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Abstract— This paper presents a new needle path planning
method for digital breast tomosynthesis biopsy. Needle insertion
planning into deformable tissue for breast biopsy procedure
is a challenging task because of the infinite possibilities
of insertion points. In addition, the lesion moves from its
original position when the radiologist introduces the biopsy
needle. The proposed approach couples Rapidly-exploring
Random Trees with Finite Element Simulation in order to
find an optimal path taking breast deformations into account.
Simulation results show that this method reduces the error
(i.e. the distance between the needle tip and the lesion) by 80 %.

I. INTRODUCTION

Breast cancer is one of the most common cancers among
women. Today, specialists estimate that one woman over 8
will be touched by a breast cancer [1]. After the screening
step, the radiologist may collect samples of suspect tissues
through a biopsy to evaluate if the lesion is benign or
malignant. This procedure can be guided by ultrasound
or by X-ray stereotaxy, depending on the type of lesions,
respectively masses or calcifications. In the US, 8% to 10%
of women who have a mammogram will need a biopsy [2].
In addition, mammography has been advancing considerably
along with the development of digital breast tomosynthesis
(DBT). The introduction of this modality can offer new
possibilities for screening and diagnosis but also for needle
biopsy procedures. The 3D reconstruction gives access to
spatial coordinates of any point in the breast instead of
having only the 3D coordinates of the target point with the
classic stereotaxy procedure.

Stereotactic biopsy system faces some drawbacks like non-
optimized needle path. The only criterion used to choose the
device path is the lesion position into a breast quadrant. This
non-optimized planning can have undesirable consequences,
like bleedings when the needle hits a vessel. Furthermore,
today stereotactic guidance devices can not be moved during
the needle insertion : the orientation of the needle along its
axis can not be controlled and only a translation along the
needle axis is allowed, reducing the range of possible needle
paths. Figure 1 illustrates the constraints of a stereotactic
guidance device.
In addition, even if the breast is compressed, the lesion moves
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Fig. 1. GE Healthcare Senographe DS Interventional and its stereotactic
positioner (vertical approach). Only a translation along the needle axis is
permitted.

from its original position when the radiologist introduces the
biopsy needle [3]. He doesn’t know exactly where the target
is when he performs the intervention and the samples he
takes can be non representative. The radiologist has to redo
the insertion causing patient discomfort.

Aware of this limitations, we want to find an optimal
insertion point and an optimal needle path taking into
account breast deformations and the kinematic and kinetic
constraints of the needle. This task is challenging because
of the infinity of possible initial needle configurations
qinit on the breast surface and because of the mutual
influence between the initial needle configuration qinit and
the goal needle configuration qgoal . Actually, we want to
find an optimal insertion point q∗init knowing the target
point coordinates i.e. to define a function f such as :
q∗init = f (qgoal), but because of breast deformations during
needle insertion, the final needle configuration depends on
the needle path: qgoal = g(qinit).

As in our application the rotation of the needle along its
axis is fixed during the insertion, we focus on non-steerable
symmetric stiff and bevel-tip flexible needles. We did not
consider steerable needles because the diameter of breast
biopsy needles is up to 9 Gauge, reducing considerably the
bending effect. This forces us to consider the bending of
the needle as an undesirable effect rather than as an asset to
reach the target.

The present paper is organized as follows. Section II
describes the related work. Then in section III, the proposed
approach to find an optimal needle path is detailed. In section
IV, tests that have been made to validate our method, are
presented. Finally, Section V explains the future works.



II. RELATED WORKS

Lots of research have been made related to needle
insertion and lesion displacements problems. Three different
categories of approaches have been investigated to address
these problems: motion planning methods, soft tissues
deformations simulation methods and methods combining
the two previous ones.

