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ABSTRACT
Encouraging exploration, typically by preserving the diver-
sity within the population, is one of the most common method
to improve the behavior of evolutionary algorithms with de-
ceptive fitness functions. Most of the published approaches
to stimulate exploration rely on a distance between geno-
types or phenotypes; however, such distances are difficult to
compute when evolving neural networks due to (1) the al-
gorithmic complexity of graph similarity measures, (2) the
competing conventions problem and (3) the complexity of
most neural-network encodings.

In this paper, we introduce and compare two conceptu-
ally simple, yet efficient methods to improve exploration and
avoid premature convergence when evolving both the topol-
ogy and the parameters of neural networks. The two pro-
posed methods, respectively called behavioral novelty and
behavioral diversity, are built on multiobjective evolution-
ary algorithms and on a user-defined distance between be-
haviors. They can be employed with any genotype. We
benchmarked them on the evolution of a neural network to
compute a Boolean function with a deceptive fitness. The
results obtained with the two proposed methods are statis-
tically similar to those of NEAT and substantially better
than those of the control experiment and of a phenotype-
based diversity mechanism.

Categories and Subject Descriptors
I.2.6 [Artificial intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms
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Neural networks; multiobjective evolutionary algorithm; di-
versity; deceptive problems
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1. INTRODUCTION
Finding good solutions for deceptive problems is one of

the main challenge in evolutionary computation since the
pioneers’ work in this field [12, 13]. Starting with the as-
sumption that a well spread population has a higher proba-
bility to find new fitness peaks than a population focused
around only one peak, one of the most classic modifica-
tion of the basic evolutionary algorithm to tackle deceptive
problems is to explicitly maintain a high diversity of can-
didate solutions [17, 14]. Improving the diversity within
the population can also be viewed as a way to tune the ex-
ploration/exploitation trade-off underlying the evolutionary
process in favor of more exploration: some inefficient can-
didate solutions can be kept in the population only because
they are different from their counterparts.

Artificial neural networks have drawn considerable atten-
tion for the last twenty years mainly thanks to their versa-
tility, as their range of application covers from the control
of robots to data clustering. Evolutionary algorithms have
often been successfully employed to design their topology
and set their weights, leading to neuro-evolution processes
(e.g. [15, 29, 27, 10, 22]). However, despite the early inter-
est in diversity for parameter optimization, current diver-
sity preservation approaches are still difficult to exploit in
neuro-evolution. One of the main reason is the algorithmic
complexity to compute the similarity between candidate so-
lutions, a NP-difficult problem for unconstrained oriented
graphs [3] and therefore for most neural networks. An-
other reason is the complexity of encodings used in neuro-
evolution, making each diversity maintenance method spe-
cific to a particular and often complex setup. The com-
peting convention problem (see e.g. [29]) is a third diffi-
culty to overcome when trying to compare neural networks.
Furthermore, setting the parameters that controls the ex-
ploration/exploitation trade-off is often challenging and em-
piric, but critical for the efficiency of the evolutionary pro-
cess.

In this paper, we introduce and compare two simple, generic,
and efficient ways to improve exploration to bypass the prob-
lems posed by deceptive fitness functions when evolving both
the topology and the parameters of neural networks. The
two proposed methods, respectively called behavioral novelty
and behavioral diversity, rely on Pareto-based multiobjec-
tive evolutionary algorithms (see [7]) and on a user-defined
distance between behaviors. To assess the efficiency of this
behavioral approach, we employed the approximation of a
Boolean function by a neural network with a deceptive fit-
ness. The results obtained with both methods are compared



with those of NEAT [27], which includes a sophisticated di-
versity maintenance mechanism and with those obtained us-
ing a genotype diversity based on a graph distance (graph
probing, [21]).

