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Abstract. We propose an integrated model of the saccadic circuitry in-
volved in target selection and motor command. It includes the Superior
Colliculus and the Basal Ganglia in both cortical and subcortical loops.
This model has spatial and feature-based learning capabilities which are
demonstrated on various saccade tasks on a robotic platform. Results
show that it is possible to learn to select saccades based on spatial in-
formation, feature-based information and combinations of both, without
the necessity to explicitly pre-define eye-movement strategies.

1 Introduction

For living organisms, the ability to filter out the complex noisy sensory envi-
ronment in order to focus attention on relevant events only is crucial. As this
work contributes to the Psikharpax project [1] – which aims at designing a bio-
inspired rat-like robot – we designed a robotic neuromimetic system capable of
triggering gaze orientation movement toward salient stimuli. The combination
of both Superior Colliculus (SC) and Basal Ganglia (BG) is known to be funda-
mental for this capability [2]. Dominey & Arbib [3–5] designed a now classical
system level model of the saccadic circuitry, which provided a global explana-
tion of the role and interactions of the implied brain regions. Nevertheless, some
of their design choices are now outdated given the accumulated neurobiological
data concerning this circuit. The present work thus proposes a new model of
the saccadic circuitry including the integration of more up-to-date SC and BG
models. This is the first neuromimetic model of saccadic circuitry with target
selection learning capabilities implemented on a robotic platform. This model
will be tested on various tasks, demonstrating its capability to behave correctly
and to learn to associate spatial or feature-based cues to a reward.

Neurobiology of the circuit. The brain saccadic circuitry involves a number of
cortical and subcortical areas, organized in two main pathways (Fig. 1, left). In
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Fig. 1. (Left) Saccadic circuitry in the macaque monkey, subcortical pathway in dotted,
cortical pathway in hatched. BG: basal ganglia; CBLM: cerebellum; FEF: frontal eye
fields; LIP: lateral intraparietal cortex; SBG: saccade burst generator; SC: superior
colliculus; TH: thalamus. (Right) Structure of the model , SCi : intermediate layers of
the SC; SCs: superficial layer of the SC; lower dashed box: [6] SC model, upper-right
dashed box: [7] CBTC model

the subcortical one, retinal input projects directly to the superficial layers of the
superior colliculus (SC), whose deep layers then projects to the saccade burst
generator (SBG), which drives the extraocular muscles. Two derivations are
added to this basic circuit: a superior colliculus-thalamus-basal ganglia-superior
colliculus (STBS) loop [8], which is probably involved in target selection, and the
superior colliculus-cerebellum-saccade burst generator circuit, probably involved
in the calibration of the system. The cortical pathway goes from the retina
through the cortical visual areas, to the lateral intraparietal cortex (LIP) and the
frontal eye fields (FEF); LIP and FEF then project to the subcortical pathway
through the SC (minor FEF-SBG projections also exist). Finally, a cortico-baso-
thalamo-cortical loop (CBTC) affects selection processes in the cortical pathway.

The visual cortex, the LIP, the FEF and the SC are organized in layers of
retinotopic maps representing the visual field. In the rat, the SC maps topology
seem to be linear [9], i.e. position of targets are encoded in a retinotopic space
with a linear mapping (this mapping is logarithmic in primate). As the SBG
is divided in four circuits – respectively responsible for the upward, downward,
leftward and rightward movements – the spatial encoding of the maps has to be
decomposed in burst signals, the so-called spatio-temporal transformation.

In the present work we propose a model of the saccadic circuitry including
the SC and the BG interacting through different loops. We then test this model
on a robotic platform in various saccade learning tasks involving spatial and
feature-based information. Finally, the proposed model is discussed with regard
to previous system level models of the saccadic circuitry.
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Fig. 2. Feature to location transformation. Assuming that each feature channel (e.g.
each color) is modulating the whole activity of a feature map (e.g. color map), each
perceived object is represented by a gaussian activity which location is retinotopically
preserved. The activity amplitude represents the feature amplitude (e.g. quantity of a
given color in the object).

2 Material & Methods

2.1 Model

Our model (Fig. 1, right) selects the target of the upcoming saccade based on
its location in the visual field and on its features; it can learn which locations
and features to favor, using temporal-difference learning (TD). It is then able to
generate the saccadic orders driving the motors.

