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An analytical approach to the problem of inverse
optimization with additive objective functions: An
application to human prehension
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Abstract We consider the problem of what is being optimized in human actions with

respect to various aspects of human movements and different motor tasks. From the

mathematical point of view this problem consists of finding an unknown objective

function given the values at which it reaches its minimum. This problem is called

the inverse optimization problem. Until now the main approach to this problems has

been the cut-and-try method, which consists of introducing an objective function and

checking how it reflects the experimental data. Using this approach, different objec-

tive functions have been proposed for the same motor action. In the current paper we

focus on inverse optimization problems with additive objective functions and linear

constraints. Such problems are typical in human movement science. The problem of

muscle (or finger) force sharing is an example. For such problems we obtain sufficient

conditions for uniqueness and propose a method for determining the objective func-

tions. To illustrate our method we analyze the problem of force sharing among the

fingers in a grasping task. We estimate the objective function from the experimental

data and show that it can predict the force-sharing pattern for a vast range of external

forces and torques applied to the grasped object. The resulting objective function is

quadratic with essentially non-zero linear terms.
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Table Of Notation

x an independent variable,
J an objective function of an optimization problem,
C constraints for an optimization problem,
〈J, C〉 an optimization problem with the objective function J and the constrains C,
fi(·), gi(·) scalar functions,
C, b a matrix and a vector of the linear constraints Cx = b,
ai a scalar value,
I a set of indexes.

1 Introduction

The human motor system is redundant with respect to common actions it performs.

This means that there usually are numerous ways to achieve a particular motor goal

(Bernstein 1967). At the same time, human motor actions usually are well-reproducible.

They vary only slightly from trial to trial and from subject to subject. Such consistency

may reflect the fact that humans try to perform their actions in most “comfortable”

ways, optimizing performance in some sense.

The problem of what is being optimized in human actions was studied for the

trajectory formation in reaching movement (Biess et al 2007; Cruse et al 1990; En-

gelbrecht 2001; Flash and Hogan 1985; Plamondon et al 1993; Tsirakos et al 1997),

writing (Edelman and Flash 1987), walking (Pham et al 2007); force sharing among

the muscles (reviewed in (Prilutsky 2000; Prilutsky and Zatsiorsky 2002)) in gait (re-

viewed in (Collins 1995)), cycling (Prilutsky and Gregory 2000), jumping (Anderson

and Pandy 1999), sit-to-stand movement (Kuzelicki et al 2005), postural control (Kuo

and Zajac 1993), and force sharing among fingers in grasping (Pataky et al 2004).

This problem is usually called the problem of inverse optimization (Ahuja and Orlin

2001), in contrast to the more common direct optimization problem. The latter consists

of finding values minimizing a given objective function. Unlike direct optimization

problems, in the inverse optimization the objective function is unknown, while the

values at which the objective function reaches its minimum are given. The inverse

optimization problem is usually considered for a set of different constraints.

Though the inverse optimization problem has been addressed for a vast range of

tasks, the approach rarely goes beyond the cut-and-try method. The common way to

analyze it is based on an a priori chosen objective function, for which predictions are

obtained and compared with experimental data. The choice of the objective function

depends on physiological or psychological considerations and often on mathematical

elegance. A reasonably good agreement of the prediction with experimental data is

usually interpreted as a proof that the chosen objective function is the one that is

optimized by the motor system.

The most extensive analysis of the problem has been done for the force sharing

among the muscles serving one or several joints (reviewed in (Erdemir et al 2007;

Prilutsky and Zatsiorsky 2002)). In this case the optimization problem is to find muscle
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forces Fi such that, taken together, they exert desired moments of force Mj at the joints

and minimize some objective function J . The muscles can exert only pulling efforts not

exceeding the maximum values Fmax
i . In mathematical terms this problem can be

stated as follows:
J (F1, . . . , Fn) → min, J : Rn → R,

nX

i=1

rijFi = Mj , j = 1, . . . , k,

0 ≤ Fi ≤ Fmax
i , i = 1, . . . , n,

where k is the number of joints and n is the number of muscles, acting on these joints,

n > k, rij is the arm of the i-th muscle relatively the j-th joint.

The objective function J is usually of the form:

J (F1, . . . , Fn) =

 
nX

i=1

„
Fi

F ∗i

«p
!1/p

, (1)

where F ∗i are positive weights, which are usually either taken equal to each other or

are normalized to some quantity (for example, the physiological cross section area or

maximum force). The power p can be any positive number up to plus infinity, in which

case the objective function transforms into:

J (F1, . . . , Fn) = max
i=1,...,n

„
Fi

F ∗i

«
.

Crowninshield and Brand (1981) suggested an approach for defining the parameters

of the objective function (1), which they claimed to be physiologically relevant. In their

model the value being minimized is inverse of the fatigue time averaged across muscles.

They show that this value is proportional to normalized muscle force raised to the power

p between 2.54 and 3.14. Normalization parameters F ∗i are taken proportional to the

physiological cross section area (PCSA).

The above function captures general features of muscle activation patterns in gait

(Crowninshield and Brand 1981). It has been even suggested that in skilled movement

the muscle forces are shared in a way to minimize this objective function (Prilutsky

2000). However, this hypothesis cannot explain experimentally observed co-activation

of antagonist muscles (i.e. muscles making opposite contributions into the moment

of force at the same joint) except for biarticular antagonists (Ait-Haddou et al 2000;

Herzog and Binding 1992).

It is unclear whether an optimization function can be unambiguously identified

from experimental data. Collins (1995) has shown that the same experimental data

can be explained reasonably well with significantly different objective functions. To

some extent, this fact may be due to the imprecision of muscle force estimation from

the electromyographic signal and uncertainties in the moment arms, which have been

shown to influence the result of optimization significantly (Herzog 1992; Raikova and

Prilutsky 2001; Redl et al 2007).

These uncertainties are less dramatic in grasping tasks, where forces and points

of their application can be directly measured (Zatsiorsky et al 2002; Zatsiorsky and

Latash 2008). When the grasp orientation was vertical and the subjects had to maintain

the hand-held objects in the air at equilibrium resisting object weight and external

torque an optimization was performed using as criteria the cubic norms of (a) finger
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forces, (b) finger forces normalized with respect to the maximal forces measured in

single-finger tasks, (c) finger forces normalized with respect to the maximal forces

measured in a four-finger task, and (d) finger forces normalized with respect to the

maximal moments that can be generated by the fingers. All four criteria failed to predict

antagonist finger moments (moments exerted by individual fingers that assisted rather

than resisted external torques) at large external torques. Note that the above criteria

did not take into consideration the finger interdependence (’enslaving’). To account

for the finger enslaving the vectors of “neural commands” were reconstructed from the

finger forces using the enslaving matrix (Zatsiorsky et al 2002). Optimization of the

neural commands resulted in the best correspondence between actual and predicted

finger forces; in particular the antagonist moments were predicted. However, when the

grasp orientation was not vertical all the above mentioned objective functions explained

the experimental data with approximately similar accuracy (Pataky et al 2004).

In this paper we show that, even if ideally precise experimental data are given, the

inverse optimization problem may have infinitely many solutions. Consider a simple

mental experiment. Assume that the subject is instructed to exert a given total force

with the four digits:
F1 + F2 + F3 + F4 = Ftotal,

0 < Fi < Fmax
i .