2. RELATED WORK
Many methods have been published to maintain diversity

in evolutionary algorithms in order to improve their explo-
ration capabilities and avoid premature convergence (e.g.
[14, 4, 6]). Among those, fitness sharing [14] is probably
the most common one: the search landscape is modified by
reducing the fitness of individuals in densely-populated re-
gions, thus promoting search in less explored regions. To
that aim, the fitness of each individual i is divided by a
“niche coefficient”, defined as the number of individuals whose
distance to i is below a user-defined threshold. Typical dis-
tances are computed between genotypes, one of the simplest
example being a Hamming distance between binary strings
in a binary-based genetic algorithm.

Dividing the fitness by the niche coefficient, as in fitness
sharing, is an attempt to combine a performance objective,
maximizing the fitness, and an exploration objective, min-
imizing the niche coefficient. Recent research in evolution-
ary computation proposed numerous algorithms to simulta-
neously optimize several objectives instead of aggregating
them to a single one. Most of them rely on the concept of
dominance:

Definition 1. A solution x(1) is said to dominate an-
other solution x(2), if both conditions 1 and 2 are true:

1. the solution x(1) is not worse than x(2) with respect to
all objectives;

2. the solution x(1) is strictly better than x(2) with respect
to at least one objective.

The non-dominated set of the entire feasible search space
is the Pareto-optimal set and its image in objective space
is called the Pareto front. A typical multiobjective algo-
rithm sorts individuals with respect to dominance and aims
at finding a well spread sample of the Pareto front.

The success of Pareto-based multi-objective evolutionary
algorithms (MOEA, see e.g. [7, 5]) suggested to add the di-
versity of the population as an objective on its own in a mul-
tiobjective optimization. A MOEA can then be employed to
obtain the set of all Pareto-optimal trade-offs between orig-
inal solution candidates and efficient ones. Several recent
papers deal with this idea in diverse contexts. In genetic
programming, [6] added the mean distance to the rest of the
population as a second objective for the problems of 3, 4
and 5-parity. [28] adopted a similar method by using the
sum of Euclidean distance between each individual and the
others; they also proposed to use only the distance to the
closest individual. [1] and [2] analyzed numerous ways to
add an objective to improve diversity and compared them
to single objective mechanisms: the generation of appear-
ance of an individual (to be minimized), a random value,
the opposite of the main fitness, the distance of the nearest
neighbor in the genotype space, the mean distance to indi-
viduals of the current population and the distance to the
best individuals of the current population. They concluded
that the best results were obtained using a multiobjective
evolutionary algorithm combined with the distance to the

closest neighbors or the mean distance to the whole popu-
lation. A direct consequence of their results is that mod-
ern diversity preservation mechanisms seem to have much
to gain by using multiobjective algorithms.

Such addition of new objectives to help the optimization
process is sometimes termed a multiobjectivization [19, 16].

In each of the considered diversity maintenance approaches,
single or multiobjective, N2 distances must be computed at
each generation for a population of N individuals. While
this computational cost may appear negligible when solu-
tions are represented by real-valued vectors or binary strings,
it may easily rise when more complex genotypes are used.
In particular, the edit distance between two graphs is NP-
difficult [3] and consequently not suitable to be used in a di-
versity maintenance mechanism. Nonetheless, the numerous
applications in pattern matching lead to many heuristics to
approximate a measure of the similarity between two graphs.
Among recently published results (see [3] for an overview of
classical methods), [21] proposed a fast algorithm based on
the graph probing paradigm. According to this paradigm,
“probes” are functions that examine the vertex and edge
structure of a graph by counting in- and out- degrees. The
results of such probes for each graph are then compared.
A theoretical analysis [21] demonstrates that graph probing
provides a lower bound on the true edit distance between
two graphs. Empirical results showed a good correlation
with the latter measure. The speed of this approach makes
it suitable to be used in a evolutionary context, as did [26]
for a pattern recognition task. In this paper, we will inves-
tigate its use to maintain the diversity in a population of
neural networks.

