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Abstract

Purpose The purpose of the study is to develop an algo-
rithm for the segmentation of renal calculi on ureteroscopic
images. In fact, renal calculi are common source of urolog-
ical obstruction, and laser lithotripsy during ureteroscopy is
a possible therapy. A laser-based system to sweep the cal-
culus surface and vaporize it was developed to automate a
very tedious manual task. The distal tip of the ureteroscope
is directed using image guidance, and this operation is not
possible without an efficient segmentation of renal calculi
on the ureteroscopic images.

Method We proposed and developed a region growing al-
gorithm to segment renal calculi on ureteroscopic images.
Using real video images to compute ground truth and com-
pare our segmentation with a reference segmentation, we
computed statistics on different image metrics, such as Pre-
cision, Recall, and Yasnoff Measure, for comparison with
ground truth.

Results The algorithm and its parameters were established
for the most likely clinical scenarii. The segmentation re-
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sults are encouraging: the developed algorithm was able to
correctly detect more than 90% of the surface of the calculi,
according to an expert observer.

Conclusion Implementation of an algorithm for the segmen-
tation of calculi on ureteroscopic images is feasible. The
next step is the integration of our algorithm in the command
scheme of a motorized system to build a complete operating
prototype.

Keywords Ureteroscopy · Medical Imaging · Laser
Lithotripsy · Image Segmentation

1 Introduction

Urolithiasis is a frequent pathology, affecting about 10%
of people over 40 years of age in industrialized countries.
The recurrence rates are estimated to be 53% [1]. Until the
end of the 1970s, open surgery was the only effective ther-
apy. However, the frequency of stone disease, its evolution
into frequent recurrences and the problems caused by open
surgery led to the development of new therapeutic approaches.
As a result, during the last 30 years, technical progress al-
lowed for the development of less-invasive techniques.

The European Association of Urology recommends three
therapies [2]: Percutaneous Nephrolithotomy (PCNL), Ex-
tracorporal Lithitripsy (ECL) and ureteroscopy. PCNL is the
most invasive technique, which is used for extreme cases,
such as very large calculi or failure of previous surgeries,
while ECL is very effective for small calculi. Furthermore,
endoscopic techniques via natural ways are recommended
for 10-20 mm calculi.
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This paper focuses on these last techniques, especially on
flexible ureteroscopy. The operation introduces the device
into the kidney through the urethra, bladder, and ureter. The
device is flexible and can be bent at its distal tip. This com-
mand is made in a plane by moving the cables at the prox-
imal tip. The whole kidney can be explored by combining
the movements of the distal tip with rotations of the whole
device. Though different ureteroscopes exist [3], their exter-
nal diameter is often 12 Fr (1 Fr = 1/3 mm). They have an
optical fiber matrix which returns an image and an operating
channel of 3.6 Fr in most cases, which allows the surgeon to
pass surgical instruments.

Fig. 1: A Storz 11274AA1 ureteroscope, with a laser fiber passing
through the operating channel

After the introduction of the ureteroscope in the kid-
ney, the calculus can be treated with an optical fiber passing
through the operating channel (see Figure 1). In most of the
cases, a Ho:YAG laser is used [4]. The laser has two distinct
states: an inactive state in which a red laser diode projects
a red spot on the calculus indicating where the fiber points
to, and an active state, activated by a pedal, in which the
Ho:YAG power laser passes through the fiber at a rate of 0.8
Hz.

Ideally, the surgeon should sweep the lithiasis surface with
laser to vaporize it. This operation avoids fragmentation of
the lithiasis, which makes the surgeon bring the fragments
outside the patient one by one, using a wire basket. How-
ever, manual sweeping is very difficult owing to the poor
maneuverability of the ureteroscope, and usually, a surgeon
may take about an hour to vaporize a 10 mm wide lithiasis.
Thus, the main aim of this study is to assist the surgeon in
this tedious task. The objectives are to minimize the surgery
time and possibly to treat larger calculi of up to 20 mm. An
additional constraint is to avoid burdening the surgeon with
additional work, because during the operation, he/she must
handle the video return and the foot pedal for the laser while
manipulating the ureteroscope.

