
vague. In this work, we chose to call a module a subset of a
system containing several entities functionally integrated and
largely independent of the entities that constitute the other
modules. In the context of neural-networks, the interactions
between neurons are defined by the connections and the
synaptic weights; so we can consider the network as a
directed graph and try to find highly connected clusters.
This problem has a long history in graph theory due to its
usefulness in sociology – to analyze groups of people – and
in biology – notably to analyze gene regulatory networks.
Leicht and Newman [34] recently proposed a robust and
efficient approach to detect modules by optimizing a measure
(simply called “modularity”) over the possible divisions of
a network. Broadly, Leicht and Newman [34] state that, in
a good division, the number of edges between groups is
smaller than expected, i.e. in most cases, smaller than the
mean number of edges in a random network of the same
size. Good divisions regarding this measure can be computed
using a spectral analysis method that demands O(n2) time,
where n is the number of vertices in the network.

Such sub-graphs of a neural-network constitute phenotypic
modules. Genotypic modules are more straightforward to
define since one has only to check that genetic operators
only affect sub-parts of the genotype. Using the approach
introduced in [34], phenotypic modules can be extracted from
any network and many modular genotypes can be designed.
Consequently, the important point for the evolvability of
complex systems is not only the existence of modules in the
genotype and in the phenotype; it is how genotypic modules
relate to phenotypic ones.

This relation, called the genotype-phenotype map, is said
to be modular if genotypic modules are developed into
phenotypic modules2. The neural network modules emerge
from the topology of the neural network. As a consequence, a
small change in the neural network, for instance the addition
of a connection induced by a mutation, can considerably
modify the optimal division. This makes it difficult to define
a modular genotype-phenotype map: depending on the neural
network encoding, it can be difficult to guarantee that a
genotypic module will lead to a meaningful phenotypic

2In real organisms, many levels of modules are nested and so the
modularity of genotype-phenotype map can be difficult to express clearly.

Fig. 1. An individual’s genotype is made of a main network and one or
several sub-networks. Each sub-network is associated with a list of links
that connect the sub-networks to the main network. If several lists of links
exist for a same sub-network, the latter is added several times to the main
network. The neural network on the right is an example of a phenotype that
could have been encoded with the genotype on the left.

Fig. 2. The three main mutation operators. (a) Parcellation: isolation
of a sub-network. (b) Integration: replacing a sub-network by a link to a
parcellated one (this allows the repetition of a module) (c) Differentiation:
putting a sub-network back in the main network.

module. In a biological context, Wagner et al. [32] explain
that only two processes can lead to a modular genotype-
phenotype map: parcellation, which consists in a differential
suppression of pleiotropic effects between groups of char-
acters, and integration, which corresponds to the selective
acquisition of pleiotropy among characters from the same
group. How could these two concepts be transposed to neural
networks? Removing pleiotropic effects can be interpreted as
making the contour of phenotypic modules more resistant to
mutations. Parcellation can consequently be the isolation of
the part of the genome coding for a module, extracted using
the approach described in [34]. Thus a phenotypic module
would remain stable during the evolution. Integration can be
seen as the replacement of a module by a copy of another
one, thus providing a repetition mechanism.

Trying to implement these operations as mutations in the
simplest genotype possible, we start by considering a typical
graph-based direct encoding in which two kinds of mutations
are possible:
• structural mutation: addition/removal of a neuron or a

connection;
• parametric mutation: change of a randomly chosen



Fig. 3. Principle of the cross-over operator. If both parents have a
parcellated module, it is exchanged to create their offspring. Otherwise,
the each children is a copy of one of the parent (mutation operators are
then applied).

synaptic weight or a neuronal bias; we use here a change
in a set of 9 possible values (see appendix).

To easily add integration and parcellation as mutation op-
erators, we then defined our neural network encoding as
a main network – encoded using the previously described
direct encoding – and a list of sub-networks, each of them
associated with links towards the main network (figure 1).
Before applying any operator, the main network is divided
into modules using [34] and their inputs and outputs are
identified. Inputs of a module are either a connection between
an extra-module neuron to an intra-module one, or an input of
the main network. Outputs are defined similarly. The specifi-
cation of each modular operator is now straightforward. The
parcellation acts in three steps (figure 2(a)):
• removal of a module from the main network;
• addition to the sub-network list;
• addition of the links to the sub-network’s links list.