The competing conventions are another problem when
trying to compute the distance between two neural networks.
Two given neural networks may only differ by the order of
appearance of their hidden units and therefore be topolog-
ically equal while having a different genotype. This makes
the design of a useful genotype-based distance very difficult
and often computationally expensive.

NEAT [27], one of the most successful method to evolve
neural networks, provides an interesting approach to bypass
both the computational cost of graph distance and the com-
peting convention problems. NEAT starts with only one
topology for all the individuals and, during the evolutionary
process, attributes a unique and global innovation number
to new connections and new nodes. To compute the simi-
larity between two genotypes, genes with the same innova-
tion numbers are lined up and those that do not match are
counted. A linear combination of the number of unmatched
genes and weights differences results in a scalar measuring
the similarity between two genotypes. Last, NEAT uses this
measure to modify the raw fitness by fitness sharing. De-
spite the good results obtained by NEAT, one should note
that this similarity measure requires to start the evolution-
ary process using only one topology and that it strongly
depends on the used genotype.

3. APPROACH

3.1 Behavioral Diversity
An infinity of neural networks can return the same out-

put for a given input data set. For instance, all the neural
networks in which there exists no path between the inputs
and the outputs have the same null output. Whatever their



topology and their parameters are, these candidate solutions
will obtain the same fitness. More generally, in most situa-
tions, rising the diversity of neural networks can be achieved
by adding useless neurons and connections. This simple
strategy slows down the simulation of neural networks but
has no reason to enhance the process.

An alternative and more original view is to maintain the
diversity of behaviors. All the neural networks with uncon-
nected outputs have the same behavior – a null output; sim-
ilarly, adding a neuron in a fully saturated network often
has no effect on the overall behavior. While encouraging
new topologies may not improve the process, we hypothe-
size here that allowing the selection of new behaviors, even
if they are inefficient, can bring better results.

Let’s suppose we have a distance db(x, y) between the
behavior of x and y. Following the conclusions published
by [2], we propose to define the originality B(x) of the be-
havior of individual x as the mean distance between x and
the rest of the population. Maximizing B(x) lead natu-
rally to the maximization of the diversity of behaviors. As
suggested in [6], [28] and [2], this objective can then be
added to the set of performance objectives to optimize all
of them simultaneously with a Pareto-based MOEA. The
expected results is, at each generation, an approximation of
the Pareto-optimal trade-offs between performance and orig-
inality. Hence, instead of maximizing a set of performance
objectives F1(x), F2(x), ..., Fk(x), we maximize the following
objectives:

Maximize :

8>>><>>>:
F1(x)
...
Fk(x)
B(x) = 1

|Pn|
P

j∈Pn
db(x, j)

where Pn denotes the population at the current generation
n and j an individual of Pn.

We now have to design a distance between behaviors.
Since interesting behaviors are trivially application-dependent,
this distance should be user-defined. While this may ap-
pear as a considerable challenge, all the experiments we con-
ducted, such as the results presented in this paper, showed
that surprisingly simple and even naive distances substan-
tially improved the evolutionary process.

For instance, when evolving neural networks to control a
mobile robot interacting with some objects, a vector v(x) can
contain the position of objects at the end of the experiment;
if a robot has to explore a maze, its final position can also
be stored in such a real-valued vector; if it has to reach

some zones in an arena, such as feeding zones, v
(x)
k can take

the value 1 if zone k has been reached and 0 otherwise.
If neural networks have to perform a pattern classification
task, a similar vector with a size equal to the number of
training samples can track the output of the neural network
for each case. The distance db(x, y) can then be defined as

the Euclidean distance between v(x) and v(y):

db(x, y) =
˛̨˛̨

v(y) − v(x)
˛̨˛̨

Many other distances between behaviors can be designed,
even if the evolved genotype does not represent a neural
network. The only constraint is to be able to define a concept
of behavior in the handled problem. Nonetheless, not every
MOEA can be employed due to the dynamic nature of B(x).