Needles can be considered as kinematic systems with
nonholonomic constraints [4]. Motion planning methods are
often used to determine 2D or 3D paths (a sequence of
insertions and direction changes) for steerable needles, such
as the needle tip reaches the specified target while avoiding
obstacles [5] [10].
Alterovitz et al. [5] [6] find optimal paths considering
uncertainty and discrete configuration states of the steerable
needle. However these methods are only applicable in a
planar situation.
The first 3D path planning method, using a diffusion-based
approach, was introduced by Park et al. [7] but only
considered obstacle free 3D environments.
Since then, other 3D approaches avoiding obstacles based
on various algorithms have been proposed : Duindam et al.
considered the problem as a dynamical optimization problem
with a discretization of the control space [8]. They also
proposed a solution based on inverse kinematics [9]. In [10],
Xu et al. developed a solution based on Rapidly-exploring
Random Trees (RRTs) that builds a global roadmap starting
from the goal configuration.
Nevertheless all these approaches are not directly applicable
to our problem. First of all, most of them assume a defined
initial configuration. In addition, the needle has more
degrees of freedom (rotation along its axis). And more
important, these approaches do not take into account soft
tissue deformations.

Meanwhile a lot of progress has been made in the field of
needle insertion simulation. Deformations that occur during
needle insertion are often analyzed with finite element (FE)
methods. DiMaio and Salcudean proposed a quasi-static
version of the FE methods in a planar environment [11].
Alterovitz simulated dynamic 2D deformations of soft
materials for rigid needle [12] and bevel-tip needle [13]
insertion. In 2004, a first 3D interactive rigid needle
insertion simulator Artisjokke was developed by Nienhuys
and van der Stappen [14] which can compute linear and
nonlinear material deformation. More recently a simulator
for both symmetric-tip stiff needle and bevel-tip flexible
needle insertion was presented by Chentanez et al. [15].
Both simulators are based on a stick-slip model of the
friction between the tissue and the needle shaft. However
these simulators are just used to visualize the soft tissue
deformations, they are not coupled with the notion of
optimized path.

The last category of approaches groups methods that

associate the two concepts described above. The first method
coupling motion planning with deformations analysis for
rigid needle insertion was proposed by Alterovitz et al.
[16] in 2003. It consists in testing all 2D trajectories in a
feasible range of insertion heights and depths and select the
one that minimizes the seed placement error (the Euclidean
distance between the final position of the seed and the final
position of the target) using a FE analysis. An improvement
of the method was proposed for bevel-tip needle insertion
using numerical optimization to plan the best path [13].
Di Maio and Salcudean also proposed a method coupling
FE analysis and needle motion planning based on potential
fields [17]. They translate and orient the base of the needle
to avoid obstacles and reach a target point. More recently,
Hauser et al. implemented a method to reach a 3D target
in deformable tissue implementing a feedback control and
using helical path [18].
The first two methods are limited to 2D problems. In the
other methods, the base of the needle moves to reach the
target. As explained above, in our application, we can not
rotate the needle or translate the needle except along its
axis during the insertion. Consequently all of these methods
are not good candidates to solve our problem.

Dehghan et al. in [19] proposed an optimization method,
based on iterative finite element simulations, that finds
an optimal needle path for brachytherapy. In this work,
similar constraints as tomosynthesis biopsy are considered.
At each iteration, the simulated path minimizes the
distance between the rigid needle and displaced targets.
Nevertheless, in this paper, the multiple targets define
a unique insertion point, whereas in our case, with one
target, there is an infinity of possible insertion points. In
addition, their numerical optimization doesn’t guarantee
the respect of the convergence criteria, even if in practice,
simulation results shows that it converges in a few iterations.

In this paper, we present a novel approach that couples
Rapidly-Exploring Random Tree (RRT) planning methods
[20] with finite element simulation to find an optimal path
for digital breast tomosynthesis biopsy.

III. PROPOSED APPROACH

Our goal is to find an optimal needle insertion point
and an optimal needle path constrained by the application
specificities: the needle can only be translated along its axis
and its orientation is fixed during the insertion, there is no
image feedback and we want to have a planning method
taking breast deformations into account.