The previously evoked problem of transformation from the topological en-
coding of the selected target position in the colliculus output (Motor map on
Fig. 1, right) into a two dimensional output command is solved using the supe-
rior colliculus model proposed in [6], simplified to use linear maps of the visual
field. This model is fed with a map merging both location and feature informa-
tion (Fusion map) – on which the most salient target is selected using a model
of the subcortical basal ganglia circuit – and is based on the basal ganglia model
proposed in [7], in which the cortical components have been removed and the
position of the thalamus changed. According to neuroanatomy of the STBS loop,
the target location information is provided by the visual apparatus of the robot
(see Sect. 2.2) and corresponds to the direct projections of the retina onto the
SC superficial layers. The visual feature detection is fed into the cortical part of
our model, where the selection of the relevant features is operated by a CBTC
loop using the [7] model3.

Concerning visual features, the model’s inputs are a family of maps, each of
them encodes in retinotopic coordinates the activity of neurons responding to a
specific feature only (Fig. 2, left). The selection of the visual features to favor
in the CBTC is based on feature channels receiving the sum of the activity of
the feature maps (Fig. 2, middle). On the output, the interaction with both FC

3 Available in Python on ModelDB http://senselab.med.yale.edu/modeldb/



and BG creates new modulated channels (FC tends to amplify channels and BG
tends to disinhibit only the maximum channel). The resulting channel amplitude
is the FC activity minus GPi activity, a strong channel will be amplified by FC
and fully disinhibited by BG, where a weak channel will be slightly amplified by
FC but inhibited by BG. Here, the learning capability allows the biasing of BG
disinhibition toward the rewarded features. Finally, normalized feature maps
are multiplied by these channel values in order to obtain modulated feature
maps. The global Fusion map which represents saliency (Fig. 2, bottom right) is
obtained by summing all the modulated feature maps and feeds the previously
described STBS loop.

The parameters of both BG models were adapted as to operate correctly
with the number of channels required by our implementation (720 in STBS and
16 in CBTC, see below).

The strength of the projections of the inputs of the basal ganglia circuits
(in gray on Fig. 1, right) is learnt using the basic implementation of the neu-
romimetic actor-critic algorithm proposed in [10]. This allows the system to learn
that a location (resp. a feature) is more rewarded than another one, and thus to
bias the selection process when multiple targets are perceived.
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Fig. 3. (Left) Classical Actor-Critic. (Right) Implementation of the Actor-Critic learn-
ing in the Basal Ganglia model. Eligibility traces, acting as memory, are not represented

In both STBS and CBTC loops, reinforcement learning is computed as follows
(cf. Fig. 3 (right)):
We first compute the TD-error δ

δ = Rt + (γ × Vt)− Vt−1 with Vt = WCritic · Inputt

Vt being the estimated value function at time t, WCritic the Critic input weights,
Inputt the input matrix and γ the discount factor, γ = 0.7 for all. We then
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Fig. 4. (Left) Picture of the Psikharpax robotic platform.(Right) Schematic of the
experimental protocol. Example for a fixation cue followed by a black screen and then
2 targets.

update the Critic weights using eligibility traces:

WCritic ←WCritic + η × δ × ECritic with ECritic ← α× ECritic + Inputt−1

η is the learning rate and is fixed to 0.0005 and α is the eligibility trace decay
factor fixed to 0.9 (these parameter values are identical in both BG circuits). The
Critic’s weights vector size is N , the size of the Input vector, so connexions are
“all-to-one”. We then compute the Action vector, which is the weighted input:

At = WActor · Inputt

Actor’s weights are updated following:

WActor ←WActor +η×δ×EActor with EActor ← α×EActor +Inputt−1⊗A′t−1

and A′t−1 = 1−GPit−1

Actor’s weights size is N × N , connexions are “all-to-all”. So here, compared
to “traditional” reinforcement learning (cf. Fig. 3 (left)), we can see that the
“States” are inputs to be selected, “Actions” are weighted inputs according to
the reward bias. The Basal Ganglia performs the selection on this weighted input
and then the GPi project back to the SC, eventually triggering an action.