For each individual i, B(x) depends on the behavior of the
rest of the population. As a consequence, B(x) will change
at each generation and a non-dominated individual thanks to
a high B(x) value could be dominated at the next generation
because of a lower B(x) value. This dynamic objective is
compatible with MOEAs that compute the non-dominated
set of solutions at each generation such as NSGA-II [8] or
MOGA [11]. However, archive-based MOEAs, for instance
ε-MOEA [9], need to be slightly modified to recreate the
archive at each generation (this does not require any re-
evalution of the fitness function).

3.2 Behavioral Novelty
In a recent work about open-endness in evolutionary com-

putation, [20] proposed to maximize the “novelty” of behav-
iors instead of the fitness. They then argued that this pro-
cess may be more efficient to find good solutions for a given
objective – although unknown to the evolutionary process
– by overcoming the deceptiveness of the fitness function.
The authors computed the novelty of an individual using
a distance between behaviors, similar to the one discussed
in the present paper. However, contrary to the behavioral
diversity defined in the previous section, novelty takes into
account the set of all behaviors previously encountered (in-
cluding the current population) and not only the current
population. More precisely, [20] measured the novelty ρ(x)
of an individual i by computing the mean behavioral dis-
tance between i and its k nearest neighbors:

ρ(x) =
1

k

kX
j=0

db(x, µj)

where k is a user-defined parameter and µj is the j-th nearest
neighbor of x with respect to the distance db in the archive
of behaviors. The neighbors are computed using the current
population and an archive of all the previous novel individ-
uals. An individual is added to the archive if its novelty is
above some minimal threshold.

Extending the work of [20] to a multiobjective context,
this archive-based novelty measure can be used as a second
objective in a multiobjective optimization. Hence, an in-
dividual will be non-dominated if and only if it represents
a Pareto-optimal trade-off between novelty and efficiency.
However, by relying on all the previously explored individ-
uals and the current population, this approach mixes be-
havioral diversity – related to the current population – and
behavioral novelty – related to the archive. To estimate the
importance of novelty with regards to diversity, we propose
to build an archive of behaviors and to use as an additional
objective the mean distance to the nearest archived behav-
iors, the current population being ignored. More formally,
using behavioral novelty consists in transforming the multi-
objective maximization problem F1(x), F2(x), ..., Fk(x) to:

Maximize :

8>>><>>>:
F1(x)
...
Fk(x)
ρ(x)

Compared to mechanisms based only on the current popu-
lation, this kind of archive-based objective has a substantial
computational cost because the archive may easily be larger
than current population. Finding the nearest neighbors in
such a large set can therefore become costly.



0000 0001 0010 0011 0100 0101 0110 0111
0 0 0 0 0 1 1 0

1000 1001 1010 1011 1100 1101 1110 1111
0 1 1 0 0 0 0 0

Table 1: Truth table of the function
ˆ
(a ⊕ b) ∧ (c ⊕

d)
˜
, where a, b, c et d are Boolean values and ⊕ the

exclusive or (xor). 75% of outputs are “false”.

3.3 Probe-based Graph Diversity
To further understand the advantages of the described

behavioral objectives over genotypic or phenotypic diversity,
we implemented a diversity objective based on the graph-
probing distance measure [21]. Let G1 and G2 denotes two
neural networks and VG the set of vertices of network G.
For each network, we can count vertices with in-degree i
and collect the results in a vector IG such that

IG = (n0, n1, ..., nk) where ni =
˛̨̨
{v ∈ VG|indeg(v) = i}

˛̨̨
where k denotes the maximum number of input connections
of a neuron in our typical neural networks (e.g. 15). A
similar vector can collect the out-degrees:

OG = (m0,m1, ...,mk) where ni =
˛̨̨
{v ∈ VG|outdeg(v) = i}

˛̨̨
A network G can be described by the vector PG:

PG = (n0, n1, ..., nk,m0,m1, ...,mk)

Last, dp(G1, G2) is defined as the Euclidean distance be-
tween PG1 and PG2 and the graph diversity objective con-
sists in maximizing the mean distance between the consid-
ered individual and the rest of the population:

Maximize

8>>><>>>:
F1(x)
...
Fk(x)
D(x) = 1

|Pn|
P

j∈Pn
dp(x, j)

where:

dp(x) =
1

N

NX
j=1

˛̨̨˛̨̨
PGi −PGj

˛̨̨˛̨̨

4. EXPERIMENTS

4.1 Genotype and Fitness
To benchmark these different approaches of exploration

enhancement, we evolved neural-networks to compute the
Boolean function

ˆ
(a⊕ b)∧ (c⊕ d)

˜
, where a, b, c and d are

Boolean values and ⊕ denotes the exclusive “or” operator
(xor). The truth table of

ˆ
(a⊕ b) ∧ (c⊕ d)

˜
(table 1) shows

that a simple neural network that returns “false” for any in-
put would have a 75% success rate, a good score for this task,
especially at the beginning of the evolutionary process. As
a consequence, these degenerated neural networks can eas-
ily invade the population whereas they do not constitute a
good starting point. This makes the typical single-objective
fitness for this function – the sum of errors – very deceptive.
This has been empirically illustrated in [18]: using an elitist
evolutionary algorithm, a population of 1000 individuals and

a graph-based direct encoding for NAND gates, [18] reports
that only 72% of experiments found a solution in less than
105 generations; in other words, more than a quarter of their
experiments were trapped in an inescapable local optima de-
spite the large number of individuals and generations.

To keep our experiments simple and repeatable, we em-
ployed a typical graph-based direct encoding for neural-net-
works in which two kinds of mutations are possible:

• structural mutation: addition/removal of a random
neuron or a random connection;

• parametric mutation: change of a randomly chosen
synaptic weight or a neuronal bias; we used here a
change in a set of 9 possible values (see appendix).

Cross-over was not employed.
We used the classical sum of errors for each possible set

of inputs as the main fitness for an individual x (expressed
in a fitness maximization scheme):

Fxax(x) = 1− 1

16

16X
i=1

|ox,i − di|

where ox,i is the output of the neural network x for the input
set i and di the desired output. Each neural network is
simulated during 100 time-steps. Since we do not constrain
the structure of the neural networks, nothing prevents them
from oscillating. To avoid such behaviors, we attribute an
arbitrary low fitness if the output is not constant during the
last 10 time-steps.

4.2 Behavior Vectors
To describe behaviors, each individual x is associated to

a Boolean behavior vector v(x) that contains the output of
the neural network for each of the 16 different input sets:

v
(x)
i = nnx(bi), i = 1, 2, ..., 16; bi ∈ {0000, 0001, ..., 1111}

The distance between behaviors is then straightforward:

db(x, y) =
˛̨˛̨

v(y) − v(x)
˛̨˛̨

To implement behavioral novelty, an archive An stores all
the behavior vectors v(x) present in the populations P0, ..., Pn,
where n denotes the generation number:

An(v) =


v if v ∈ P0, P1, ..., Pn

∅ otherwise

The novelty score is equal to the mean distance to the
k = 10 nearest behaviors in An, where k was experimentally
chosen using our experiments and those of [20].