Similar to active catheter, motorization of the distal tip of
the instrument using shape memory alloys has been pro-
posed [5,6]. Little movements of the distal tip necessary
for calculus vaporization can be carried out automatically,
while larger movements necessary to bring the device in the
calculus zone should be handled by the surgeon. The au-
tomatic sweeping task needs careful planning of the move-
ment to avoid shooting outside the lithiasis. Hence, uretero-
scopic images have to be segmented to extract a safe region
inside the lithiasis (Figure 2).

Fig. 2: The proposed command scheme

Fig. 3: Video image from a Storz Flex-X2 ureteroscope

This study has focused on the lithiasis segmentation al-
gorithm. There are numerous difficulties in carrying out this
task. First, the kidney moves within the patient owing to
breathing, at several centimeters of amplitude [7], and ir-
rigation liquids are used during the operation. These two
constraints have a direct effect on image quality. Moreover,
it is not uncommon to break some optical fibers, resulting
in black dots on the image (Figure 3). Second, lithiasis has
demonstrated different chemical compositions, resulting in
different shapes, colors and textures [8]. Finally, the sys-
tem must be fast enough to work over the laser shooting
rate. Though medical image segmentation is a very active
domain [9,10], few studies have examined this particular
subject. Most of them have focused on MRI [11,12], CT
scan or ultrasound images [13–15]. Except for laparoscopic
images [16], only a few researches have directly examined
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video images.

To our knowledge, no other study has been carried out on
lithiasis segmentation on ureteroscopic images. In this study,
an algorithm that performs this function semi automatically,
without the need for an interaction from the user, except at
the initiation stage has been presented, and its precision, ro-
bustness, and speed have been examined.

2 Materials and methods

The study was carried out on 10 videos taken during inter-
ventions. These videos were taken with the Storz Flex-X2
ureteroscope and the Storz software suite (KARL STORZ,
Germany). Their resolution was 720x576, and they were en-
coded with Radius Cinepak Codec. They had a typical fram-
erate of 25 frames/s.
The videos presented four different kinds of calculi, whose
size varied from 9 to 18 mm (Table 1).

With regard to image processing, all the algorithms were im-
plemented using the C and C++ languages with the OpenCV
library (Intel Corporation, USA).

The computer was a PC with an Athlon 64 X2 4200+ pro-
cessor (Advanced Micro Devices, USA) and a 2 GB RAM.

2.1 Segmentation algorithm

2.1.1 Region growing algorithm

As stated in the Introduction section, the segmentation of the
calculi in the ureteroscopic images is made difficult by:

– The perturbated environment: Liquids flowing make the
limits of the shapes blurry, and patients breathing causes
movements of the image. Moreover, the luminosity can
change drastically, depending on the location in the kid-
ney.

– The biological variety of the calculi’s chemical composi-
tion. As the calculi are a concretion of crystalline materi-
als, their shape and size can greatly vary. Moreover, their
color and texture are greatly affected by their chemical
composition. Colors can vary from yellow to black, and
textures can differ from a very smooth surface to a tex-
ture composed of spots with variable luminosity, mainly
owing to specular reflections.

– The fragility of the optic fibers produces black dots of a
non negligible size, which appear on the image.

The region growing algorithm [17] was used. This algorithm
is simple to implement for a first approach of the problem.

It requires a seed, and the definition of a similarity criterion
along with a stopping criterion.

The seed is the starting point of the region growth. The po-
sition of the seed must be inside the calculus in the image.
The segmented image is then a binary image representing
the inside and the outside of the calculus on the image.

The definition of the similarity criterion is the key point of
the region growing algorithm: it must allow to differentiate
the calculus from the rest of the the image. Hence, it must be
able to work with calculi of different colors and textures to
ensure a proper functioning in most of the clinical scenario.

The similarity criterion gives a score representing the sim-
ilarity between the region already found and the pixel or
group of pixels examined. The stopping criterion is defined
as a threshold on the value of the similarity criterion. Its
value must be optimized to give the best segmentation pos-
sible.

The region growing algorithm is able to answer the main
problems raised previously. In fact, the use of a similarity
criterion directly answers to the problem of the biological
variety of the chemical composition of calculi: it is the sim-
ilarity between a pixel or group of pixels and the already
found region which is taken into account. Thus, given the
fact that the seed is inside the lithiasis, the optimization of
the stopping criterion value can answer the problem effi-
ciently. Similarly, the definition of the size of the group of
pixels considered by the similarity criterion can answer the
problem of the texture variability of the pixels and the prob-
lem of the black dots appearing on the image.