(2)

In the experiment the total force is varied within some range. Assume that the subject

performs the task perfectly and there are no errors in data recording. For each value

of the total force the subject chooses a pattern of sharing the total force among the

digits. Let us assume that the total force is shared equally among the fingers:

F1 = Ftotal/4, F2 = Ftotal/4, F3 = Ftotal/4, F4 = Ftotal/4. (3)

Now, assume that a researcher guesses an objective function whose optimization should

lead to the observed experimental results:

J (F1, F2, F3, F4) =
1

2

“
F 2

1 + F 2
2 + F 2

3 + F 2
4

”1/2
. (4)

Indeed, one can verify that minimization of (4) subject to the constraints (2) has a

unique solution (3). However one can also notice that (4) is by far not the only function

with such properties. For example, the objective function

J (F1, F2, F3, F4) = F1 · F2 · F3 · F4 (5)

is as good in predicting experimental results (3) as the objective function (4). In fact,

for every differentiable function g such that g′ > 0 minimizing

J (F1, F2, F3, F4) = g(F1) + g(F2) + g(F3) + g(F4) (6)

subject to (2) leads to the solution (3).

Hence, for this particular example, there exist infinitely many different objective

functions, which optimization, subject to (2), results in (3). At the same time, having

more observations under other experimental conditions might limit the range of possible

objective functions.

The main goal of this paper is to develop a method to determine an unknown

objective function from a set of observations. To do that we obtain sufficient conditions

that guarantee unique solution of the inverse optimization problem. We focus our
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analysis on the inverse optimization problem with additive objective function and linear

constraints:
J(x) = g1(x1) + · · ·+ gn(xn) → min,

such that Cx = b,
(7)

where x is an n-dimensional vector, gi unknown scalar functions, C a k×n-matrix and

b a k-dimensional vector, k < n.

This formalization is typical of a vast range of problems considered in the human

movement science, in particular for various forms of the force sharing problem. A

simpler version of this problem was analysed in (Siemienski 2006) for the case when

the functions gi are proportional to each other and only one linear constraint is present.

The paper has the following structure. In the Preliminaries, we provide general def-

initions and statements we needed for the analysis of inverse optimization problems.

In the Main Results, we focus on the problem (7), for which we prove the Uniqueness

Theorem. Then we consider two simple examples of the inverse optimization problem

and illustrate how the Uniqueness Theorem can be used to solve them. In the Ap-

plications, we analyse a “real-life” example of force sharing in grasping. We used our

theoretical results to plan an experiment and to determine the objective function from

the experimental data. The results are discussed in the Discussion section, followed by

Appendix, which contains the proofs of the statements given in the paper.

2 Preliminaries

Estimating the objective function from observations does not necessary lead to a unique

solution. Indeed, there are some transformations of the objective function that do not

influence the solution of the optimization problem. Among those are multiplication

of the objective function by a positive number or adding an arbitrary number to the

objective function. As a consequence, the inverse optimization problem can never be

solved uniquely unless some additional information on the objective function is given.

We call two objective functions J1 : X → R and J2 : X → R essentially different on a

subset X ∈ Rn if there exist constraints C such that the problems 〈J1, C〉 and 〈J2, C〉
have different solutions. Otherwise we call the objective functions essentially similar

on X.

Optimization of essentially similar objective functions under any constraints leads

to the same result. Therefore the inverse optimization problem can be solved up to the

class of essentially similar functions only. It must be noted that the class of essentially

similar objective functions is rather vast. For example, the objective functions J(x)

and f(J(x)) are essentially similar for any strictly increasing function f .

In some cases, minimization of the objective function can be performed indepen-

dently for some subsets of variables. This fact may limit the possibility of inverse

optimization. Consider a simple example:

J (x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 → min,

x1 + x2 = a,

x3 + x4 = b.

It is evident, that x1, x2, x3, x4 guarantee minimization of J → min subject to con-

straints C if and only if x1, x2 minimize J1 = x2
1 + x2

2 → min subject to x1 + x2 = a
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and x3, x4 minimize J2 = x2
3 + x2

4 → min subject to x3 + x4 = b. In these two prob-

lems the functions J1 and J2 can be replaced with any essentially similar objective

functions J̃1 = J̃1(x1, x2) and J̃2 = J̃2(x3, x4). Then all x1, . . . , x4 that minimize

J = x2
1 + x2

2 + x2
3 + x2

4 subject to constraints x1 + x2 = a and x3 + x4 = b will also

minimize the objective function J̃ = J̃1 + J̃2 subject to the same constraints. How-

ever, the objective functions J and J̃ are essentially different. Thus, there are infinitely

many essentially different objective functions, which are minimized by the same val-

ues x1, . . . , x4 under constraints x1 + x2 = a, x3 + x4 = b. This fact may lead to

non-uniqueness in solving the inverse optimization problem.

We now define a splittable optimization problem. To do that we first introduce the

notion of groups of variables independent with respect to the optimization problem.

Let the objective function J(x) be minimized subject to the constraints C(x), where

x = (x1, . . . , xn)T . Assume that the elements of x are split into two groups x1 and x2.

The initial optimization problem converts into the following: minimize J̃(x1, x2) = J(x)

subject to C̃(x1, x2) = C(x). Now, consider the optimization problems: J̃1
x̂2(x

1) =

J̃(x1, x̂2) → min subject to C̃(x1, x̂2); and similarly for J̃2
x̂1 .

The variables x1 and x2 are said to be independent for the optimization prob-

lem 〈J, C〉 if the solution of the problem
D
J̃1

x̂2 , C̃(x1, x̂2)
E

does not depend on x̂2 and

similarly for the problem
D
J̃2

x̂1 , C̃(x̂1, x2)
E
. In particular, if there is just one point x̂2

satisfying C̃2, the variables x1 and x2 are independent.

We call the optimization problem 〈J, C〉 splittable if it has independent variables.

Consider the following example:

J(x) = J1(x1) + J2(x2) → min,

Cx = b, x ∈ X, (8)

where x1 and x2 are composed of components of x with indexes I1 and I2 respectively,

C is a k × n-matrix (k < n), rank C = k, b is a k-dimensional vector.

The variables x1 and x2 are independent for the regarded optimization problem if

and only if there is a matrix D, det D 6= 0, such that in every row of the matrix DC

all elements, either with indices I1 or I2, equal zero. The proof of this statement is

given in Appendix.

We call an objective function additive if it is essentially similar to an objective

function that can be written as follows

J (x1, . . . , xn) =

nX

i=1

gi(xi). (9)

Assume that the additive objective function (9) is minimized subject to linear

constraints:

Cx = b,

where C is a k × n matrix, k < n, rank C = k, b is a k-dimensional vector. Then the

problem is splittable if and only if there is a k × k-matrix D, det D 6= 0, such that by

reordering the rows one can make the matrix DC block-diagonal.

This statement is a particular case of the last example (8), which is proven in

Appendix as Lemma 2.

Thus, if an additive objective functions is minimized under linear constraints, then

the question of whether the corresponding optimization problem is splittable depends
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only on the properties of the constraint matrix C. For this reason we call a full-ranked

matrix C splittable if it satisfies the above mentioned conditions.

The matrix C is splittable if and only if one can make the matrix C̃ = CT
“
CCT

”−1
C

block-diagonal by reordering the rows and columns with the same indexes (here and

on CT denotes the transpose of the matrix C). Indeed, if C is block-diagonal then so is

C̃. On the other hand, it is easy to show that multiplying the matrix C by the matrix

C̃ results in a block-diagonal matrix. Since the matrix C̃ has rank k, it has k linearly

independent rows. It can be shown that, if the matrix D is composed of these rows,

then the matrix DC has block-diagonal structure. Therefore, if the matrix C̃ is block

diagonal, then so is C.

3 Main results

The main goal of the current study is to find sufficient conditions for the uniqueness

of solutions of an inverse optimization problem with additive objective function and

linear constraints:

J(x) =

nX

i=1

gi(xi) → min, (10)

Cx = b, x ∈ X ⊂ Rn, (11)

where C is a k × n matrix, rank C = k, and b is a k-dimensional vector.