The removed module can be, either randomly selected or
deterministically chosen as the best module regarding one
of the sub-tasks. In this work, this second approach is used.
The integration requires also three steps (figure 2(b)):
• random selection of a module m1 from the sub-network

list;
• random selection of a module m2 of the main network

with the same number of inputs and outputs as m1;
• removal of the module m2 from the main network;
• addition of the links to the sub-network links list.

To counterbalance the effects of these two operators, we
added an operator named “differentiation” that puts back
a sub-network into the main network and removes the
corresponding links in the list (figure 2(c)). This operator
undoes parcellation and integration and it can be used by the
evolutionary process to create a variant of a repeated module.
Each operator is assigned a mutation rate (between 0.05 and
0.2, see appendix).

A simple cross-over operator is implemented by exchang-
ing two parcellated modules (figure 3).

Note that the proposed encoding aims at being simple and
abstractly related to biology in order to investigate the links
between selection gradients, genotypic modules and selection
gradients. Our main goal is therefore not to introduce a novel
encoding for a neural network but is to provide a tool to study

modularity. Other modular encodings for neural networks
(e.g [17], [19], [30]) might be used but their structure makes
them harder to link to biological literature.

B. Selection gradients

Following the work of Altenberg [15], we “align” pheno-
typic modules and selection gradients, which means that each
phenotypic module should be linked to a fitness function.
To that aim, we propose to first define fitness functions
able to evaluate sub-networks for potentially useful sub-
functions. For each individual, the main network is divided
into modules using the approach described in [34]. Each
such module and each parcellated module are then evaluated
according to each objective. We use the best value obtained
by a module for each objective as the fitness of the individual
with respect to this objective. Each of these fitness functions
constitutes an objective of a multiobjective problem. The
main fitness, which rewards the ability to solve the problem
we are interested in, is added as another objective.

Using a Pareto-based MOEA to optimize this multiobjec-
tive problem has several consequences. An individual with
an inefficient overall behavior will be considered as Pareto-
optimal if it contains at least a good module for a sub-task. If
the main task requires such an efficient module to build more
complex solutions, it will be gradually improved thanks to the
selection pressure inducted by the corresponding objective.
This module can be later co-opted at any time. Moreover, the
same module can be repeated (it may be useful elsewhere)
or propagated in the population by cross-over.

Another important consequence of the use of a MOEA is
that, as shown in [27], solving each sub-task is not manda-
tory. If the evolutionary process finds better solutions without
using modules, these individuals will dominate with regard
to the main objective and will consequently be selected.
Different hypotheses about the usefulness of each sub-task
can therefore be investigated at once: some individuals will
be good at one sub-task while some other ones will contain
useful modules for other sub-tasks; the evolutionary process
will opportunistically modify them, without any a priori
knowledge about the ordering of sub-tasks or about their
utility.

C. Shapley value

When designing and evaluating an evolutionary process,
it is important to understand what makes it efficient. A
particular genetic operator may be mandatory to lead to
working results; it may also only change the convergence
speed or even have no influence on the results. Furthermore,
the critical components may be combinations of some par-
ticular genetic operators, in which all of them are required
to bring improvements but each one is useless alone. In the
context of this paper, we would like to be able to estimate
the usefulness of each modular operator (parcellation, inte-
gration, differentiation and cross-over) and to evaluate what
brings the multiobjective approach.

Evaluating the contribution of each such component is
equivalent to finding a fair allocation of gains, e.g. the fitness,



between players in a coalitional game, a problem solved in
game theory by the Shapley value [35]. The Shapley value
is defined from the marginal contribution of a player i to a
coalition S, where i /∈ S and v(S) is a value function (the
fitness or any other relevant measure of efficiency):

∆i(S) = v(S ∪ {i})− v(S)

The Shapley value is then defined by the payoff γi of each
player i ∈ N :

γi =
1
|N |!

∑
r∈R

∆i(Si(r))

where R is the set of all |N |! orderings of N and Si(r) is
the set of players preceding i in the ordering r.

Once the efficiency of the 2n configurations has been eval-
uated, the Shapley value can be computed as a summation
of v(s) for all the configurations, properly weighted by the
number of possible orderings of the elements (see [36]):

γi =
1
|N |!

∑
S⊂N,i∈S

v(s) · (|S| − 1)! · (|N | − |S|)!︸ ︷︷ ︸
configurations with i

− 1
|N |!

