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Résumé Taking inspiration from neural principles of decision-making
is of particular interest to help improve adaptivity of artificial systems.
Research at the crossroads of neuroscience and artificial intelligence in
the last decade has helped understanding how the brain organizes rein-
forcement learning (RL) processes (the adaptation of decisions based
on feedback from the environment). The current challenge is now to
understand how the brain flexibly regulates parameters of RL such as
the exploration rate based on the task structure, which is called meta-
learning ([1] : Doya, 2002). Here, we propose a computational mechanism
of exploration regulation based on real neurophysiological and behavioral
data recorded in monkey prefrontal cortex during a visuo-motor task in-
volving a clear distinction between exploratory and exploitative actions.
We first fit trial-by-trial choices made by the monkeys with an analyti-
cal reinforcement learning model. We find that the model which has the
highest likelihood of predicting monkeys’ choices reveals different explo-
ration rates at different task phases. In addition, the optimized model
has a very high learning rate, and a reset of action values associated to
a cue used in the task to signal condition changes. Beyond classical RL
mechanisms, these results suggest that the monkey brain extracted task
regularities to tune learning parameters in a task-appropriate way. We fi-
nally use these principles to develop a neural network model extending a
previous cortico-striatal loop model. In our prefrontal cortex component,
prediction error signals are extracted to produce feedback categorization
signals. The latter are used to boost exploration after errors, and to
attenuate it during exploitation, ensuring a lock on the currently rewar-
ded choice. This model performs the task like monkeys, and provides a
set of experimental predictions to be tested by future neurophysiological
recordings.

1 Introduction

Exploring the environment while searching for resources requires both the
ability to generate novel behaviors and to organize them for an optimal effi-
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ciency. Besides, these behaviors should be regulated and interrupted when the
goals of exploration have been reached : a transition towards a behavioral state
called exploitation should then be implemented. Previous results on neural bases
of these functions in the frontal cortex showed crucial mechanisms that could par-
ticipate both to reinforcement learning processes [2] and to the auto-regulation
of exploration-exploitation behaviors [3]. Several computational and theoretical
models have been proposed to describe the collaborative functions of the anterior
cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) - both
belonging to the prefrontal cortex - in adaptive cognition [4, 5, 6]. Most models
are based on the hypothesized role for ACC in performance monitoring based
on feedbacks and of DLPFC in decision-making. In exploration, challenging, or
conflicting situations the output from ACC would trigger increased control by
the DLPFC. Besides, several electrophysiological data in non human primates
suggest that modulation of this control within the ACC-DLPFC system are sub-
served by mechanisms that could be modelled with the reinforcement learning
(RL) framework [2, 7, 8]. However, it is not clear how these mechanisms inte-
grate within these neural structures, and interact with subcortical structures to
produce coherent decision-making under explore-exploit trade-off.

Here we propose a new computational model to formalize these frontal cor-
tical mechanisms. Our model integrates mechanisms based on the reinforce-
ment learning framework and mechanisms of feedback categorization - relevant
for task-monitoring - in order to produce a decision-making system consistent
with behavioral and electrophysiological data reported in monkeys. We first em-
ploy the reinforcement learning framework to reproduce monkeys exploration-
exploitation behaviors in a visuo-motor task. In a second step, we extract the
main principles of this analysis to implement a neural-network model of fronto-
striatal loops in learning through reinforcement to adaptively switch between
exploration and exploitation. This model enabled to reproduce monkeys beha-
vior and to draw experimental predictions on the single-unit activity that should
occur in ACC and DLPFC during the same task.

2 Problem-solving task (PST)

We first use behavioral data recorded in 2 monkeys during 278 sessions (7656
problems ≡ 44219 trials) of a visuo-motor problem-solving task that alternates
exploration and exploitation periods (see Fig.1A). In this task, monkeys have to
find which of four possible targets on a screen is associated with reward. The
task is organized as a sequence of problems. For each problem, one of the tar-
gets is the correct choice. Each problem is organized in two succesive groups of
trials ; starting with search trials where the animal explores the set of targets
until finding the rewarded one ; Once the correct target is found, a repetition
period is imposed so that the animal repeats the correct response at least three
times. Finally, a cue is presented on the screen and indicates the end of the
current problem and the beginning of a new one. Data used here were recorded
during electrophysiological experiments, after animals had experienced a pre-
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training stage. Thus, monkeys are particularly overtrained and optimal on this
task. Monkey choice, trial correctness and problem number are extracted and
constitute the training data for the reinforcement learning model.
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Figure 1. Monkeys had to find by trial and error which target, presented in a set of four,
was rewarded. A) Monkeys performed a set of trials where they chose different targets
until the solution was discovered (search period). Each block of trials (or problem)
contained a search period and a repetition period during which the correct response
was repeated at least three times. A Problem-Changing Cue (PCC) is presented on the
screen to indicate the beginning of a new problem. B) Action value reset in the model
at the beginning of each new problem.