The configuration space that we will consider in the
following section is the basis associated with the needle at
the needle tip:

q = (X ,Y,Z,φ ,θ ,ψ)

where (X ,Y,Z) is the position of the needle tip and (φ ,θ ,ψ)
are the Euler angles.



Fig. 2. Trajectories generated by non-steerable needles. Left: a symmetric
rigid needle follows a straight line. Right: a bevel-tip flexible needle follows
an arc of circle.

In our particular application, two types of needle
trajectories are generated. A symmetric-tip needle exerts
forces on the tissue equally in all directions so it follows
a straight line when it is inserted into homogeneous tissue.
A bevel-tip needle exerts forces asymmetrically and bends
in the direction of the bevel. It follows an arc of circle
whose curvature depends on the needle itself and tissue
characteristics [4]. Figure 2 describes the different types of
needle trajectories.

The proposed approach consists in three steps:
• Without taking breast deformations into account, a low-

cost needle path is computed.
• Then a family of optimal candidate paths is generated

from this low-cost path.
• Finally the needle insertions along these paths are

simulated in order to select the optimal one.
Each step will be detailed in the following subsections.

A. Insertion Point and Needle Path Research with Relaxed
Constraints

The first step of our approach is to find an optimal needle
path P′ with relaxed constraints: we are searching a path
from a region of the breast surface to the target considering
the breast as undeformable.

From the DBT reconstructed volume, a triangular mesh
of the patient breast surface BS can be generated. In our
application, the radiologist selects in a slice of the DBT
reconstructed volume the lesion (s)he wants to biopsy. The
3D position of the target L = (Xt ,Yt ,Zt) is calculated directly
from the number of the slice n and the i and j coordinates
of the selected pixel.
Knowing the geometry of the DBT system and the biopsy
positioner, we define a subset of BS, BS′ that the needle
can reach. Figure 3 illustrates the patient-specific graphic
environment, build from the DBT acquisition and the
knowledge of the DBT system.

We are also searching a path going from an initial config-
uration:

qinit = (Xi,Yi,Zi,φi,θi,ψi)

where (Xi,Yi,Zi) ∈ BS′, to a final configuration:

qgoal = (Xt ,Yt ,Zt ,φt ,θt ,ψt).

Fig. 3. Graphic interface of Simplan: in blue the compression paddle, in
gray the detector, in red the vessels and in pink BS′ a part of the breast
surface where the needle can be inserted.

Usual planning methods enable to find a path between an
initial configuration and a goal configuration. But in our case
we have an infinity of possible qinit : any point of the breast
surface with orientations (φi,θi,ψi) that can be accessed
by the needle tip are initial configuration candidates. In
fact, the goal configuration is not completely determined :
only the position of the lesion (Xt ,Yt ,Zt) is known, but the
orientation of the needle reaching the target, (φt ,θt ,ψt), has
to be determined.

The use of Rapidly Exploring Random Trees (RRT)
methods [20] with backchaining is particularly well-suited
for steerable needles path planning [10]. The backchaining
planning finds a path starting from the goal configuration
qgoal to the initial configuration qinit . The tree grows
backward from the target to explore the configuration space,
by applying negative control inputs.
We have adapted this algorithm to improve its efficiency for
symmetric stiff needles and bevel-tip flexible needles. Two
modifications are presented below.

To ensure the patient comfort, we have chosen to modelize
vessels like obstacles in the modified RRT algorithm. The
needle path is constrained to be at a security distance s from
the vessels:

s = D∗ (1+λ ) λ ∈ [0,1].

where D is the needle diameter and λ a security parameter.
We made synthetic vessels schematically representing the
surface vessel network [21].