∑
S⊂N,i/∈S

v(S) · (|S|)! · (|N | − |S| − 1)!

︸ ︷︷ ︸
configurations without i

IV. EXPERIMENT

A. Experimental setup:
[
(a⊕ b) ∧ (c⊕ d)

]
We evaluated the proposed approach on the evolution of

neural networks to compute the Boolean function
[
(a⊕ b)∧

(c⊕d)
]
, where a, b, c and d are Boolean values and⊕ denotes

the exclusive “or” operator (xor). This function, previously
used in [20] to study the evolution of modular NAND
networks, has a clear modular structure: it is made of two
“xor” functions, each of them requiring at least one hidden
neuron, linked by a simpler logical “and”. The truth table of[
(a ⊕ b) ∧ (c ⊕ d)

]
shows that a simple neural network that

returns “false” for any input would have a 75% success rate, a
good score at the beginning of the evolutionary process. As a
consequence, these degenerated neural networks could easily
invade the population whereas they do not constitute a good
starting point. This makes the typical single-objective fitness
for this function very deceptive. The

[
(a⊕b)∧(c⊕d)

]
function

therefore constitutes a simple illustration of the situations in
which exaptation could be useful: the typical fitness does not
provide useful enough search gradients and we can suggest
a helpful sub-function (xor).

We used the sum of errors for each possible set of inputs
as the main fitness (expressed in a fitness maximization
scheme):

Fx = 1− 1
16

16∑
i=1

|oi − di|

where oi is the output of the neural network for the input
set i and di the desired output. Each neural network is

simulated during 100 time-steps. Since we do not constrain
the structure of the neural networks, nothing prevents them
from oscillating. To avoid such behaviors, we attribute an
arbitrary low fitness if the output is not constant during the
last 10 time-steps.

We then defined a second objective Fm that rewards the
efficiency of a “xor” module in an individual:

Fm = max
m∈M

Fxor(m)

where M is the set of all modules. Considering that a module
m is compatible if it has 2 inputs and 1 output, Fxor is the
sum of errors for the module m with respect to the function
“xor”:

Fxor(m) =
{

1− 1
4

∑4
i=1 |oi − di| if m is compatible

−1 otherwise

The NSGA-II algorithm was employed with a population
of 400 individuals and the parameters described in appendix.
We launched five sets of experiments, each of them made of
32 runs:
• exaptation: parcellation (P), integration (I), differenta-

tion (D), cross-over (C) and multiple selection pressures
(M);

• M: multiple selection pressures only, i.e. no genotypic
modules;

• P+I+D+C: genotypic modules only;
• standard: direct encoding without genotypic modules

and without selection pressures;
• NEAT, a popular neuro-evolution approach [3].
We didn’t compare our results with a modular encoding

for neural network because (1) they are very complex to
implement and to tune and (2) our main focus is on the
benefits of linking selection gradients to modules.

B. Results

Figure 4(a) shows the proportion of converged runs (Fx >
0.9) as a function of generation, for each of the three
investigated approaches. Less than half of the control runs
converged within 5000 generations. This result agrees with
[20], in which the authors report that only 72% of their
control runs converged in less than 105 generations. NEAT
leads to substantially better results since almost all the
runs converged in 1500 generations and more than half of
them in only 500 generations. This confirms the published
results in which NEAT outperforms direct encodings (e.g.
[3]). Nevertheless, the exaptation-based approach converged
faster than NEAT. The 32 experiments converged in less than
1000 generations and half of them in about 300 generations.
Figure 4(b) corroborates this observation: on average, 400
generations are required with the exaptation-based approach
while NEAT need 700 generations3.

Surprisingly, not only did the approach based only on the
genotypic modularity (P+I+D+C) not improve the conver-
gence rate over the control experiments, but also it deterio-
rated it slightly. The runs that employed only the multiple

3This difference is statistically significant (p < 0.003).



Fig. 4. (a) Proportion of converged runs (Fx > 0.9) as a function
of generation. “M+P+I+D+C” denotes the full exaptation experiments,
“standard” denotes the control experiments, which use a simple direct
encoding (with the same parameters as the one used by the exaptation
experiment) and one objective; the experiments “M” correspond to the
multiobjective approach with the modular genetic operators disabled; in
“P+I+D+C”, the modular operators are used with the main fitness only.
(b) Mean generation of convergence and standard deviation (the other
experiments are omitted because only a few runs converged in less than
5000 generations). The differences between these two sets of experiments
are statistically significant (p < 0.003).