2.1.2 Implementation

The main concept is simple. By knowing a point inside the
region, the algorithm looks for neighbors and sees if they
belong to the region or not, using the similarity criterion and
the stopping criterion. It loops with these new points and
their neighbors until no more point is added. Owing to the
fact that the aim is to sweep the surface of a lithiasis using
precise little movements of the distal tip of the ureteroscope,
the analysis of the whole image is not required. Hence, a
square of 80x80 pixels is set as a limit to the region growth.

The algorithm consists of three steps (Figure 4):

In the first step, the position of the seed in the image
is determined. The detection uses the fact that the surgeon
pushes the laser pedal when the fiber points toward the cal-
culus. At this point, the laser fiber projects a red spot on the
calculus surface. This spot can easily be detected because
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Video Used images Lithiasis size (mm) Lithiasis composition
1 353 18 struvite
2 248 13 calcium oxalate dihydrate
3 59 18 calcium oxalate dihydrate
4 10 12 struvite
5 12 15 calcium oxalate monohydrate
6 11 12 calcium oxalate dihydrate
7 55 11 carbonate apatite
8 78 15 struvite
9 17 9 calcium oxalate monohydrate

10 53 15 calcium oxalate monohydrate

Table 1: Characteristics of the 10 used videos
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Fig. 4: The different steps and parameters of the algorithm

the laser light has a well-defined color and a high luminos-
ity. The image color space is transformed into HSV color
space, and the red spot is detected, using its color and lumi-
nosity characteristics. Its centroid is then used as a seed for
the region growth.

In the second step, the region growing itself is applied.
The key point of this step is the definition of the homogene-
ity criterion. In [18], Tremeau and Borel defined an Aver-
age Homogeneity Criterion in RGB color space. This cri-
terion computes the Euclidean color distance between the
color value of the considered pixel and the mean value of
the already found region. This criterion was modified, using
a window parameter to reduce the effects of texture vari-
ability. Instead of comparing a unique considered pixel with
the already found region, the whole window is considered.
If the result is inferior to the stopping criterion, the whole

window is integrated to the region. Otherwise, no pixel is
integrated to it. The size of the window was limited to the
[3x3, 5x5, 7x7, 9x9] range because of the size of the search
region (80x80).
Four different criteria have been tested:

– The color distance in RGB color space, which is the
most common color space. Because of the red spot around
the seed, the Green and Blue layers are weighted more
than the Red layer (α = 1/4. This value was determined
experimentally by an expert by considering visual re-
sults obtained with different values of α):

CRGB =
√

α(Rwin −Rreg)2 +(Gwin −Greg)2 +(Bwin −Breg)2 (1)

– The color distance in HSV color space, which is com-
monly recognized to be closer to the human perception
of color than the RGB color space. If the window be-
longs to red spot, CHSV = 0 . Else,

CHSV =
√

(Hwin −Hreg)2 +(Swin −Sreg)2 +(Vwin −Vreg)2 (2)

– The color distance in (I1,I2’,I3’) color space. (I1,I2’,I3’)
has been proven by Ohta, Kanade and Sakai to be effec-
tive in color region segmentation [19,20]. Compared to
RGB color space, I1 is the mean value of the three RGB
layers, I2’ is the difference between Red and Blue layers
and I3′ = 2G−R−B

2 :

COKS =
√

(I1
win − I1

reg)
2 +(I2′

win − I2′
reg)

2 +(I3′
win − I3′

reg)
2 (3)

– The color distance in CIE-Lab color space, in which the
Euclidean color distance is strongly related to the human
perception of color distance [21]:

CLab =
√

(Lwin −Lreg)2 +(awin −areg)2 +(bwin −breg)2 (4)

In these equations, the subscripts win and reg mean window
and region, and indicate that the mean value is used. For in-
stance, Rreg is the mean value of the pixels of the Red layer
of the already found region.

The last step in the algorithm is post-processing, which
allows filling eventual holes in the found region. It consists
of morphological closing with a square structuring element
of the same size as the window.
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Fig. 5: Diagram representing the different considered regions

2.2 Validation method

To validate the algorithm and optimize its parameters, the
images were manually segmented by an expert to constitute
a ground truth. Only the images in which the laser red spot
is inside the calculus were kept. A total of 923 images from
the 10 videos were segmented.