The formulas (10), (11) define a class of direct optimization problems parametrized

with b ∈ B, where B is a domain of Rk. Here and on we assume that every direct

optimization problem has a unique solution and that the solutions are known for all

b ∈ B. The set of the solutions will be denoted by X∗.
Given the set X∗, the inverse optimization problem consists of finding functions

gi, i = 1, . . . , n defined on some subset of X.

The optimization problem (10), (11) imposes some strong requirements on the

functions gi that come from the Lagrange minimum principle, which must hold for

every x ∈ X∗ and the corresponding parameter b. The requirements are summarized

in the following lemma, which can be thought of as the Lagrange principle for the

inverse optimization problem.

Lemma 1 If the functions gi(·) in (10) are continuously differentiable then they satisfy

the equation:

Čg′(x) = 0, for every x ∈ X∗, (12)

where

Č = I − CT
“
CCT

”−1
C (13)

and g′(x) =
`
g′1(x1), . . . , g

′
n(xn)

´T
(prime symbol denotes derivative) and I is the n×n

unit matrix.

The proof of Lemma 1 is given in Appendix. Using this lemma we will prove in Ap-

pendix the following statement, which is one of our main results.
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Theorem 1 Assume that the inverse optimization problem (10),(11) with k ≥ 2 is

non-splittable. If the functions gi(·) in (10) are twice continuously differentiable and

there exist twice continuously differentiable functions fi such that f ′i is not identically

constant and Čf ′(x) = 0 for all x ∈ X∗, f ′(x) =
`
f ′1(x1), . . . , f

′
n(xn)

´T
and Č is

defined by (13), then

gi(xi) = rfi(xi) + qixi + consti, for every xi ∈ X∗
i ,

X∗
i = {s | there is x ∈ X∗ : xi = s}

where the constants qi satisfy the equation Čq = 0, q = (q1, . . . , qn)T , consti are

arbitrary scalar numbers and r is a non-zero constant value.

This theorem provides sufficient conditions for existence and uniqueness, up to

linear terms qixi, of solutions of the inverse optimization problem. This means that if

one could find such fi that minimization of the objective function

J̃ =

nX

i=1

fi(xi) → min

subject to the constraints (11) for all b ∈ B results in the set X∗, then the desired

objective function J is essentially similar to J̃ up to unknown linear terms qixi.

The values qi satisfy

q =

kX

i=1

cT
i pi = CT p, (14)

where cT
i is the i-th column of the matrix CT , p = (p1, . . . , pk)T and pi are arbitrary

numbers.

To illustrate why the inverse optimization problem (10), (11) can be solved only

up to unknown pi, write

qT x =

nX

j=1

qjxj =

kX

i=1

cT
i xpi = (Cx)T p = bT p.

Thus, given the constraints (11) the expression qT x does not depend on x. Therefore,

adding these linear terms to the objective function does not influence the solution of

the optimization problem as long as the constraints (11) are present.

An important manifestation of Theorem 1 is that it provides unique solution of the

inverse optimization problem. We first consider the case when k = n− 1. We call such

inverse optimization problem elementary. In this case the rank of matrix Č is equal to

one and, consequently, the vector equation Čf ′(x) = 0 is equivalent to the following

scalar equation:
nX

i=1

aif
′
i(xi) = 0,

where a = (a1, . . . , an) is any row of the matrix Č. Notice that since the problem is

non-splittable, the coefficients ai are nonzero (see the proof of Theorem 1).

At the same time, X∗ is an (n − 1)-dimensional smooth hypersurface in the n-

dimensional space, which can be defined by a single scalar equation. Now the problem of
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the inverse optimization consists of finding a collection of functions h1(x1), . . . , hn(xn)

such that the equation

nX

i=1

hi(xi) = 0

defines the hypersurface X∗. Indeed, if such functions are known then

fi(xi) =
1

ai

Z
hi(xi)dxi

and

J(x) = r

nX

i=1

1

ai

Z
hi(xi)dx +

nX

i=1

qixi.

Here r = ∓1 and the sign of r determines whether the objective function J reaches

minimum or maximum on the given set X∗.
Now consider the case of an arbitrary k. Let x1 and x2 be two groups of variables

such that x1 ∈ Rk+1. An optimal solution x∗ of the problem (10),(11) corresponds

to some values of these variables: x1∗ and x2∗. Consider the following optimization

problem, obtained from the initial one by adding the constraint x2 = x2∗:

Jx2∗(x1) = J(x1, x2∗) =
X

i∈I1

gi(xi) +
X

i∈I2

gi(x
∗
i ) → min, (15)

C1x1 = b− C2x2∗. (16)

Here I1 and I2 are sets of indices of x, corresponding to x1 and x2; the matrices C1

and C2 are composed of the columns of C with indices I1 and I2 respectively.

Evidently, if x1 is a solution of (15) then x1 = x1∗. One can define the set X1∗ of

all x1∗, which is the projection of X∗ onto axes I1.

The problem (15), (16) is defined for a (k + 1)-dimensional variable x1 subjected

to k constraints, i.e. it is an elementary inverse optimization problem. If it is non-

splittable, then the procedure described above is applicable and allows one to estimate

functions gi(xi) for i ∈ I1. Since the choice of indices I1 was to some extent arbitrary,

all functions gi can be determined in this way.

If the inverse optimization problem is splittable, it should be split until we reach

a non-splittable subproblem. We thus proved that, if the initial problem (10), (11) is

non-splittable, then for every i there exists a non-splittable elementary subproblem

with at least two constraints.

It must be noted that to apply the proposed method the researcher must assume

that the experimentally observed hypersurface is composed of solutions of the opti-

mization problem with an additive objective function and known linear constraints.

However, this assumption may not actually hold as for a given set of constraints there

may be no additive objective function, which minimization results in the given hyper-

surface of solutions. In this case the method would result in a non-feasible objective

function, which, for example, does not reach either its minimum or maximum on the

observed surface, but instead has only hyperbolic points on it.

We illustrate our method by four simple inverse optimization problems.
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3.1 Example 1.

Consider an inverse optimization problem with an additive objective function of three

variables:

J(x1, x2, x3) = g1(x1) + g2(x2) + g3(x3) (17)

subject to the constraints:
x1 + x2 + x3 = b1,

x1 − x3 = b2.
(18)

The solution of the direct optimization problem is known for a range of b1 and b2:

x1 =
b1
3

+
b2
2

,

x2 =
1

3
b1,

x3 =
b1
3
− b2

2
, .

(19)

We wish to determine the objective function (17) such that its minimization subject

to the constraints (18) leads to the solution (19).

The constraints (18) are given by the matrix C:

C =

„
1 1 1

1 0 −1

«
. (20)

Note that the matrix C is non-splittable. Indeed, the matrix Č = I −CT
“
CCT

”−1
C

(see (13)):

Č =

0
@

1
6 − 1

3
1
6

− 1
3

2
3 − 1

3
1
6 − 1

3
1
6

1
A

cannot be made block-diagonal by reordering the rows and columns with the same

indices.