In digital breast tomosynthesis biopsy, the orientation of
the needle is fixed during the intervention. We consider that
the insertion speed is constant. Therefore, the number of
control inputs u in the negative control space −U that we
can apply for a given configuration to generate is reduced to
only one. Given a desired input u, i.e. the needle insertion
speed, a path going from qgoal to BS′ can be generated
using the following algorithm.

Algorithm 1: the root R of the tree T is initialized as qgoal .
Instead of stopping T growing when it reaches a region like
in [10], T stops growing when it collides with the breast
surface BS′. A randomly sampled collision free state qrand
is generated and qnear the nearest neighbor in T is selected.
A new state is then generated but as the orientation of



Fig. 4. Step A: Generation of a set S of paths with the exploring version
of our algorithm.

qgoal is not fixed NEW STATE() becomes: if qnear = R,
the input u is applied to all possible goal configurations.
A set Qnew of possible new states is obtained and the
nearest neighbor of qrand in Qnew is found as qnew which is
totally determined. Else (qnear 6= R), we apply the input u to
qnear to have qnew. qnew is computed using a control input
function Gqnear(u), which depends on the needle type: for
rigid needles, Gqnear(u)=−u, for flexible needles, Gqnear(u)
depends on the needle curvature. Then qnew is added to T
using ADD NODE(). To ensure the fast convergence of the
algorithm, ADD NODE(), in addition to add the vertex and
the edge, marks qnear as not selectable except if it concerns
R. If a configuration is not selectable, it will not be taken
into account for the nearest reachable neighbor research.
Thus, there is no duplicate configurations in the tree T .

However, we have noticed that this algorithm was not
explorative : the number of branches of the tree was quite
small. An improvement of this method is exposed below.

Algorithm 2: in order to optimize the previous algorithm
and to take into account the mentioned limitation, the
NEAREST REACHABLE NEIGHBOR() function is
modified. It forces now the algorithm to choose the tree
root R as the nearest neighbour with a frequency f . The
consequence is a creation of new branches.
Table I details the modified RRT algorithm.

Our algorithm stops when it gives us a desired number of
possible paths S going from the breast surface to the lesion
avoiding the vessels. Figure 4 shows 30 paths found with
the modified RRT algorithm. The breast is seen from the
chest wall (right of Fig. 3).

Then, we have defined a cost function C. For each path P∈
S, a cost c is computed. C can depend on many parameters
based on the preference of radiologists: length of P, distance
to the vessels, reduction of image artefacts, proximity of the
chest wall, ... An example of cost function is:

C(P) =−α ∗minni∈P(d(ni,Obst))+(1−α)∗ l(P)

where ni are the nodes of the path P, d is a metric measuring
the distance between the nodes and the obstacles, l is the
length of the path and α a weighting factor.
The lowest cost path P′ is selected :

P′ = minP∈S(c)

TABLE I
EXPLORING VERSION OF THE MODIFIED RRT ALGORITHM

BUILD RRT(qgoal , BS′)
1. T = Tinit(qgoal)
2. while T ∩BS′ = /0
3. qrand ← RANDOM STAT E()
4. T ← EXTEND(T ,qrand )
5. END

EXTEND(T ,qrand )
1. qnear ←NEAREST REACHABLE NEIGHBOR(T ,qrand )
2. qnew← NEW STATE(qnear ,qrand ,U)
3. T .ADD NODE(qnear ,qnew,U)
4. return T

NEAREST REACHABLE NEIGHBOR(T ,qrand )
1. num← RANDOM([0,1])
2. if (num > f)
3. for all qi ∈ T
4. if qrand is reachable from qi and dist(qi,qrand ) < dist
5. qnear = qi
6. else
7. qnear = R
8. RETURN qnear

NEW STATE(qnear ,qrand ,U)
1. if qnear = R
2. for all qgoal orientations
3. qnew(o) = qgoal +Gqgoal (u)δ t
4. Qnew = ∪oqnew(o)
5. qnew← NEAREST NEIGHBOR(Qnew, qrand )
6. else
7. qnew = qnear +Gqnear (u)δ t
8. RETURN qnew

A first low-cost path P’ is then found with relaxed
constraints.