Several indicators were defined to evaluate the performance
of segmentation by the algorithm, when compared with an
ideal segmentation from the ground truth. These indicators
make use of the different regions defined in Figure 5.
Region denotes the region found by the algorithm; region
GT stands for the ground truth; and TP, TN, FP, and FN are
defined as:

T P = region∩GT (5)

FP = region∩GT (6)

T N = region∩GT (7)

FN = region∩GT (8)

For simplicity, the same notation is used for a region and its
pixel number. For instance, TP refers to the True Positive
region or to its pixel number, depending on the context.

2.2.1 Quantitative error measurement

Several indicators were computed

Precision, Recall and F-score The first and simplest idea
is to evaluate the performance of the algorithm using the
surface of correctly and incorrectly segmented pixels, by

employing common image metrics such as Precision, Re-
call and F-score. These indicators come from semantic re-
searches and the separation of correct and incorrect results [22].
They are defined as:

Recall =
T P

T P+FN
(9)

Precision =
T P

T P+FP
(10)

F =
2∗Recall ∗Precision

Recall +Precision
(11)

Precision informs about the proportion of correctly segmented
pixels in the found region (TP + FP), whereas Recall in-
forms about the proportion of correctly segmented pixels
compared to the ground truth (TP + FN). These two met-
rics are complementary and must be used together. Con-
sequently, the Precision/Recall (PR) curve is used. In PR
space, the better the algorithm is, the closer its curve gets to
the upper right-hand corner of the graph. It corresponds to
a maximization of Precision and Recall altogether. F-score
is the harmonic mean of Precision and Recall and is used to
summarize the information given by Precision and Recall in
a single metric.

For a total match, Precision = Recall = F = 1. However,
a total mismatch is impossible, because the seed hypotheti-
cally belongs to TP. The limit values are:

lim
T P→0
T N=0

Recall = 0 (12)

lim
T P→0
T N=0

Precision = 0 (13)

lim
T P→0
T N=0

F = 0 (14)

Relative compactness Compactness represents the disper-
sion of the contour of a region when compared with a circle.

c =
4πA
P2 (15)

where P is the perimeter of the considered region and A
its number of pixels.

This indicator is not used as such, because the region
does not necessarily need to be compact. It is used as an
indicator for texture sensitivity of the algorithm. Claridge
et al. [23] reported two types of border irregularities – tex-
ture and structure irregularities. Texture irregularities are the
fine variations along the border, and structure irregularities
are the general undulations of the shape. Compactness may
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be used to measure structure irregularities. However it is
very sensitive to noise along the border, and therefore to tex-
ture irregularities [24]. The Compactness indicator was then
adapted to fit the case studied here: the measure of texture
irregularities without taking into account structure irregular-
ities. Hence, a Relative Compactness indicator was created.
It consists of dividing region Compactness by ground truth
Compactness:

Rc =
c(region)

c(GT )
(16)

With the Relative Compactness reaching closer to 1, the al-
gorithm’s sensitivity to texture becomes lesser. To limit the
influence of structure irregularities, this indicator is used
only when the F-score is near to its maximum value and
Yasnoff values are low, which means that the overall shapes
of the region and the ground truth are very close.

Yasnoff measure Yasnoff measure [25] gives an indication
on the dispersion of the pixels of FP.

With regard to the two examples given in Figure 6, as
the numbers of pixels in regions TP, FP, TN, FN, and GT
are the same, they have the same Precision, Recall, and F-
score. However, the right segmentation is much worse than
the left, because it could lead to a laser shot significantly
outside the calculus. Yasnoff measure gives a piece of in-
formation about the dispersion of the incorrectly segmented
pixels. It is defined as:

ε =
100
A

∗

√√√√ k

∑
i=1

d2
i (17)

where A is the number of pixels of the searching region, k
is the number of false-positive pixels, and di is the distance
between the ith pixel of FP and its nearest neighbor in GT.
For the images given in Figure 6, ε = 7.8 for the left seg-
mentation and ε = 57.8 for the right one.