Now we wish to find twice continuously differentiable functions f1, f2, f3 satisfying

the equation:

C̆

0
@

f ′1(x1)

f ′2(x2)

f ′3(x3)

1
A = 0

for every x1, x2, x3 from (19). Since the matrix C̆ has rank one, the latter is equivalent

to the following scalar equation:

f ′1(x1)− 2f ′2(x2) + f ′3(x3) = 0. (21)

Solution (19) determines a plane in the 3-dimensional space:

x1 − 2x2 + x3 = 0. (22)

We should find any functions fi satisfying (21) on the plane (22) and we can take

f ′1(x1) = x1,

f ′2(x2) = x2,

f ′3(x3) = x3.
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Then, according to Theorem 1, the functions gi are equal to:

g1(x1) =
r

2
x2
1 + q1x1 + const1,

g2(x2) =
r

2
x2
2 + q2x2 + const2,

g3(x3) =
r

2
x2
3 + q3x3 + const3,

(23)

where r is an arbitrary non-zero scalar. The values qi can be represented as

0
@

q1

q2

q3

1
A =

0
@

1

1

1

1
A p1 +

0
@

1

0

−1

1
A p2.

Since determining the objective function can only be performed up to the class of

essentially similar functions, the constants in (23) can be set zero. The parameter r

can be taken equal ±1. Since we want the resulting objective function to be minimized

rather then maximized on (21), the parameter r must be positive.

The desired objective function is essentially similar to:

J(x1, x2, x3) =
x2
1

2
+

x2
2

2
+

x2
3

2
+ (p1 + p2)x1 + p1x2 + (p1 − p2)x3, (24)

where p1 and p2 are arbitrary scalar numbers.

3.2 Example 2.

Consider an inverse optimization problem with an additive objective function of four

variables:

J(x1, x2, x3, x4) = g1(x1) + g2(x2) + g3(x3) + g4(x4) (25)

subject to the constraints:

x1 + x2 + x3 + x4 = b1,

2x1 + x2 + x4 = b2,

x1 + x2 + x3 + 2x4 = b3.

(26)

Let the solutions of the direct optimization problems for a range of b1, b2, b3 lie within

a 3-dimensional subspace with the normal vector u = (1,−2, 1, 0)T .

The first step is to verify that the problem is non-splittable. The matrix C for the

constraints (26) is

C =

0
@

1 1 1 1

2 1 0 1

1 1 1 2

1
A . (27)

The matrix Č = I − CT
“
CCT

”−1
C is

Č =

0
BB@

1
6 − 1

3
1
6 0

− 1
3

2
3 − 1

3 0
1
6 − 1

3
1
6 0

0 0 0 0

1
CCA
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and is block-diagonal, hence the matrix C is splittable.

The problem splits into two subproblems. The first one is:

J̃(x1, x2, x3) = g1(x1) + g2(x2) + g3(x3) → min,

such that x1 + x2 + x3 = 2b1 − b3,

x1 − x3 = b2 − b1.

(28)

Its solution for a range of b1, b2, b3 lies in a plane in the 3-dimensional space, which

can be obtained as the result of projecting the solution of the initial problem on the

space of variables x1, x2, x3. This plane passes through zero and is orthogonal to the

vector ũ = (1,−2, 1)T .

The second problem is vacuous, since x4 can be unambiguously determined from

the constraints:

x4 = b3 − b1

and, thus, g4 can be an arbitrary function.

In this case, the best one can do is to estimate the functions g1, g2, g3. The

constraints in (28) are defined by the matrix C̃:

C̃ =

„
1 1 1

1 0 −1

«
. (29)

The plane of the solutions of the direct problem (28) can be defined by the equation:

x1 − 2x2 + x3 = 0. (30)

The constraints matrix (29) and the surface of the solutions (30) coincide with

those of the previous example. Thus, the objective function J̃(x1, x2, x3) is essentially

similar to (24) and hence,

J(x1, x2, x3, x4) =
x2
1

2
+

x2
2

2
+

x2
3

2
+ (p1 + p2)x1 + p1x2 + (p1 − p2)x3 + g4(x4),

where p1 and p2 are arbitrary numbers and g4 is an arbitrary scalar function.

3.3 Example 3.

In the previous examples the estimated objective function is quadratic reflecting the

fact that the surface of solutions is planar. Here we illustrate how to use our method to

analyze non-polynomial objective functions. Consider the inverse optimization prob-

lem from Example 1 with additive objective function (17) and linear constraints (18).

Assume that the variation of parameters b1 and b2 results in a surface, defined by the

equation:

x1 − 2x2 + 5 cos x3 = 0. (31)

According to Lemma 1 the functions gi from (17) satisfy the equation Čg′(x) = 0

on (31). This equation can be rewritten as follows:

g′1(x1)− 2g′2(x2) + g′3(x3) = 0.
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Then according to Theorem 1

g′1(x1) = rx1 + q1,

g′2(x2) = rx2 + q2,

g′3(x3) = 5r cos x3 + q3,

where r is a non-zero scalar whose sign determines weather the optimization problem

consists in minimization or maximization of the objective function, qi are arbitrary

scalars satisfying the equation q1 − 2q2 + q3 = 0.

The objective function J is essentially similar to the following:

J(x1, x2, x3) =
x2
1

2
+

x2
2

2
+ 5 sin x3 + (p1 + p2)x1 + p1x2 + (p1 − p2)x3,

where p1 and p2 are arbitrary scalar numbers.

3.4 Example 4.

In the previous example the method resulted in estimation of the feasible objective

functions. Here we give an example of a hypersurface not resulting in minimization

of any additive objective function. Consider the inverse optimization problem from

Example 1 with additive objective function (17) and linear constraints (18). Assume

that the variation of parameters b1 and b2 results in a surface, defined by the equation:

x1 + 2x2 + x3 = 0. (32)

According to Lemma 1 the functions gi from (17) satisfy the equation Čg′(x) = 0

on (31). This equation can be rewritten as follows:

g′1(x1)− 2g′2(x2) + g′3(x3) = 0.

Then according to Theorem 1

g′1(x1) = rx1 + q1,

g′2(x2) = −rx2 + q2,

g′3(x3) = rx3 + q3,

where r is a non-zero scalar, qi are arbitrary scalars satisfying the equation q1 − 2q2 +

q3 = 0.

The estimated objective function J is the following:

J(x1, x2, x3) =
r

2

“
x2
1 − x2

2 + x2
3

”
+ (p1 + p2)x1 + p1x2 + (p1 − p2)x3,

where p1 and p2 are arbitrary scalar numbers.

Evidently, that for any non-zero r, the estimated function does not reach it’s min-

imum subject to constraints (18) at any point of R3. Thus, it proves falsity of the

hypothesis that the hypersurface (32) results from minimization of an additive objec-

tive function subject to constraints (18).
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4 Applications

To illustrate applicability of the approach presented above to “real-life” tasks we ana-

lyze the problem of force sharing among the digits in prismatic grasping when a subject

holds a handle similarly to holding a glass with liquid. The points of application of the

thumb and finger forces are assumed to lie in the grasp plane, which is parallel to the

longitudinal handle axis (see Fig. 1). An external force F l parallel to the handle axis

and an external torque T orthogonal to the task plane act on the handle.

4.1 Description of the System

In the planar case, the static equilibrium constraints include two equations on the forces

and one equation on the moments of force. For a vertically oriented handle, the load

force F l must be counterbalanced by the tangential forces of the fingers (F t
1 , . . . , F t

4)

and the thumb (F t
0):

F t
0 + F t

1 + F t
2 + F t

3 + F t
4 = −F l. (33)

The normal force of the thumb Fn
0 must be equal and opposite to the total normal

force of the fingers:

Fn
0 = Fn

1 + Fn
2 + Fn

3 + Fn
4 . (34)

The joint moment of the normal and tangential forces must be equal and opposite to

the external torque T .

−d1Fn
1 − d2Fn

2 + d3Fn
3 + d4Fn

4 + r0F t
0 − r1

“
F t

1 + F t
2 + F t

3 + F t
4

”
= T. (35)

The normal forces must be non-negative and cannot exceed their maximum values:

0 ≤ Fn
i ≤ Fn max

i , i = 0, . . . , 4. (36)

The tangential forces must stay below the maximum static friction force:

˛̨
˛F t

i

˛̨
˛ ≤ µiF

n
i , i = 0, . . . , 4, (37)

where µi is the coefficient of the static Coulomb’s friction.