3 Behavior analysis with the Reinforcement Learning
framework

3.1 Theoretical model description

We use the reinforcement learning framework as a model of the way monkeys
learn to choose appropriate targets by trial-and-error [9]. The main assumption in
such framework is that monkeys try to maximize the amount of reward they will
get during the task. This framework assumes that animals keep estimated action
values (called Q-values) for each target (i.e. Q(UL), Q(LL), Q(UR) and Q(LR)).
It also assumes that monkeys decide which action to perform depending on these
values, and update these values based on feedbacks (i.e. the presence/absence of
reward) at the end of each trial. We used a Boltzmann softmax rule for action
selection. The probability of choosing an action a (either UL, LL, UR or LR) is
given by

P (a) =
exp(βQ(a))∑
b exp(βQ(b))

(1)
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where β is an exploration rate (β ≥ 0). In short, when β is low (close to 0),
the contrast between action values is decreased, thus increasing the probability
to select a non optimal action (exploration). When β is high, the contrast is
high and decision-making becomes more greedy. We differently use βS and βR
parameters on search and repetition trials so as to allow different shapes of the
Boltzmann function on these two periods. In other words, βS and βR were used
as two distinct free parameters to see if they would converge on different values,
hence indicating meta-learning through the use of two different exploration rates
by the animal.

At the end of each trial, the action value is updated by comparing the pre-
sence/absence of reward r with the value expected from the performed action
according to the following equation

Q(s, a)← Q(s, a) + α(r −Q(a)) (2)

where α is the learning rate of the model (0 ≤ α ≤ 1). Similarly to previous
work [2], we generalize reinforcement learning to also update each non chosen
action b according to the following equation

Q(b)← (1− κ) ·Q(b) (3)

where κ is a forgetting rate (0 ≤ κ ≤ 1).
Finally, we add an action-value reset at the beginning of each new problem,

when a PCC cue appears on the screen. This is based on the observation that
monkeys almost never select the previously rewarded target, and have indivi-
dual spatial biases in their exploration pattern : they often start exploration by
choosing the same preferred target (see Fig.1B).

3.2 Simulation of the RL model on monkey behavioral data

The reinforcement learning model is simulated on monkey data, that is, at
each trial, the model chooses a target, we store this choice, then we look at the
choice made by the animal, and the model learns as if it had made the same
choice. At the next trial, the model makes a new choice, and so on. At the
end, we compare the sequence of choices made by the model with the monkey’s
choices. With this method, the model learns based on the same experience as
the monkey. Thus the choice made at trial t becomes comparable to the animal’s
choice at the same trial because it follows the same trial history {1...t− 1}. For
each behavioral session, we optimize the model by finding the set of parameters
that provides the highest likelihood of fitting monkeys choices. This optimization
leads to an average likelihood of 0.6537 per session corresponding to 77% of the
trials where the model predicted the choice the monkeys actually made. Fig.2
shows simulation results on a sample of 100 trials for 1 monkey.

Interestingly, we find that the distribution of each session’s βS used to set
the exploration rate during search periods is significantly lower than the distri-
bution of βR used for repetition periods (ANOVA test, p < 0.001). The mean
βS equals 5.0 while the mean βR equals 6.8. This reveals a higher exploration
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Figure 2. Simulation of the reinforcement learning model on 100 trials. Each color is
associated with a different target (UL, LL, UR, LR). The top line denotes the problem
sequence experienced by both the monkey and the model. Black triangles indicate cued
problem changes. The second line shows the monkey’s choice at each trial. Curves show
the temporal evolution of action values in the model. Non selected target have their
value decrease according to a forgetting process. These curves also show the action
value reset at the beginning of each problem, the decrease of incorrect selected targets
value, and the increase of the correct targets value once selected by the animal. The
bottom of the figure shows choices made by the model based on these values.

rate in monkeys’ choices during search periods. In addition, we found an ave-
rage learning rate around 0.9 for the two monkeys and a smaller forgetting
rate (mean : 0.45). This suggests that reinforcement learning mechanisms in
the monkey brain are regulated by parameters that were learned from the task
structure. In contrast, raw reinforcement learning algorithms such as Q-learning
usually employs a single fixed β value, and need to make errors before abando-
ning the optimal action and starting a new exploration phase. In the next section,
we extract these principles to propose a neural-network model integrating such
reinforcement learning and task monitoring mechanisms.