This definition of the Yasnoff measure only takes FP into
account, and not FN. This was chosen for clinical reasons.
In fact, the system must ensure that it will not shoot out-
side the calculus. Hence, the most important thing is that
the segmentation algorithm has low FP. If there is no FP,
the Yasnoff measure will indicate 0. This will not mean that
contours match totally, but it will mean that no laser shoot-
ing could be made outside the calculus, using the algorithm
found region. Moreover, if there was few FP and a lot of FN,
Precision would be near to 1 and Recall near to 0, so the bad
segmentation would be highlighted by a PR-curve near the
Precision axis.

False Positive

True Positive

Ideal segmentation - 

Region GT
Limits of the 

searching region

Fig. 6: Two segmentation examples to illustrate the need for Yasnoff
measure

2.2.2 Limit values for indicators

Indicators for quantitative error measurement have been de-
fined in the previous section. The operating process consists
in computing these indicators on each image, with regard to
the ground truth and the found region, using several com-
binations of the parameters defined in Section 2.1.2. How-
ever, figures without interpretation are not very informative.
Hence, limit values were defined for the indicators to sepa-
rate good and bad segmentations.

PR curves are essentially used for comparison of algo-
rithms: if an algorithm curve is above another, this algorithm
is superior in terms of Precision and Recall. A particular em-
phasis was put on the 0.9 value for Precision and Recall: if
Precision and Recall are greater than 0.9, it means that the
algorithm returns a region which covers 90% of the ground
truth with less than 10% of error. On the PR-curve, this cor-
responds to the 0.9 upper right-hand square.

The limit value for Yasnoff measure was set experimen-
tally. In fact, Yasnoff measure is used to minimize the num-
ber of FP in the region. This particular dissymmetry was
introduced to limit the risk of shooting outside the calcu-
lus (see sect. 2.2.1). Hence, the limit value of the Yasnoff
measure was set in comparison with the diameter of the
laser fiber: if the size of the FP region is greater than half
the diameter of the laser fiber, the risk of shooting oustide
the calculus is important. The average size of the tip of the
laser fiber in the images was computed by analyzing images
from most common clinical situations and was found to be
40pixels. Then, Yasnoff value was computed for a FP re-
gion composed of a circle of 20pixels diameter. A value of
ε = 13.95 was found. The maximum Yasnoff value was then
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set to ε = 14.

With the Relative Compactness reaching closer to 1, the
algorithm’s sensitivity to texture becomes lesser. A typical
security range of 5% was used, setting limit Rc values to
0.95 < Rc < 1.05.

3 Results

The parameters of the algorithm were set up on 660 images
taken from the first three videos, and validated and refined
on 263 images taken from the rest of the seven.

3.1 Set-up of the parameters

The aim of this study was to find a set of parameters which
is suitable for the most likely clinical scenario. The parame-
ters to test were the following:

– The similarity criterion must be chosen among the four
developed criteria: CRGB, CHSV , COKS and CLab.

– The window size, inside the [3x3,9x9] range.
– The stopping criterion, which is a threshold on the value

of the similarity criterion.

The strategy to optimize the parameters was conducted through
three experiments:

– First, the best criterion was found using PR-curves. The
impact of the window size on the F-score values was also
studied. Moreover, an inferior bound for the threshold
was found.

– The best window size was found using the Relative Com-
pactness indicator.

– Finally, the upper bound for the threshold was deter-
mined using the Yasnoff measure.

To correctly set up the parameters, first, one must determine
the best criterion among the four described in Section 2.2.1.
Figure 7 shows a comparative study of the results obtained
by the four different criteria. It can be noted that except
CHSV , all the criteria achieved a Precision and a Recall of
more than 0.9 for at least one threshold value. The PR-curve
for the RGB criterion was above the others, and got the max-
imum F-score of 0.954 at a threshold of 90. Therefore, CRGB
was kept as the best criterion among those developed. An
inferior bound for the threshold value was also set to 70, be-
cause it is the first threshold value which lets the PR-curve
of CRGB get in the 0.9 upper right-hand square.