2.2 Experimental settings

Experiments were conducted using our robotic platform Psikharpax (cf. Fig. 4,
left). This platform is equipped with 2 miniatures VGA cameras (Field of view of
approximately 60 ◦ horizontally and 45 ◦ vertically) each mounted on a pan-tilt
mechanism driven by servomotors. Visual processing was real time computed us-
ing 2 BVS BIPS4 processors. This system provides objects’ position and various
features such as movement (speed and direction), color, saturation, luminance
and edges (with edges orientations and corners) but for this experiment we only
used position and color.
4 http://www.bvs-tech.com
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Fig. 5. (A) Saccade task. (B) Fixation task. (C) Overlap task. System activity in F:
fixation cue. T: target cue. SCs F: SCs unit at the center of the field of view. SCs T:
SCs unit at the target position. GPi F: GPi unit corresponding to SCs F. GPi T: GPi
unit corresponding to SCs T. SCi: SCi unit corresponding to SCs T. SCi M: SCi unit
on the motor layer corresponding to SCi. E: eye position.

The visual input related to target positions is a retinotopic map composed
of 120× 23 lPDS neurons [7] with a linear geometry representing a sensory field
of 240 ◦ by 45 ◦ (notice that the total sensory field is wider than the field of view
for future usage). All the SC maps in the model have the same size, geometry
and neurons model. Each unit of the Striatum part of the BG (in the STBS
loop) receives input from 4 SC units. And reciprocally the GPi projects back
to 4 SC units, trying to mimic the “funnel” property of SC-BG connectivity
[11]. Hence the BG in the STBS loop is composed of 60 × 12 (720) channels.
In the non-spatial loop (CBTC), colors are decomposed in 16 values, thus the
corresponding BG entails 16 channels.

The behavior of the system was tested in a number of tasks by putting the
robot’s head in front of a 100cm diameter wide LCD screen at a distance of 65cm
(Fig. 4, right) on which we simply displayed colored fixation and targets cues
over a black background according to experimental protocols classically used
with animals [12].



3 Results

3.1 Basic behavior

We first tested the operation of the system by reproducing basic behaviors de-
scribed in [12], namely the “saccade task”, the “fixation task” and the “overlap
task”. These tasks where learned using a conditioning paradigm according to
which the system received a positive reward when it succeeded and a negative
one when it failed. One can notice that, as our model doesn’t contain any work-
ing memory, we cannot reproduce the “delayed task”. Results are summarized
in figure 5.

– Saccade task: The basic saccade behavior is well reproduced as, when the
target appears, the corresponding GPi unit disinhibits the SCi Motor area
and then triggers a saccade.

– Fixation task: The system succeeds in learning to continuously fixate the
fixation cue while ignoring the distractor. The activity of the GPi at the
location of the distractor shows no disinhibition, preventing any activity on
the motor layer of the SCi and thus no saccade.

– Overlap task: Here again the system successfully learned to perform this
task. The GPi unit corresponding to the target starts to disinhibit only when
the fixation cue disappears. The resulting saccade is not triggered when the
target appears (target+fixation) but when the fixation disappears (target
only).

3.2 Elaborated behavior

As the system behaves correctly on simple minimal tasks, we now proceed to
some more complex experiments.

We previously described our model as composed of 2 separated loops. The
STBS loop dealing with spatial knowledge and the CBTC loop dealing with
non-spatial knowledge. As both loops are provided with independent learning
capabilities, it should be possible to learn to associate a specific place or a specific
color to a reward.

Spatial reward: The corresponding procedure calls upon a black screen step
(2.5s) followed by a fixation step (4s) during which a central cue (red square)
appears until the robot fixates it. Then the fixation cue disappears and 2 targets
appear (two colored disks, one actual target and one distractor) for 6s maximum
until a saccade is done. Then the procedure restarts with the black screen and so
on. A positive reward is given if a saccade to the desired location is done (always
left or always right) and a negative one if a saccade to the wrong location is done.
Averaging saccades5 are not rewarded. Color of targets are randomly alternated
5 both target are selected simultaneously and provoke a saccade to the center of grav-

ity. This behavior is observed in animals.
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Fig. 6. A: Results of the “spatial reward” task. B: results of the “color reward” task.
C: Performance of the “spatial/color” task. D: details of types of errors in task “spa-
tial/color” for negative cases

(blue or green) between trials. Fig. 6A shows the mean results obtained from
10 runs of 100 trials each. We can see that the learning starts to correctly bias
the behavior from around the 50th trial, and stabilizes with a mean performance
of 80%. We can also notice that the learned behavior doesn’t fully block other
behaviors, as a low level of both wrong saccades and averaging saccades still
remains which is largely due to perception variability.