4.3 Experiments
We launched 5 sets of 16 experiments; using the previously

defined notations, for an individual x:

1. Control experiment. Maximize Fxax(x)

2. Behavioral diversity.

Maximize


Fxax(x)
B(x) = 1

|Pn|
P

j∈Pn
db(x, j)

3. Behavioral novelty.

Maximize


Fxax(x)

B(x) = 1
k

Pk
j=0 db(x, µj)



Figure 1: Mean maximum fitness (over 16 runs of
each experiment), with respect to generation num-
ber. Behavioral diversity, behavioral novelty and
NEAT reached a value close to the maximum (1) in
less than 1500 generations whereas the control ex-
periment and the graph probing approach did not
exceed 0.75 (the attractive local maximum).

where µj is the j-th nearest neighbors in the archive
An,

4. Probe-based diversity.

Maximize


Fxax(x)
D(x) = 1

|Pn|
P

j∈Pn
dp(x, j)

5. NEAT. Maximize Fxax(x) using NEAT [27].

With the exception of the NEAT experiment, in which
we employed the NEAT algorithm, each set of objectives
has been maximized using NSGA-II [8], one of the most
efficient MOEAs [7]. It should be emphasized that all these
experiments (except NEAT) use a standard algorithm and
a classic genotype; repeating them should be easy.

The detailed parameters are available in appendix and the
source code can be downloaded at url hidden for review.

5. RESULTS

5.1 Maximum Fitness and Convergence Rates
Figure 2 shows the mean maximum fitness with respect

to generation for each set of experiments. The best fitnesses
are obtained by behavioral diversity, behavioral novelty and
NEAT, with a mean maximum fitness of more than 0.95
after 1500 generations. The control experiment and probe-
based diversity led to significantly worse results, with a mean
fitness around 0.75, i.e. the best networks are not better
than a network that returns “false” for any input.

These results are confirmed by analyzing the convergence
rates (figure 2): while 90% of the experiments made with be-
havioral diversity, behavioral diversity and NEAT converged
(the fitness of the best individual was more than 0.95) in less
than 1500 generations, only a few (12%) of the control ex-
periments did so. Probe-based diversity led to worse results
than the control experiment, no run having converged after
1500 generations.

We then analyzed the mean convergence generation for
behavioral diversity, behavioral novelty and NEAT (table

Figure 2: Convergence rate (over 16 runs of each ex-
periment), with respect to generation number. 90%
of the runs corresponding to behavioral diversity,
behavioral novelty and NEAT converged in less than
1500 generations whereas only a few control runs
converged. No run converged in the graph probing
experiments.

B. div B. nov. NEAT
Mean gen. 921.7 734.6 757.3
Std. dev. 463.1 494.7 499.4
T-test div. p=1.0 p=0.2401 p=0.3025
T-test nov. p=0.2401 p=1.0 p=0.9083
T-test NEAT p=0.3025 p=0.9083 p=1.0

Table 2: Mean convergence generation (maximum
Fxax > 0.95) and Student T-test. Behavioral diver-
sity seems to require more generations to converge
but the difference is not statistically significant.

2). Behavioral novelty and NEAT required slightly fewer
generations to converge (about 750 versus about 900) than
behavioral diversity but a Student T-test reveals that this
difference is not statistically significant.

5.2 Behavioral Analysis
To draw a picture of the behavioral diversity process in an

experiment, we introduce here an original type of diagram,
called behavioral diversity diagram (figures 3, 4, 5 and 6).
For each generation, we counted the proportion of individu-
als that returned the correct output for each of the 16 input
sets. On the diagrams, this proportion is reported as the
gray level of a small vertical stripe for each input set, aligned
with the generation number. In a population with diverse
behaviors, we expect a diagram almost uniformly gray be-
cause all behaviors should be present in the population, at
any generation. Contrarily, in a population with uniform
behaviors, which probably lacks diversity, we expect to see
large horizontal white stripes (behaviors shared by 100% of
the population during a significant amount of generations)
and black horizontal stripes (behaviors absent of the popula-
tion during many generations). Last, the fitness of the best
individual is plotted with respect to the generation number
in order to see how best fitnesses are related to behaviors.