The static equilibrium imposes three equality-type constraints (33), (34), (35) on

ten force variables: five normal and five tangential forces. Even though they must also

satisfy fifteen inequalities (36), (37), in general, the problem is redundant.

In spite of the redundancy the force sharing among the fingers is quite reproducible

among trials with fixed load force F and external torque T (Shim et al 2003; Zatsiorsky

et al 2003). This is especially true for the normal forces. For zero external torque the

normal forces Fn
i are known to scale with the load force (Niu et al 2007; Westling and

Johansson 1984). It is reasonable to assume that a particular force sharing patterns

result from minimization of a certain objective function of the normal and tangential

forces.

We assume that the force distribution among fingers in grasping results from the

minimization of the objective function J for given handle geometry and friction coef-

ficients:

J =

4X

i=0

gi(F
n
i ) + H

“
F t

0 , F t
1 , . . . , F t

4

”
, (38)
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Fig. 1 Schematic representation of the handle. Here T stands for the external torque, F l for
the load force, F n

0 and F t
0 for the normal and tangential components of the thumb force, F n

i
and F t

i for the normal and tangential components of the finger forces (i = 1, . . . , 4). The arrows
define positive values of the forces.

where gi are scalar functions of normal forces and H is a scalar function of tangential

forces.

Our goal here is to estimate the objective function involved into the sharing of the

normal forces among the fingers, in particular, the functions gi in (38). Indeed, the

fact that the constraints are linear and the assumption that the objective function is

additive with respect to the normal forces, make it possible to find the functions gi

without resorting to the function H. To this end, we consider the following reduced

optimization problem:

J̃ =

4X

i=0

gi(F
n
i ) → min (39)

subject to:

−Fn
0 + Fn

1 + Fn
2 + Fn

3 + Fn
4 = 0,

−d1Fn
1 − d2Fn

2 + d3Fn
3 + d4Fn

4 = T −M t,
(40)

where M t stands for the total moment of the tangential forces. The equation (33) was

omitted because it does not contain normal forces.

According to Theorem 1 one can find the objective function unambiguously, up

to some linear terms if a k-dimensional surface of solutions is known, where k is the

number of the (equality) constraints. In our case k = 2 and therefore a 2-dimensional

surface of the optimal solutions is required.

Changes in the external torque effect only the second equation in (40), while the

first one remains unchanged. The load force is not directly present in the constraints

(40). Variation of the external torque at a constant load will result in a curve instead

of a surface required to apply the method.

To overcome this difficulty we introduce an additional constraint by asking the

subject to grip the handle with a given total grip force F g:

Fn
0 + Fn

1 + Fn
2 + Fn

3 + Fn
4 = F g. (41)
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The constraint (41) makes the problem splittable since from (40) and (41) it follows

that Fn
0 = F g/2. Splitting the initial problem produces two subproblems. The first one

contains only normal force of the thumb and is vacuous. The second one includes the

normal forces of the fingers:

Ĵ =

4X

i=1

gi(F
n
i ) → min (42)

subject to
Fn

1 + Fn
2 + Fn

3 + Fn
4 = F g/2,

−d1Fn
1 − d2Fn

2 + d3Fn
3 + d4Fn

4 = T −M t.
(43)

The normal forces of the fingers must also satisfy the (inequality) constraints (36) and

(37). However, as it is known from various experiments (Johansson and Westling 1984;

Cole and Johansson 1993), normal forces are typically 30%-50% above the slipping

threshold. If the external load is not very large, neither normal nor tangential forces

approach the borders of the domain defined by (36), (37) and therefore these constraints

can be omitted. The constraint matrix C for the problem (42), (43) has the form:

C =

„
1 1 1 1

−d1 −d2 d3 d4

«
. (44)

The problem (42), (43) has two linear constraints containing two parameters: the

external torque T and the grip force F g, which can be varied independently in the

experiment. Thus, we hope that the finger forces F1, F2, F3, F4 obtained for the pairs

(T, F g) will form a surface in the 4-dimensional space of finger forces. As it was shown

above, knowing this surface should be sufficient for estimating the additive objective

function (42).

4.2 The Experimental Procedure

We present results obtained for three subjects. They were right-handed young male

adults with no history of hand injury (age 27.6 ± 3.0 yr, weight 74.7 ± 9.0 kg, height

176.3± 9.2 cm, hand length from the middle fingertip to the distal crease of the wrist

with hand extended 18.4± 0.9 cm, hand width at the MCP level with hand extended

8.9± 0.7 cm).

In the experiment, the subjects held a handle mounted with five 6-dimensional

force-torque sensors, whose surfaces were covered with sandpaper. The geometry of

the handle is presented on Fig. 1. The top of the handle was equipped with an air-

bubble level intended to help subjects to hold the handle vertically. A horizontal bar

was attached to the handle at the bottom. Suspending various loads at different points

along the bar allowed for varying both the load force F l and external torque T in (43).

All combinations of four values of the load force 12.5, 15, 17.5 or 2.0 N, and five values

of the external torque -0.4, -0.2, 0.0, 0.2, 0.4 Nm were used in the current study. The

total number of combination was 20.

For every combination there were two types of trials, calibration and experimental,

lasting 10 seconds each. In the calibration trials the subjects were instructed to hold the

handle naturally trying not to grip it too hard. The total grip force was averaged over

the 10-second period of the calibration trial. The averaged value was then used in the
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Fig. 2 An example of the normal forces of the index finger in different conditions. a: the load
force is fixed and equal to 12.5 N, while the external torque and the total grip force are varied.
The different symbols correspond to the values obtained for 100 %, 125 %, 150 % and 175 %
of the natural grip force. b: the load force and the external torque are varied, while the grip
force is kept equal to 150 % of the natural one. The different symbols correspond to different
values of the load force: 12.5 N, 15.0 N, 17.5 N and 20 N.

experimental trials, in which the subjects were instructed to make the gripping force

equal 100, 125, 150 or 175 % of that value. The subjects could see the current value

of the total normal force of the five digits (gripping force) and the target value on the

computer monitor located in front of the subject. Though the load force is not directly

present in the equations (43), the subjects tended to grip harder in the calibration

trials with the greater load force. Thus, by changing the load force we increased the

range of the grip force.

On the whole, every subject performed 80 experimental trials. In every trial the

average normal finger forces were computed over a 2-second interval where they ex-

hibited the least variation. Following this procedure we obtained 80 points (one point

per trial) in the 4-dimensional space of the normal finger forces for every subject. The

thumb data are not presented since they are not relevant to the problem (42), (43).

It should be noted that the points of application of the normal finger forces varied

across trials and conditions, which in turn resulted in variation of the constraints matrix

C. Contrary to the case described above, where C was a constant matrix, we assume

that the variations of the matrix C result in small changes of the optimal finger forces

as compared to those caused by changing the external torque and the grip force. This

assumption allows us to apply our method while keeping in mind that the experimental

data points can be scattered around the ideal optimal surface. We used the following

values of geometrical parameters of the handle:

d1 = 45mm, d2 = 15mm, d3 = 15mm, d4 = 45mm.