Non-spatial reward: The procedure for this task is the same than the pre-
ceding one, but we now reward a color based saccade (always green or always
blue with randomly alternating position between trials). Here again, the system
successfully learned the desired behavior quite similarly to the “spatial reward”
task (cf. Fig. 6B). However, the mean performance here is slightly lower and
variability higher. This can be explained by the competition between spatial
and non-spatial learning. Observed behavior shows that spatial learning seems
to have a stronger impact on behavior, so that having the correct colored target
consecutively located at the same place will trigger spatial learning which will
degrade further performance. Indeed, as the fusion map influenced by the CTBC



loop projects to the SBTS loop, the spatial learning has got the “final word”
and thus is more directly involved in behavior.

Combination of spatial and non-spatial: Here we combine the 2 preceding
tasks by rewarding only a specific color at a specific location. This experiment
seems more difficult as, in this case, spatial and non spatial learning are compet-
ing, but performance of good saccade in positive case – i.e. when a good saccade
is possible – rises quickly to near 95% and, after 100 trials, wrong saccades (sac-
cade to both wrong location and wrong color) almost never appear again (cf.
Fig. 6C). So, here, the difficulty is more to learn not to saccade when a negative
case appears – i.e. when no good saccade is possible – as the percentage of cor-
rect behavior in this case does not exceed 50%. Fig. 6D shows the details of the
type of error occurring in negative cases. After 100 trials, saccades to the wrong
location fall to near zero. Thus, at the end of the learning, most of the errors are
saccades to the right place but when the wrong color appears. This result is in
accordance with the “color task” where we observed a dominance of the spatial
loop (SBTS).

4 Discussion

We proposed an integrated model of Superior Colliculus and Basal Ganglia based
on recent models [6, 7]. To the best of our knowledge, this is the first system
level neuromimetic model of the saccadic circuitry implemented in a robot, that
includes subcortical selection of spatial information (in a STBS loop) and cortical
selection of features (in a CBTC loop) with learning capabilities.

Moreover we demonstrated basic functioning capabilities on classical target
selection tasks. Results have shown to be efficient although the proposed system
is purely reactive, i.e. doesn’t involve any working memory.

We also observed that in our model the spatial learning has a slightly stronger
impact on behavior than the non-spatial one, because it is more directly involved
in motor commands. Indeed, we can see in Figure 1 (right) that the spatial
learning occurs at a lower level, i.e. nearer the output motor map, and thus
has the “final word” on selection. Even if this property should be adjusted by
appropriate weighting, the question whether animals can learn more easily a
spatial reward than a non-spatial one has to be addressed, as this is what the
current version of our model predicts.

The basic learning algorithm used here proved to be sufficient when the
system had to learn simple sensorimotor associations with easily discriminable
stimuli and without long behavioral sequences leading to the reward. Naturally,
to deal with more complex situations, the learning algorithm must be improved
[13].

Moreover, following computational considerations, we decided to separate
the STBS and the CBTC learning capabilities. This solution has proved to be
efficient, even if our model clearly lacks a cortical spatial selection loop, involving



the FEF, which would allow cognitive control on top of our reactive model and
would probably affect the spatial predominance.

Contrary to previous work, our model does not explicitly contain any explo-
ration behavior module. Indeed at the beginning of the learning task no bias
already exists between targets and thus a systematic averaging saccade should
be done, but inherent noise in “real world” sometime provokes varying delay
in target detection or variations in color perception value. Explicit exploration,
which can be view as noise in selection is here replaced by implicit exploration,
i.e. natural noise in environment. So here, the robotic implementation naturally
solves the exploration problem allowing for a more parsimonious model. This
solution is not said to be the best one, but has proven to be sufficient for the
considered tasks.