Unsurprisingly, the diagrams corresponding to the control
experiments (figure 3) shows such black and white stripes.
In the run analyzed on figure 3, more than 90% of the pop-



Figure 3: Behavioral diversity diagram for a typical
run of the control experiment. (top) Ratio of the
population that returns the desired output for each
of the 16 data sets, with respect to generation num-
ber. During the first 300 generations, almost all the
population had the same behavior: returning “false”
for each data set and consequently having the right
answer 12 times over 16. This is illustrated by the
black stripes. (bottom) Fitness of the best individ-
ual with respect to generation number. It does not
exceed 0.75.

ulation returned “false” for all the possible inputs for about
300 generations; this is translated as long white stripes for
the 12 input sets that should lead to “false” and four black
stripes for the 4 ones that should lead to “true”. In this run,
a novel behavior appeared at generation 300 and quickly
invaded the population. All the runs of the control experi-
ments we analyzed led to similar diagrams, confirming the
diagnosis of a lack of diversity.

These black and white stripes contrast with the unifor-
mity and the grayness of figure 4, which shows the diagram
corresponding to a typical experiment using behavioral di-
versity. All the behaviors are present in the population, and
only short cycles – displayed as changes between dark and
clear gray levels – can be distinguished.

The behavioral novelty approach led to different and more
complex patterns (figure 5) in which diversity episodes suc-
ceed to uniform behaviors. These diversity episodes were
correlated with rapid increases of the archive size. The
diversity-uniformity cycles reveal that once in a while a new
“invention”gives birth to many new behaviors; they are then
selected and only the ones with the best fitnesses are kept.
After the best individual reached the maximum fitness, the
only selective pressure is towards novelty. This results in
a high diversity episode, which fills the archive. Once the
archive is almost full, all the population converged to the
same behavior, the optimal one; this is illustrated by a large
white zone on the diagram.

While behavioral novelty adds a selective advantage to
new behaviors when they appear, this advantage is not main-
tained for many generations because the behaviors are not
new anymore. This results in a situation in which a novel
individual has an influence on the evolutionary dynamics
only when it has almost no neighbors. Once one individual
with each of the close behavior has been generated, nothing
prevents the evolutionary algorithm from premature conver-
gence to a small subset of behaviors. Taking into account the
current population when computing the nearest neighbors,

Figure 4: Behavioral diversity diagram for a typical
run of behavioral diversity. No behavior seems to
be shared by more than half of the population as no
white zone can be observed. Similarly, no behavior
seems absent from the population as there are no
black zones. The alternation of light and dark grays
denotes small (one to a few generations) cycles in
which a behavior is first original, therefore kept in
the next generation, then less original because of the
offspring of the kept individual. (bottom) Fitness of
the best individual with respect to generation num-
ber. The optimum (1.0) is reached after about 500
generations.

as did [20], could have added a selective pressure towards
diversity. However, since the size of the archive is large
compared to the population size, this pressure will decrease
during the evolutionary process.

Last1, the diagram corresponding to probe-based diversity
(figure 6) shows that this mechanism maintains more diver-
sity than the control experiment. It is therefore surprising
that it did not improve the convergence rate and even de-
creased it. This issue should be investigated in future work.

6. DISCUSSION AND CONCLUSION
The experiments reported in this paper show at least that:

• without any diversity preservation mechanism, the di-
versity of behaviors is very low (figure 3);

• behavioral diversity, behavioral novelty and NEAT are
three efficient solutions to override the deceptiveness of
a fitness when evolving neural-networks (figure 2); the
difference between them was not statistically signifi-
cant in these experiments (table 2) but the observed
tendency suggests that NEAT and behavioral novelty
might converge faster than behavioral diversity;

• the phenotype-based approach to diversity investigated
did not improve the convergence rate and even deteri-
orated it.

These results add weights to the previous experiments
that report performance enhancements with multiobjective
diversity mechanisms [6, 1, 28, 2]. They also demonstrate
that maintaining the diversity of the behaviors of candidate

1The diagram corresponding to NEAT was not generated
for technical reasons.