Fig. 7: PR-curves for the four different criteria. The window size is
fixed to 9x9. The maximum F-score is observed with RGB criterion

for a threshold of 90

The choice of CRGB has been made with a window size fixed
to 9x9. Hence, this choice is only valid if the F-score values
do not depend on the window size. A Spearman correlation
test was carried out to compare the results given by the four
criteria with a window size of 9x9 pixels and their results
with a window size of 3x3, 5x5 and 7x7 pixels. The test was
conducted independently for each criterion. Threshold val-
ues were ranked according to the corresponding value of the
F-score. Then the ranks were compared for different win-
dow sizes and a coefficient ρ was computed. Table 2 shows
the results of the test. As there were 12 observations (thresh-
old varying from 10 to 120 with a step of 10) the absence of
correlation could be rejected with a confidence of 999 0/00,
because every value of ρ is greater than 0.8599. This test
meant that for every criterion, F-score values evolved in the
same way regardless of the window size. Therefore, it could
be accepted that the window size had a minor influence on
the F-score values. Hence, the choice of the CRGB criterion
was validated, with a minimum threshold value of 70.

Criterion ρ93 ρ95 ρ97
CRGB 0.993 0.993 0.986
CHSV 0.874 0.993 1
COKS 0.930 0.951 0.951
CLab 1 1 1

Table 2: Results of Spearman rank correlation test. The subscripts for
ρ indicate the size of the considered windows (ρ93 for comparison of

9x9 pixels and 3x3 pixels windows)

Two criteria remained to be set up: the size of the win-
dow and the upper bound of the threshold. As the window
was introduced to reduce the effects of texture variability,
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Window size

Fig. 8: Rc depending on the threshold for different window sizes. (a) mean value, (b) standard deviation

the Relative Compactness indicator must be used to set its
size. Figure 8 shows the mean value and standard deviation
of this indicator for different sizes of the window in the ac-
ceptable threshold range found previously. Though the mean
values were very close, windows of 3x3 and 9x9 pixels dis-
tinguished themselves from the other values, especially for a
threshold lesser than 100. Moreover, the standard deviation
with a 9x9 pixel window was often less than the others, and
greatly inferior to the values obtained with a 3x3 window.
Thus, the size of the window was fixed to 9x9.

Finally, the upper bound of the threshold was chosen by
using the Yasnoff measure. An inferior bound was already
defined with the PR-curves, but the highest threshold could
not be used. In fact, if the threshold was too high it no longer
played its role of stopping criterion and the whole window of
80x80 pixels was included in the region. This could lead to
laser shots outside the calculus. Hence, the Yasnoff measure
was used.

Thresh. Mean Std. dev. Max. value 9th decile
70 2.008 3.819 29 5
80 2.842 4.353 33 7
90 3.923 4.803 33 9

100 5.111 5.295 33 12
110 6.663 5.700 34 14

Table 3: Statistics of the Yasnoff values

Table 3 shows the statistical values computed on the Yas-
noff values. The standard deviation can be used to determine
a confidence interval of 95% around the mean value, stating
that for a threshold inferior to 100, 95% of the values are
inferior to 15.7. This can only be certain if the statistical
distribution is gaussian, which is not known here. However,

the values of the 9th decile show us that for a threshold of
100, 90% of the values are inferior to 12. The data dit not
allow to clearly state that most of the Yasnoff values were
inferior to 14 for a threshold value of 110, so this value was
eliminated from the acceptable range.

3.2 Validation and refining

The following set of parameters has been found to be ac-
ceptable, with regard to the values of different image met-
rics: a region growing algorithm with CRGB criterion, a win-
dow of 9x9 pixels, and a threshold between 70 and 100.
However, the set-up of the algorithm was made on an im-
age bank composed of many images coming from only three
videos. Hence, the results must be validated on a larger im-
age bank to ensure the robustness of the algorithm regarding
biological variability (calculi sizes, chemical compositions,
textures). The validation image bank consists in 263 images
taken from 7 videos which present calculi of 4 chemical
compositions, with sizes varying from 9 to 15 mm.

On the validation image bank, the Yasnoff values were greater
than those in the set-up, which meant that a refining of the
parameters was needed: Table 4 shows that for threshold val-
ues of 100 and 110, the 9th decile of the Yasnoff values was
greater than 14, and Relative Compactness values were out-
side the acceptable range. Hence, the acceptable range for
the threshold was reduced to [80,90].