4.3 The Results

The influence of the varied factors (the external torque, the load force and the grip

force) on the normal finger forces is illustrated on Fig. 2. One can see that the influ-

ence can be rather complex (especially Fig. 2B). However, as mentioned earlier, we
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expect the experimental values of the normal finger forces to lie on a surface in the 4-

dimensional space. To verify this fact, for every subject we plotted 3-dimensional projec-

tions of the experimental data on the subspaces (F1, F2, F3), (F2, F3, F4), (F1, F3, F4)

and (F1, F2, F4). In the projections the points tended to lie on planes, but were dis-

persed around them. The planarity of the data in the 4-dimensional space of the finger

forces was quantified using the principal component analysis. It showed that 94.4±0.4%

of the total variance could be explained by 2 principal components, which define a plane

in the 4-dimensional space.

Based on this observation, we made an assumption that the surface of the optimal

solutions is a 2-dimensional plane, which can be approximately estimated from the

experimental data. The fact that the data points did not ideally form a plane can be

explained by variation of the points of the finger forces application, variability of the

subject performance and instrumental noise. The plane can be defined by the vector

equation:

AFn + b = 0, (45)

where Fn = (Fn
1 , Fn

2 , Fn
3 , Fn

4 )T is the vector of the normal finger forces, A is a full-

ranked 2 × 4-matrix and b is a 2-dimensional vector. The matrix A is composed of

transposed vectors of two lesser principle components. The vector b is defined as b =

−AF̄n, where F̄n is the vector of average finger forces.

According to Theorem 1, if there are functions f1(F
n
1 ), f2(F

n
2 ), f3(F

n
3 ), f4(F

n
4 )

satisfying Čf ′(Fn) = 0 on the plane (45), then they coincide with gi up to linear

terms. Since the experimental points tend to form a plane the following functions f ′i
can be chosen:

f ′i(F
n
i ) = kiF

n
i + wi

and fi:

fi(F
n
i ) =

ki

2

`
Fn

i

´2
+ wiF

n
i . (46)

Now, the inverse optimization problem consists of finding coefficients k1, k2, k3, k4

and values w1, w2, w3, w4 for which the plane Č(KFn + w) = 0 (where K =

diag (k1, k2, k3, k4), w = (w1, w2, w3, w4)
T ) coincides with the plane AFn + b = 0.

However, such ki do not always exist. Since both the experimental plane (45) and the

matrix C are known imprecisely, it might happen that for a given experimental plane

these coefficients cannot be determined, while it can be done for a plane lying very

close to the experimental one.

For this reason we searched for the values ki that minimize angle α between the

planes ČKFn = 0 and AFn = 0, assuming k1 = 1 for normalization. This problem was

solved numerically. The minimum α equals 2.7 ± 0.5 deg, confirming that the desired

plane is indeed close to the experimental one. Moreover, the plane ČKFn = 0 gives

just 0.2±0.1% less variability of the centered experimental data than the experimental

plane (45).

The vector w was chosen to have minimal length. It can be easily shown that such

a vector is defined by the formula:

w = −ČKF̄n.

Thus, we found functions fi satisfying the equation Čf ′(Fn) = 0 for all Fn lying on

the plane Č(KFn + w) = 0, which approximates the experimentally observed optimal

finger forces. According to Theorem 1, the functions gi in (42) are the following:

gi(xi) = rfi(F
n
i ) + qiF

n
i + consti
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Table 1 Parameters of the estimated objective function.

Subject k1 k2 k3 k4 w1 w2 w3 w4

1 1.00 2.95 3.03 9.28 -2.70 1.92 4.25 -3.48
2 1.00 1.72 2.36 3.82 -0.51 0.82 -0.11 -0.20
3 1.00 1.54 1.77 3.24 -0.27 0.22 0.37 -0.32

and thus

gi(xi) = r

„
ki

2

`
Fn

i

´2
+ wiF

n
i

«
+ qiF

n
i + consti . (47)

Here r is a nonzero number and qi are any numbers satisfying the equation Čq = 0,

q = (q1, q2, q3, q4)
T .

Since the objective function can be estimated only up to the class of essentially

similar functions, one can assume consti = 0 and r = ∓1. The sign of r is chosen in

such a way that the resulting objective function corresponds to minimization problem.

The vector q can be represented as follows:

q = c1p1 + c2p2,

where p1, p2 are arbitrary numbers, c1 and c2 are columns of the transposed constraints

matrix CT . Thus,

qi = p1 + dip2. (48)

Substituting the values of gi from (47) and qi from (48) in (42) leads to the expression

for the desired objective function:

Ĵ =
1

2

4X

i=1

ki

`
Fn

i

´2
+

4X

i=1

(wi + p1 + dip2) Fn
i . (49)

The values ki and wi for all subject are given in Table 1. We would like to emphasize

that all coefficients ki are positive for all subjects, meaning that the estimated objective

function is feasible (it really reaches its minimum on the idealized experimental surface).

The theorem of uniqueness requires the hypersurface of solutions to be known.

In this example we dispose only limited set of data points, which, in addition, are

subjected to noise. We idealize this data by assuming that it tends to lay on a hyper-

plane. However, it may happen that in ideal experiment the ideal hypersurface would

be slightly different from the hyperplane and consequently, the real objective function

would differ from the estimated one. Thus, the estimated objective function represents

a quadratic approximation of real objective function. In general, this approximation is

as good as the approximation of the experimental data with the hyperplane. To illus-

trate the quality of the estimated objective function we solved the direct optimization

problem with the objective function (49) and the constraints (43). The values in the

right side of the constraints equations (43) were computed from the experimental data.

Since the solution of the direct optimization problem does not depend on parameters

p1 and p2, they were set to be zero. The average errors were computed for every fin-

ger as the average absolute difference between the experimentally observed value of

the normal force and the one predicted by the optimization problem. The correlation

between the predicted and experimental data and the average errors are presented in

Fig. 3.
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Fig. 3 The correlation between the experimental data and the solution of the direct optimiza-
tion problem for the normal finger forces. Each point corresponds to a particular combination
of the external torque, the load force and the grip force. The errors were computed as aver-
age absolute difference between the experimental data and the corresponding solutions of the
direct optimization problem.

In this procedure we used the same set of data both to estimate the objective

function and to illustrate its use in approximating the experimental results. To further

validate our method and the assumptions on which it is based, e.g. that the objective

function is additive and the plane is an acceptable approximation of the experimental

data, we performed additional computational experiments in which estimation and

validation sets of data were separated. For each subject we selected 60 random data

points and used them to estimate the objective function. Then we solved the forward

optimization problem with this objective function and compared the corresponding

solutions with the remaining 20 data points. We performed this procedure 50 times for

each subject and computed the average errors of the results of the forward optimization.

We found that the average errors were only slightly larger (<20%) than those shown

in Figure 3 and did not exceed 0.6 N; the coefficients ki were always positive.

5 Discussion

In this paper we analyse the problem of inverse optimization, which consists of find-

ing an unknown objective function given the values, at which the function reaches its

minimum, for a set of different constraints. This problem often arises when the prin-

ciples of control of human movements are studied (Engelbrecht 2001). Nowadays, the

inverse optimization problem is usually approached with the cut-and-try method. As a
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consequence, a number of different objective functions have been proposed to explain

the control of the same motor task (Collins 1995; Cruse et al 1990; Pataky et al 2004).

The attempts to approach the inverse optimization problems more systematically

are rather rare. Some theoretical results were obtained in the problem of the correction

of a known objective function in linear programming and the theory of combinatorial

optimization (Ahuja and Orlin 2001). Recently Bottasso et al (2006) proposed a sys-

tematic approach to identifying unknown parameters of the objective function taking

into account possible inaccuracy of the experimental data. Siemienski (2006) proposed

an approach to non-parametric identification of an unknown objective function from ex-

perimental data for a specific class of additive objective functions, which are minimized

subject to a single linear constraint. Siemienski was among the first to emphasize that

the inverse optimization problem should be regarded for a set of different constraints.