Figure 5: Behavioral diversity diagram for a typi-
cal run of behavioral novelty. (top) Episodes of high
diversity succeed to low diversity ones. (middle) Fit-
ness of the best individual with respect to generation
number. A fitness increase often precedes diversity
increase. (bottom) Size of the archive. Each high di-
versity episode results in an increase of the archive
size.

solutions instead of preserving the diversity of their geno-
type or phenotype is a simple and efficient approach. Al-
gorithmically and conceptually simple distances can be de-
signed while being independent of the encoding. Moreover,
no special evolutionary process is required; classic and effi-
cient MOEA can be employed.

The computational cost of behavioral novelty over behav-
ioral diversity does not seem justified in these experiments
but some other benchmarks problems might lead to more dif-
ferences between these two methods. Moreover, their com-
bination may be investigated in future work: while keeping
diverse behaviors can be done using a diversity objective,
a selective pressure to encourage new behaviors could be
added as a third objective. However, adding many objec-
tives in addition to the main ones can decrease the efficiency
of the evolutionary process, as reported in many papers [24,
25].

The efficiency of NEAT could suggest the conclusion that
the presented method is not an improvement over the liter-
ature. However, at least two points should be taken into ac-
count. First, by starting with a fully-connected feed-forward
neural network and disabling recurrent connections, NEAT
constrains the search process to feed-forward networks. This
is an intuitively useful bias in the considered experiment that
was not included in the other methods. Second, implement-
ing NEAT is more complex than using a direct encoding,
notably because the encoding scheme is tightly linked to
the evolutionary algorithm. Fitness sharing in NEAT, i.e.
the modified evolutionary process, requires innovation num-
bers, which are deeply integrated in the encoding. At the
opposite, behavioral methods can be used with any encod-
ing and do not require any specific evolutionary algorithm.
They can even be used with other phenotypes than neural
networks such as Bayesian networks or fuzzy rules based

Figure 6: Behavioral diversity diagram for a typ-
ical run of the graph probing experiment. While
the gray levels are not as uniform as in figure 4,
this figure shows that many different behaviors are
present in the population. (bottom) Fitness of the
best individual with respect to generation number.
Despite the diversity of behaviors, the best fitness
never exceeds 0.75.

systems. Last, NEAT is based on the assumption that the
experimenter is able to provide a starting topology, an as-
sumption that may not be valid in every context.

As a general conclusion, behavioral diversity and novelty
appear to be simple and efficient methods to improve neuro-
evolution when facing a deceptive problem, at least when
simple behavioral distance can be designed. These results
highlight that although considerable efforts have been put
in designing neural networks encodings, working on the se-
lective pressures can also be fruitful while being simpler.
Future work should extend the behavioral diversity concept
to more general contexts than neuro-evolution. For instance,
the diversity of robots’ behaviors can be maintained using a
similar approach to the one presented here [23].
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APPENDIX
A. PARAMETERS: DIRECT ENCODING
• MOEA: NSGA-II (pop. size : 400)

• neural network (direct encoding):

– available weights / bias:˘
− 2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0

¯
– proba. of weight/bias change (for each value): 0.1

– number of inputs / outputs: 4/1

– min./max. neurons (random gen.): 10/20

– min./max. connections (random gen.): 20

– proba. of adding/deleting a conn.: 0.15/0.25

– proba. of changing a conn.: 0.1

– proba. of adding/deleting a neuron: 0.025/0.025

– activation function for neurons:

yi = ϕ
“P

j wijxj

”
where ϕ(x) = 1

1+exp(b−kx)

B. PARAMETERS: NEAT
• Source code: NEAT C++ “original”

available at http://nn.cs.utexas.edu/?neat

• Parameters:

– population size: 400

– starting topology: feed-forward neural network in which
each input is connected to the output (4 inputs, 1 bias
input, 1 output)

– configuration file: url hidden for review