However, if we simulate the needle insertion for P′

taking into account the deformations of the breast, the
lesion will move. The final position of the needle tip
p′goal = (X ′f ,Y

′
f ,Z
′
f ) = (Xt ,Yt ,Zt) and the final position of the

lesion L′ = (X ′t ,Y
′

t ,Z
′
t) will be different.

To solve this issue, we propose to generate from P′ a
particular family Fp′ of paths and simulate the needle
insertion along them.

B. Multiple candidate paths generation

The goal now is to find an optimal path P∗ taking breast
deformations into account. We seek to minimize the error e
defined as the Euclidean distance between the final position
of the needle tip pgoal = (X f ,Yf ,Z f ) and the final position
of the target L f = (Xt f ,Yt f ,Zt f ).

We first simulate the insertion of the needle following the
low-cost path P′. The used technique for this simulation is
presented in the next section. The final position of the target
L′ = (X ′t ,Y

′
t ,Z
′
t) is recorded. We define a zone ZL′ around L′.

Then multiple paths are generated going from configurations
around q′init to configurations where pgoal ∈ ZL′ .The idea
is that for a path P similar to P′ the lesion will arrive in
this zone ZL′ because the lesion and the breast tissues will



Fig. 5. Step B: Generation of candidate paths family starting from ZL′ .

be subjected to similar forces. We also want to find many
possible paths around P′ and test them.
To obtain these multiple candidates, we use once again
a version of a backchaining RRT algorithm to generate
multiple trees growing from ZL′ . We discretize the zone to
get a set of new goal configurations. Then we find for every
qgoal ∈ ZL′ a path going from qgoal to the breast surface BS′.
We control that the difference of orientations between every
qgoal ∈ ZL′ : ogoal = (φt ,θt ,ψt) and q′goal : o′goal = (φ ′t ,θ

′
t ,ψ

′
t )

is small enough to have a path similar to P′. To achieve
that, the algorithm rejects any root configuration where
ogoal−o′goal > ε. For steerable needles, constraining only the
goal configuration orientation is not sufficient. The difference
of orientation between every node of P and its corresponding
node in P′ has to be small enough.
As these paths are similar to P′, the value of the cost function
should not be so different from the optimal one found without
breast deformations. Nevertheless, a candidate path P may
happen to be running very close to an obstacle (e.g., a vessel)
and will entail an increased cost. To insure that all candidate
paths have a reasonable cost, we can reject P if c is too high.

We finally get a family Fp′ of paths arriving in the zone of
interest with an acceptable cost. Figure 5 illustrates a family
of path generated from a lower-cost path P′ represented in
black. We will now simulate the needle insertion for every
path of this family.

C. Needle insertions simulation

We now want to link the motion planning and the
simulation of tissue deformation. We have chosen to
use Finite Element (FE) methods to simulate breast
deformations and needle insertion. FE methods are often
used for continuum mechanics and to analyze deformations
of anatomical parts [22].

The geometry input of our software is a patient specific
3D model of the breast. The DBT reconstruction allows
the creation of a patient specific tetrahedric mesh that we
generate using VTK.
We constrain the nodes linked to the chest wall and
to the detector to be motionless. We also associate
Young’s Modulus to the nodes of the FE mesh in order
to describe the material biomechanical properties. The
value of this coefficient can be found in [23]. In our
current implementation, we consider breast tissue as linear,
homogeneous and isotropic soft tissue. The hypothesis of

Fig. 6. Step C: Needle insertion simulation.

homogeneous breast tissue can appear as totally inexact
but research on breast tissue properties have shown that
when the breast is compressed enough the fat Young’s
Modulus increases becoming equal to the Young’s Modulus
of glandular tissue [24]. Azar argues that the stiffness
value increases because of Cooper’s ligaments that
compartmentalize the fatty tissue in the breast and prevent
it from being squeezed out of its location.