The purpose of the current study is twofold: to develop a method for non-parametric

identification of the objective function in the inverse optimization problem and to ob-

tain sufficient conditions on the set of constraints (and the objective functions them-

selves) that would guarantee the uniqueness of the solution of the inverse optimization

problem. We focus our analysis on the class of the inverse optimization problems with

additive objective functions and linear constraints. This class includes various aspects

of the force sharing problem, which is one of the most common inverse optimization

problems in the science of human motions.

We show that for any value, which minimizes the additive objective function, almost

unique identification of the function can be performed. The dimension of the space of

such values must be equal to the dimension of the constraints in the problem. From

the practical point of view this means that, in order to solve the inverse optimization

problem, one should be able to vary independently the values of every constraint.

We note that this condition was not met in most studies where an objective function

was proposed to optimize various motor tasks. We believe that one of the reasons for a

variety of different objective functions in the case of force sharing is insufficient amount

of experimental conditions that were used to determine the objective function. The

conditions of the Uniqueness theorem proved here can be used to plan the experiments

directed to identifying the objective function.

Moreover, we use the Uniqueness theorem to propose a method of solving the in-

verse optimization problem. To determine the additive objective function of n variables

minimized subject to k constraints one can find any n− k independent additive func-

tions, which equal zero on the k-dimensional hypersurface of the experimental data.

Of course, in reality one has only a finite number of experimental observations and,

therefore, these data should be used to determine the idealized hypersurface. The latter

cannot be unambiguous since it represents an attempt to estimate non-parametrized

function from limited set of noisy data. Roughly speaking, our method provides as

accurate estimate of the objective function as is the idealization of the hypersurface.

In this study we restrict our analysis to the problems with equality constraints only.

Usually “real-life” problems have both equality and inequality constraints. The ana-

lyzed problem of the finger force sharing in grasping can be considered as an example.

Indeed, the normal forces of the fingers cannot be negative or exceed their maximal

values while the magnitudes of tangential forces cannot exceed the magnitudes of the

normal forces multiplied by the friction coefficient. Nevertheless, the developed method

can be applied to this problem because the inequality constraints are “passive”, which

means that all experimental points are inside the set defined by the inequality con-

straints and not on the boundary of this set. In the context of the inverse optimization
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problem, the passive inequality constraints can be ignored. On the contrary, if all the

data points are on the boundary of the constraints, such constraints become “active”

and should be treated the same way as any other equality constraints. The case when

for some subset of data the inequality constraints are active and for the other they are

passive cannot be approached with the proposed method.

Developing our method we assumed that the given experimental data result from

the minimization of an additive objective function subject to the known linear con-

straints. This assumption keeps out of the scope the question of the existence of so-

lutions of the inverse optimization problem. In practical applications the researcher

can rarely know for sure that the observed experimental data indeed corresponds to

a solution of an optimization problem. In this case he/she can assume the latter and

apply the method keeping in mind that the estimated function must be verified to

ensure that it really reaches its minima on the observed data.

We illustrate the applicability of our method by analysing a “real-life” example

of the force sharing problem in grasping. We demonstrate how the conditions of the

Uniqueness theorem can help planning the experiment. We found that, in order to

estimate the objective function used for the normal finger forces distribution, it is

necessary to vary the external torque applied to the handle and the total grip force

of the fingers. We would like to note that in most previous attempts to estimate this

objective function the external torque and the load force were varied instead.

We use our method to estimate the objective function from the experimental data.

The resulting objective function is quadratic with nonzero linear terms. Polynomial

and, particularly, quadratic objective functions have been proposed for force sharing

problem, however they did not include linear terms. It must be emphasized here that

the fact that the estimated objective function is quadratic follows from the planarity

of the surface of experimental data. Moreover, the presence of linear members is a

consequence of the fact that the experimental plane does not contain the origin of the

reference frame. Since the experimental data was limited and noisy the real objective

function may be different from the estimated one. Thus, the result should be treated

as a quadratic approximation of the real objective function. In order to illustrate the

precision of this approximation we solve the direct optimization problem and compare

the solutions with the experimental data. The ability of the objective function to

explain the experimental data is illustrated by Fig. 3. In addition, we estimated the

objective function on randomly selected subset of data and then validated the estimated

function on the remaining data. It appeared that the average performance on the new

data was comparable to the one when the same data set was used both for estimation

and validation. The latter confirms that at least in the regarded example, the method

performs rather robustly and the estimated objective function can be used, of course,

with limitations, to predict new experimental data.

We believe that the method we propose can be helpful in analysis of principles

underlying the control of human movements. It can be applied to a vast range of

problems, especially to various forms of the problem of force sharing. This method

provides a mathematical tool for an almost unambiguous identification of the objective

function from experimental data, however the question of its interpretation still remains

unanswered.
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Appendix

We present here the proofs of the theorems and lemmas formulated in the text.

Lemma 2 Consider the following optimization problem:

J(x) = J1(x1) + J2(x2) → min

such that
Cx = b, x ∈ X, (50)

where the groups of variables x1 and x2 are composed of components of x with indexes I1 and
I2 respectively, C is a k × n-matrix (k < n), rank C = k, b is a k-dimensional vector.

Then the groups of variables x1 and x2 are independent for the corresponding optimization
problem if and only if there is a matrix D, det D 6= 0, such that in every row of the matrix
DC all elements with either indexes I1 or I2 are equal to zero.

Proof For simplicity we assume that x1 corresponds to the first m components of x and x2 to
the remaining n−m components.

Suppose there is a matrix D such that:

DC =

„
A1 0
0 A2

«
, Db =

„
a1

a2

«
.

Then the constraint (50) splits into two:

A1x1 = a1, A2x2 = a2.

Thus, the set of all x1 satisfying (50) does not depend on x2 and vice versa.
Consider a set of objective functions J1

x̂2 = J1(x1)+J2(x̂2) parametrized by x̂2. All these

objective functions are essentially similar and thus are minimized by the same value x1∗ under
all possible constraints. The same holds for J2

x̂1 . Since in addition to that the constraints for

x1 do not depend on x̂2 and vice versa the groups of variables x1 and x2 are independent.
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Now, assume that x1 and x2 are independent. The objective functions J1
x̂2 are essentially

similar for all x̂2. The same is true for J2
x̂1 . Thus, the groups of variables x1 and x2 can be

independent only if the the constraints on x1 and x2 are independent, i.e. the set of all x1

satisfying (50) does not depend on x̂2 and the same for x2.
Let C1 be the matrix comprised of the first m columns of C and C2 be the matrix

comprised of the remaining n−m columns. The equation (50) can be rewritten as

C1x1 + C2x2 = b. (51)

The equation (51) holds for every x1 ∈ S1 ∩ X and x2 ∈ S2 ∩ X, where S1 and S2 are
some affine subspaces of dimensions k1 and k2 respectively. Since X is an open domain in Rn

and the matrix C has rank k, we have k1 + k2 = k.
Consider the linear space of all rows d2 such that d2C1 = 0. Since the matrix C1 has rank

k1, the dimension of this space is k2. Hence there exist a k2 × k-matrix D2, rank D2 = k2,
such that D2C1 = 0. Similarly, there exists a k1 × k-matrix D1, rank D1 = k1, such that
D1C2 = 0. The matrix

D =

„
D1

D2

«

has nonzero determinant since the matrix C has full rank. One can see that the matrix DC is
block diagonal.

Proof of Lemma 1.

Fix b in (11) and consider the corresponding direct optimization problem. Since the objective
function J is differentiable it satisfies the Lagrange minimum principle. The Lagrange function
L is

L = λ0J(x) + (Cx− b, λ) (52)

where (·, ·) denotes the scalar product, λ = (λ1, . . . , λk)T is a k-dimensional vector, λ0 ≥ 0 is
a number. It can be easily shown that λ0 is strictly positive and, thus, we can assume it to be
one.