Fig. 5. (a) Typical neural network obtained with the proposed approach.
(b) The parcellated module used in (a).

pressures scheme (M) obtained even worse results: only one
run converged in less than 1500 generations. Given that our
exaptation experiment used the combination of P, I, D, C and
M, these results demonstrate that, at least in this experiment,
both a modular encoding and multiple selection gradients are
required to improve the efficiency of the evolutionary pro-
cess. A simple “waste of resources” may explain the results
obtained with the “M” experiment: a part of the population
is used to maintain many Pareto-optimal candidate solutions
with a low main fitness; if this scheme does not improve the
evolutionary process, it is broadly equivalent to reducing the
population size, hence possibly deteriorating the convergence
rate over the control experiment. Further investigations are
needed to fully understand this phenomenon.

A typical neural network obtained with the exaptation
approach is drawn on figure 5. It Is clearly made of two
repeated modules, each of them computing a “xor” function.
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Fig. 6. Shapley values for each component. M: Multiple selection gradients;
P: Parcellation; C: Cross-over; I: Integration; D: differentiation.

These modules are two instances of a parcellated module,
which obtained an optimal fitness according to Fxor.

C. Shapley value analysis

To draw a better picture of what makes the proposed
approach efficient, we employed the Shapley value analysis
described in section III-C. We investigated the role of the use
of two selection gradients (M), of the parcellation (P), of the
cross-over (C), of the integration (I) and of the differentiation
(D). The efficiency of 25 = 32 variants must therefore be
evaluated.

Several choices are available for the value function, which
should reflect the efficiency of a variant. We chose to focus
our work on the convergence rate because we are primarily
interested in getting as much successful experiments as possi-
ble. In some configurations, some components of our system
can substantially decrease the convergence rate. For instance,
we found that using the two selection gradients without
parcellation lead to a 3% success rate whereas the control
experiment has a 44% rate (section IV-B). If this component
is required to obtain good scores in other configurations,
it should have a high Shapley value but this value can be
substantially lowered by these bad configurations, hiding the
interesting analysis. We are interested in understanding which
components improve over the control experiments and not
about the fact that they can lower the scores in some cases.
We consequently designed the following value function:

v(S) = max(vc(∅), vc(S))

where vc(S) is the convergence rate for the configuration
S and vc(∅) denotes the convergence rate of the control
experiment.

We launched 32 runs of each variant for 1500 generations
with the same parameters as in section IV-B. The resulting
Shapley values are displayed on figure 6.

The two highest values are obtained by the multiple
selection gradients (M) and the parcellation operator (P).
This means that these two components are critical to get the
highest convergence rates. The fact that their values are very



close4 confirms that using only one of them is not sufficient
to improve the efficiency of a variant; both of them are
required. The parcellation operator links genotypic modules
to phenotypic modules and selections gradients are linked
to phenotypic modules by the multiobjective approach (M).
As a consequence, the obtained Shapley values highlights
the need for the alignment suggested by the theoretical
work of [15]: genotypic modularity (P) is useless if it is
not linked to selection gradients. This conclusion contradicts
the underlying hypothesis of current modular encodings for
neural networks, which assumes that providing a modular
genetic encoding is enough to improve the efficiency of the
evolutionary process.

The next highest value is obtained by the integration
operator, which is trivially useful for the

[
(a ⊕ b) ∧ (c ⊕

d)
]
function. This Shapley value is substantially lower than

the two previous ones, showing that the key-point in the
evolution of our modular neural networks is not the repetition
mechanism. The cross-over only slightly improves the results
and the differentiation has almost no effect.

V. DISCUSSION

In the artificial evolution paradigm, researchers often try
to design a universal encoding which would allow to easily
solve any problem by only specifying a simple and high-level
fitness function. Hence, they put complex mechanisms in the
encoding and try to use as little knowledge as possible in the
fitness function. This approach is surprisingly disconnected
from evolutionary biology, in which most descriptions of
the evolution of living organisms primarily rely on selection
pressures. When Darwin introduced his theory, nothing was
known about the genome; but this didn’t prevent him and
his successors from successfully explaining the essence of
the origin of most species.