To compute soft tissue deformations, we modified Ar-
tisjokke simulator [14] to create a patient specific application.
Forces resulting from needle insertion deform the mesh and
we can automatically simulate the insertion of the needle for
every path P ∈ Fp′ . Figure 6 represents mesh deformations
during a needle insertion simulation. The software also mea-
sures automatically the distance between the final position
of the needle tip pgoal = (X f ,Yf ,Z f ) and the final position of
the lesion L f = (Xt f ,Yt f ,Zt f ) obtained for this path with the
deformations of the mesh:

e = (X f ,Yf ,Z f )− (Xt f ,Yt f ,Zt f ).

The optimal path is the one that minimizes the error:

P∗ = minP∈Fp′ (e).

We proposed a complete approach providing a solution to
our problem. A low-cost path with relaxed constraints P′ is
computed. Then multiple paths Fp′ are generated and tested
using the simulator. Finally, the best path P∗ that minimizes
the final distance between the needle tip and the target is
selected. In order to evaluate the efficiency of our approach,
a set of experiments detailed in next section are conducted.

IV. EXPERIMENTAL RESULTS

We implemented our new algorithm adapting and
coupling the classical RRT algorithm using the Motion
Strategy Library (MSL) and Artisjokke [14].
Even if our planning approach is still valid for steerable
needles, experimental simulations are conducted for non-
steerable needles (symmetric stiff and bevel-tip flexible
needles) in order to evaluate the presented method.

To evaluate the pertinence of our method, we performed
a DBT exam on a breast stereotactic phantom (CIRS). We
located 13 lesions inside this phantom and applied our
algorithm for all of them. We obtained a 26935 tetrahedra
mesh and we added synthetized vessels.



TABLE II
ALGORITHM EVALUATION

Lesion number 1 2 3 4 5 6 7
e’ (mm) 1.29 0.53 0.64 1.08 1.80 2.18 3.18
e* (mm) 0.24 0.11 0.18 0.38 0.83 0.64 0.52

Lesion number 8 9 10 11 12 13
e’ (mm) 2.41 1.08 1.45 2.35 1.73 1.38
e* (mm) 0.06 0.24 0.15 0.10 0.12 0.37

The performance of our method was evaluated by comparing
the error, e′ obtained for the optimal path without breast
deformations P′ and the error, e∗ generated by P∗ found
with our planning method. The comparison was made for
the 13 different positions of the target. The results, presented
in Table II, show that our method reduces the error meanly
by 80 % with a standard deviation of 13%.

The mean planning time is 15.3 seconds to generate a
set S of 30 paths (step A) and 5.0 seconds to generate a
family Fp′ of 27 paths (step B). In fact the planning time is
negligible in comparison to the simulation time. The time
needed to simulate a needle insertion is between 30 seconds
and 80 seconds, which means that the entire procedure takes
approximately 20 minutes on an Intel Core2 Duo 2.40GHz
5GB Ram PC.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a novel method combining
RRTs algorithm with FE analysis to find an optimal insertion
point and needle path in a 3D environment. The tissue
deformations is taken into account for the path choice.
This method uses DBT volumetric capabilities to create a
patient specific application. We have shown that with our
algorithm the error due to breast tissue displacements is
reduced meanly by 80 %.

In future work, we will build a specific method for
non-steerable needles, based on breast surface sampling,
instead of sampling randomly from the configuration space.
Part of our perspective work is to evaluate the simulation
accuracy. We plan to compare the simulation results with
the deformations obtained on an anthropomorphic biopsy
phantom. Up to now, we only used 3D synthetic vessels but
work is going to automatically segment the vessels from
the DBT slices in order to get realistic and patient-specific
obstacles.
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