According to the Lagrange principle, if x is a solution of the problem (10),(11) then there
is a non-zero vector λ such that x minimizes L. Since L is smooth, it means that

∂L
∂xi

(x) = g′i(xi) + CT
i λ = 0, for i = 1, . . . , n,

where Ci is the i-th column of C.
In the vector form these equations can be written as

g′(x) + CT λ = 0. (53)

Excluding λ from (53) leads to (12), (13). Since this reasoning holds for all b ∈ B, it also holds
for all x ∈ X∗. ut

Proof of Theorem 1.

I. The case of an elementary optimization problem, k = n− 1.
In this case the matrix Č has rank one and therefore the equation Čg′(x) = 0 is equivalent

to the following scalar equation

a1g′1(x1) + · · ·+ ang′n(xn) = 0, (54)

where a = (a1, . . . , an) is any row of Č.
The coefficients ai are non-zero. Indeed, if any of them is zero then the matrix Č is block-

diagonal (or can be made block-diagonal by reordering the rows and columns with the same
indexes). The latter contradicts to the fact that the initial problem is non-splittable.
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Let us now prove that if the functions f ′i satisfy (54) on X∗ then they coincide with g′i up
to a constant.

Using the Taylor decomposition in a vicinity of a point x ∈ X∗ we obtain that

a1g′′1 (x1)dx1 + · · ·+ ang′′n(xn)dxn = 0,

a1f ′′1 (x1)dx1 + · · ·+ anf ′′n (xn)dxn = 0,

which holds for every vector dx = (dx1, . . . , dxn)T in the tangent space to X∗ at x. Since the

dimension of the tangent space is n− 1, it means that the vectors
`
a1g′′1 (x1), . . . , ang′′n(xn)

´T
and

`
a1f ′′1 (x1), . . . , anf ′′n (xn)

´T
are collinear. Therefore there exists a scalar function r(x) on

X∗ such that
aif

′′
i (xi) = r(x)aig

′′
i (xi), for i = 1, . . . , n. (55)

We shall show that r(x) does not depend on x. To this end we express the variable x1 as a
function of other variables on the hypersurface X∗:

x1 = h1(x2, . . . , xn)

and transfer the equations (55) into:

f ′′i (xi) = r̃1(x2, . . . , xn)g′′i (xi), i = 1, . . . , n, (56)

where r̃1(x2, . . . , xn) = r(h2(x2, . . . , xn), x2, . . . , xn).
The equation (56) holds for all x2, . . . , xn. Since xi, i = 2, . . . , n can be varied while all

xj (j = 2, . . . , n and j 6= i) remain constant, the function r̃1 is constant and hence, so is the
function r.

Integrating (55) twice leads to

fi(xi) = rg(xi) + qixi + consti, (57)

where qi must satisfy
a1q1 + · · ·+ anqn = 0.

II. The general case, 2 ≤ k < n− 1.
As it was noted above, for arbitrary n solving the problem of inverse optimization can

be reduced to solving a number of elementary subproblems. Thus, to prove the theorem in
the general case it suffices to show that for every i there exists a non-splittable elementary
subproblem containing gi and that the coefficient r in (57) is the same for all gi.

First we show that if C is a non-splittable k × n-matrix then for every column c of the
matrix C there exists a non-splittable s× (s + 1)-minor C̃, rank C̃ = s, s ≥ 2 resting on c.

Assume by contradiction that the statement does not hold for some column c of C, that is
every s× (s + 1)-minor, s ≥ 2, of C resting on c is splittable. We prove that in this case every
s ×m-minor, m ≥ s + 1, s ≥ 2, of C resting on c is splittable. We shall use induction over s
and m.

The proof is evident for s = 2 and arbitrary m. We prove that if this holds for all s′ ×m′-
minors, where s′ ≤ s and m′ ≥ s′ + 1, and it holds for (s + 1) ×m-minors then it also holds
for (s + 1) × (m + 1)-minors. Since the property holds for every s × (s + 1)-minor the latter
would prove it for all s×m-minors with m ≥ s + 1.

Let B be an arbitrary s × (m + 1)-minor of C resting on the column c. It is splittable
according to the induction assumption and thus there exists a matrix D such that:

DB =

„
D11 D12

D21 D22

«
B =

„
B11 0 0
0 B22 b23

«
.

Here D11 is a s1× s1-matrix, and respectively, D22 is s2× s2, B11 is s1×m1, B22 is s2×m2,
b23 is s2 × 1.

Let B′ be a (s + 1) × (m + 1)-minor such that its first s rows coincide with those of the
minor B. Then

D′B′ =

0
@

D11 D12 0
D21 D22 0
0 0 1

1
AB′ =

0
@

B11 0 0
0 B22 b23

b31 b32 b33

1
A .
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Here b31 is 1× s1, b32 is 1× s2, b33 is scalar.
Consider (s + 1) × m-minor B′′ composed of all but the last column of B′. The matrix

D′B′′ is splittable and hence, either there exists a row d31 such that d31B11 + b31 = 0 or
there exists a row d32 such that d32B22 + b32 = 0. If the former is true, then B′ is obviously
splittable. In particular, it is the case when B11 is a column. Assume the latter is true and
B11 consists of at least two columns. Then

D′′B′ =

0
@

D11 D12 0
D21 D22 0

d32D21 d32D22 1

1
AB′ =

0
@

B11 0 0
0 B22 b23

b31 0 d32b23 + b33

1
A .

Consider an (s + 1) × m-minor B′′′ composed of all but the first column of B′. Since B′ is
splittable, there exists a row d33 such that d33B22 = 0 and d33b23 + d32b23 + b33 = 0. Thus,

D′′′B′ =

0
@

D11 D12 0
D21 D22 0

(d32 + d33)D21 (d32 + d33)D22 1

1
AB′ =

0
@

B11 0 0
0 B22 b23

b31 0 0

1
A ,

which proves that B′ is splittable.
We proved that any s×m minor of C resting on c is splittable. In particular, it means that

the matrix C is splittable contradicting to the assumption of the theorem. Hence for every
column c of the matrix C there exists a non-splittable s× (s + 1)-minor C̃ s ≥ 2.

It can be proved that for every two rows c1 and c2 of the matrix C there exists a non-
splittable s× (s + 1)-minor C̃, s ≥ 2, of the matrix C. The proof of this fact is similar to the
previous one and is omitted.

Now, we prove the theorem for the general case. Assume there are functions fi(xi), i =
1, . . . , n satisfying the equation Čf ′(x) = 0 on X∗.

Consider any function gi. There exists a non-splittable s × (s + 1) minor resting on i-th

column of C. Let C̃ be one of the minors with the largest s. Assume this minor rests on the
rows with indexes I. Now consider any elementary subproblem with the constraints matrix
C′, which includes the columns with indexes I. If the matrix C′ does not coincide with the
minor C̃ then the elementary subproblem is splittable. Split it and consider the subproblem
with the constraints matrix including the columns with indexes I. Proceeding in this way we
come to a non-splittable elementary subproblem with the constraint matrix C̃.

It can be shown that the functions fi satisfy the equation ˇ̃Cf̃ ′ = 0, where f̃ ′ consists of
the elements of f ′ with indexes I. For this problem the theorem has been already proven and
therefore the equation (57) holds for all i ∈ I.

The same procedure can be performed for all sets of indexes. The scalar r in (57) is the
same for all i = 1, . . . , n since for every i1 and i2 there exists an elementary subproblem, which
contains both gi1 and gi2 . Obviously, the constants qi must satisfy Čq = 0. ut