4.1 Related work

The seminal model of Dominey & Arbib [3–5] has memory and sequence learning
capabilities that we have not replicated yet, and is thus more complete with
regards to these points. Nevertheless, it is outdated on at least two aspects. First,
while they integrate BG models in cortical loops only, we took into account the
now clearly identified STBS loop, which can operate faster than the cortical
circuitry. Second, their basal ganglia model is oversimplified: it is based on the
direct/indirect interpretation of the BG connectivity [14], from which it keeps
the direct pathway only. Consequently, simultaneously presented targets do not
interact in the BG circuitry, preventing the resolution of conflicts. Their SC
motor layer thus requires an ad hoc winner-takes-all mechanism. Our BG model,
using most of the known BG connectivity, solves such conflicts.

More recently, Brown et al. [15] proposed a model including a CBTC loop
dedicated to saccade strategy selection, and a STBS loop dedicated to target
selection. Here again they include working memory mechanisms that we have
not yet included. Their strategies specify whether the saccade will be based on
the fixation point, the target position or target features. We showed here that
such an explicit strategy selection is not necessary for the basic tasks they tested
and that we implemented, our cortical feature selection circuit modulating the
subcortical location selection circuit is sufficient. Moreover, their STBS does not
stand on its own as it is strictly driven by cortical inputs, while our decorticated
system is still able to learn and generate location- or fixation-based saccades.
The details of their BG circuitry also suffer from limitations, discussed in details
in [16].

Finally, Chambers et al. [11] proposed a model integrating both the subcorti-
cal and cortical pathways, where a single BG model dedicated to location-based
selection integrates FEF and SC inputs. Using the various positive feedback
loops of this circuitry, they show that manipulating the level of dopamine in
their BG model generates reaction time and saccade size modifications remi-
niscent of Parkinson’s disease patient behavior. Unfortunately, they rely on a
single thalamus module, receiving both SC and FEF inputs, while it is clearly



established that CBTC loops run through the ventral anterior and ventral lateral
nuclei and the STBS loops through the pulvinar and intralaminar nuclei.

4.2 Future work

It has been explained that, unlike previous works, the proposed model doesn’t
contain any working memory and thus cannot reproduce memory related tasks.
Working memory related activity has been demonstrated in quasi-visual cells in
the FEF, the LIP, the SC and the BG. Many models of these cells have been
proposed (e.g. [17, 18]) Therefore, we will add such a capability in future work.

Moreover, the SC is known to integrate vision, audition and tactile informa-
tion [19]. In this work we only used visual information in order to test our model,
but as our robotic platform is also equipped with auditory [20] and tactile [21]
capabilities, we intend to extend it to these modalities.
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13. Khamassi, M., Lachèze, L., Girard, B., Berthoz, A., Guillot, A.: Actor-critic mod-
els of reinforcement learning in the basal ganglia: From natural to artificial rats.
Adaptive Behavior 13(2) (2005) 131–148

14. Albin, R.L., Young, A.B., Penney, J.B.: The functional anatomy of disorders of
the basal ganglia. Trends Neurosci 18(2) (1995) 63–64

15. Brown, J., Bullock, D., Grossberg, S.: How laminar frontal cortex and basal ganglia
circuits interact to control planned and reactive saccades. Neural Netw 17(4)
(2004) 471–510

16. Girard, B., Berthoz, A.: From brainstem to cortex: Computational models of
saccade generation circuitry. Prog Neurobiol 77 (2005) 215–251

17. Droulez, J., Berthoz, A.: A neural network model of sensoritopic maps with pre-
dictive short-term memory properties. Proc Natl Acad Sci 88 (1991) 9653–9657

18. Mitchell, J., Zipser, D.: Sequential memory-guided saccades and target selection:
a neural model of the frontal eye fields. Vision Res 43 (2003) 2669–2695

19. Meredith, M.A., Stein, B.E.: Visual, auditory, and somatosensory convergence on
cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3)
(Sep 1986) 640–662

20. Bernard, M., N’Guyen, S., Pirim, P., Gas, B., Meyer, J.A.: Phonotaxis behavior
in the artificial rat psikharpax. In: International Symposium on Robotics and
Intelligent Sensors, IRIS2010, Nagoya, Japan (2010)

21. N’Guyen, S., Pirim, P., Meyer, J.A.: Tactile texture discrimination in the robot-
rat psikharpax. In: BIOSIGNALS 2010, Third International Conference on Bio-
Inspired Systems and Signal Processing, Valencia, Spain (2010)