The results presented in this paper indicate that the use
of a single fitness function might be an over-simplification
of the natural evolutionary process, which could prevent the
evolution of complex artifacts. In particular, the Shapley
value analysis shows that multiple selection pressures are
required to efficiently evolve neural networks for the inves-
tigated problem. This result was expected as the presence of
multiple selection gradients is the key to enable exaptation,
hence the evolution of complex designs. However, a more
interesting result of this analysis is that multiple selection
gradients are useless by themselves. Both modularity and
selections pressures are required: if one of them is omitted,
the evolutionary process is less efficient than the control ex-
periment. This leads to a new evolutionary scheme centered
on evolutionary pressures and genome modularity.

Since we add more knowledge in the fitness function, this
approach might move our research away from a mythical
“universal problem solver”. However, all the published meth-
ods to evolve complex systems rely on biases that could
constrain them to specific problems, since we do not know

4Actually, they are equals but proving this equality is out of the scope of
this work.

any universally good bias. NEAT, for instance, begins the
evolutionary process using only one topology, typically a
feed-forward neural network without hidden nodes. This
requires from the experimenter the implicit knowledge that
such a network is a good starting point. Putting biases in
the selections gradients possesses at least the advantage of
being explicit, and therefore could allow a better analysis.
Compared to incremental evolution methods, the approach
presented in this paper puts fewer constraints on the search
because intermediate steps are not mandatory. We only
suggest potentially useful steps; the process is then free to
use or to ignore them.

Having highlighted the need for multiple selection gradi-
ents and modular genomes, we can wonder if the selected
genome and MOEAs are the best tools for these tasks. The
main difference between the proposed encoding and other
modular encodings lies in the idea that genotypic modules
should develop to phenotypic modules. However, applying
a selection pressure directly on the sub-network associated
with a genotypic module might be enough to facilitate the
emergence of phenotypic modules. Hence, more elaborated
modular encodings (e. g. [29]) could be used as long as the
inputs and outputs of each module can be determined.

The use of a classical Pareto-based MOEA to introduce
multiple selection gradients allows us to rely on a well
established set of efficient algorithms. However, recent the-
oretical [37] and empirical [38] studies demonstrate that
such evolutionary processes were not well suited to optimize
more than three antagonistic objectives. By employing an
objective for each sub-function, the proposed process will
easily require more than three objectives and consequently
could put Pareto-based MOEA out of their limits. Neverthe-
less, if our starting hypothesis is valid, the objectives will
not be antagonistic: the exaptation process should exploit
individuals with a good fitness on one objective to build
individuals for the more difficult objectives. Therefore, some
individuals could dominate on most objectives. However,
the dominance relation puts all objectives at the same level
whereas we are mainly interested in the main task. Some
experiments with modified domination criteria may therefore
reveal themselves more efficient.

VI. CONCLUSION

We explored the hypothesis that multiple selection gra-
dients and a modular genotype-phenotype map were two
key-points to evolve complex artifacts. To that aim, we
defined a bio-inspired modular encoding and employed it
with a Pareto-based MOEA in which one objective rewarded
the efficiency of a module to complete a sub-function. We
further hypothesized that exaptations should occur in this
evolutionary framework by co-opting modules evolved for
simple sub-functions to solve more complex ones.

We tested these ideas on the evolution of neural networks
to compute a modular Boolean function. Our results show
that: (1) the proposed method is efficient to solve this task;
(2) both modularity and multiple selections gradients were
required to converge faster than the control experiments. This



prominent role of multiple selection pressures contradicts the
basic assumption that underlies previously published modular
methods for the evolution of neural networks.

In further work, we will try to link modules used in other
modular encodings to selection gradients in order to under-
stand the set of features required for modular encoding. Then,
other methods to create multiple selection gradients should
be investigated because Pareto-based MOEA are not well
suited to optimize more than three antagonistic objectives.
Last, the proposed method should be benchmarked on other
tasks to assess its generality.
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APPENDIX

• population size: 400
• weights/biases:

˘
−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0

¯
• weight/bias mut. rate: 0.2;
• min. neurons (random gen.): 10
• max. neurons (random gen.) : 20
• min. connections (random gen.) : 20
• max. connections (random gen.) : 35
• cross rate : 0.5
• parcellation rate: 0.25
• differentation rate: 0.02
• integration rate: 0.1
• rate of connection addition: 0.15
• rate of connection removal: 0.25
• rate of connection change: 0.1
• rate of neuron add: 0.025
• rate of neuron removal: 0.025
• activation function: yi = tanh

“
−b + 5 ·

P
j wijxj

”