Figure 9 shows the PR-curve of the algorithm on the vali-
dation image bank. It can be noted that the general tendency
is the same as that observed in Figure 7, although the val-
ues of the results are quite low. The algorithm curve gets in
the 0.9 upper right-hand square for the threshold value of 90
only. For this value, Precision and Recall values are 0.913
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Thresh. Rc F ε
mean std. dev 9th decile

80 0.98 0.90 4.606 4.353 10
90 1.01 0.91 5.983 4.803 13
100 1.05 0.92 7.847 5.295 16
110 1.08 0.91 9.593 5.700 18

Table 4: Results of the validation image bank

Fig. 9: PR-curve of the algorithm on the validation bank

and 0.914. Hence, the threshold was set to the single value
of 90.

Finally, the results found in the set-up were refined us-
ing the validation image bank. The final algorithm used the
CRGB criterion with a window of 9x9 pixels and a threshold
of 90. With this set-up, the algorithm results were encourag-
ing: an expert observer analyzed the results of the algorithm
on the images of the set-up and validation datasets and con-
cluded that out of the 923 images, 871 were correctly seg-
mented (94.3%). Examples of segmentation results can be
found on Figure 10.

3.3 Computational time

The algorithm has a maximum computational time of 62 ms
for a single image, which allows it to run at a framerate of
15 Hz. This is much faster than the laser shooting rate of
0.8 Hz, and thus, the algorithm matches its speed constraint.
It must be taken into account that owing to the use of an
encoded video file, the computational time includes the de-
coding time. However, in the final application, a video ac-
quisition will be used, and hence, the decoding time will be
replaced by an acquisition time. It must also be noted that
the OpenCV library is optimized for Intel processors. On
an Intel Core 2 Duo P8700 Processor, the algorithm runs at
more than 30 Hz (video framerate: 25 Hz).

Search window

Found region

Ground 

truth

Seed

Fig. 10: Examples of segmentations obtained on real video images
with the final set-up of the parameters

4 Analysis and Discussion

4.1 Value of the threshold

As shown in Sections 3.1 and 3.2, the threshold is set to 90.
This single value is interesting, because it avoids burdening
the surgeon with a set up of the algorithm. Although this pa-
rameter was set after a study made on a dataset composed
of more than 900 images, this set-up could lead to uncer-
tain results in particular cases. A solution would be to preset
the algorithm with the found parameters, and to allow the
surgeon to adjust the parameters around this preset at the
beginning of the operation. This must be taken into account
when designing the end-user application and the tests.

4.2 Identified bias

The proposed method is not bias-free. The ground truth has
been traced by hand, which is prone to variability. However,
this has not been examined further since it is not the aim of
this paper.

Moreover, the region growing seed and red-spot detec-
tion were examined. This spot is produced by a laser light,
very coherent with a determined wavelength, and hence, easy
to detect. The detection rate for the red spot is near 100%,
but neither the impact of specular reflections on the surface
of the lithiasis, nor the impact of eventual blood drops flow-
ing through the kidney was examined.
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The processed videos presented calculi with irregular
shapes. This is a consequence of the current surgical method
in which the surgeon, owing to the lack of maneuverability,
often aims at the same points while shooting with the laser,
digging holes in the calculi and fragmenting them. It should
be noted that the algorithm will be included in a system that
will gradually vaporize the calculus surface, which should
improve the results of the algorithm.

5 Conclusion and perspectives

The aim of this work was to propose an algorithm for seg-
mentation of calculi on ureteroscopic images. A region grow-
ing algorithm was developed and set up for the most likely
clinical scenario. Manual segmentations were made by an
expert on real video images to establish ground truth, and
a quantitative error measurement led us to fix the algorithm
parameters. An adaptation of the Local Homogeneity Crite-
rion was used in RGB color space. The stopping criterion
was a threshold of 90, and the window size was set to 9x9
pixels. With this set-up, the algorithm was able to obtain
good results on a validation image bank composed of images
coming from different clinical situations: a F-score of 0.91,
with a Relative Compactness indicator of 1.01 and Yasnoff
measure values inferior to 13 in 90% of the cases and in-
ferior to 15.5 in 95% of the cases. Moreover, the algorithm
was fast enough to run at a framerate of 31 Hz. However, the
algorithm has still drawbacks and bias that must be studied
further to improve its results and robustness.

The developed algorithm was developed to be integrated in
an automated system to sweep the surface of renal calculi
and vaporize them. The algorithm will be used to compute a
path planning and a visual servoing scheme to achieve such
results. On the other side, the motorization of the distal tip
and its control scheme are currently under development.
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