4 Neural network model

4.1 Reinforcement learning processes

We propose a neural network model in order to propose a computational hy-
pothesis concerning the modular organization of these processes within cortical
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networks. Our model extends previous models of cortico-striatal loops which are
known to be crucial neural substrates for reward-based learning and decision-
making [10, 11]. The principle novelty here is to have the integration of rein-
forcement learning and task monitoring within the ACC-DLPFC system that
produces explore-exploit behaviors. In our neural network, dopaminergic (DA)
neurons from the Ventral Tegmental Area (VTA) compute a reward prediction
error following equation 2, consistently with DAs supposed role in reinforcement
learning [12]. DA signals are used to update action values encoded within the
ACC, consistently with previous work [7]. These action values are then sent to
DLPFC which makes decision of the target to choose and biases action selec-
tion in the striatum. Similarly to classical basal ganglia models but not detailed
here, appropriate action in the striatum is selected by desinhibiting the thala-
mus through the substantia nigra pars reticulata [13, 14]. Finally, the thalamus
projects to the motor cortex which drives behavioral output, and which sends
efferent copies to the ACC in order to update only relevant action through rein-
forcement learning (fig.3).
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Figure 3. Neural network model. Visual
input (targets presented on the screen)
is processed by the parietal cortex and
sent to the ACC-DLPFC system (colo-
red in grey) which performs reinforcement
learning (RL) to rapidly adapt choices by
trial-and-error during the search period. A
specific visual signal is used to indicate re-
ward delivery, representing juice obtained
by monkeys. According to RL principles,
this visual signal is translated by VTA into
a reinforcement signal which changes ac-
tion values within the ACC. In parallel,
this reinforcement signal is used to regu-
late the level of exploration with MV.

With such organization, the system is yet purely dedicated to reinforcement
learning. In order to add task monitoring mechanisms, we take inspiration from
additional results measured in the PST task. In [8], reaction times were obser-
ved to decrease gradually after errors during the search period, to raise sharply
after the first correct trial, and to remain high during repetition (fig.4A-B). The
exact opposite pattern was observed at the level of the average activity measu-
red in DLPFC neurons ([15] ; fig.4C). These patterns suggest an integration of
feedbacks used to update a control or attentional level, and a state change of
the system from exploration to exploitation. This resembles the vigilance level
employed in [16]’s theoretical model to modulate the level of activation of a glo-
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bal workspace in charge of solving the task. In the next paragraph, we provide
a computational hypothesis on the way the ACC could evaluate such kind of
vigilance level to modulate the level of control and exploration in DLPFC.

4.2 Integrating task monitoring signals within the neural network

In order to regulate exploration based on feedbacks obtained from the envi-
ronment, we add to our ACC component a second population of neurons dedica-
ted to feedback categorization as described in the monkey ACC in the same task
[8]. In our model, these neurons receive the same dopaminergic reward prediction
error signals as ACC action value neurons. The difference resides in the influence
of such DA signals on feedback categorization neurons. The latter either are inhi-
bited by DA signals and thus produce responses to errors (ERR) or are excited
by DA signals and thus produce responses to correct trials (COR). The high
learning rate used in the model to fit behavioral data in section 3 results in a
strong response of COR neurons to the first reward and in a smaller response
to subsequent ones. This produces neurons responding to the first correct trials
(COR1) as observed by [8]. Fig.5 shows a simulation of these neurons response
patterns. COR and ERR signals are then used to update a modulatory variable
(MV ) according to the following equation :

MV ←MV + α+ · δ+ + α− · δ− (4)

Where δ+ and δ− represent the response of correct and error neurons respectively,
while α+ and α− are synaptic weights set to − 5

2 and 1
4 for the considered task.

MV is constrained between 0 and 1. This equation makes MV be :
– sharply decreased after a correct trial (COR) ;
– increased after an error (ERR) ;
– increased after presentation of the problem changing cue (PCC). Although

we did not yet study how the model works during pretraining phases of this
task (i.e. habituation phases preceding electrophysiological recordings), we
observed that before the animal learns what the PCC means, the presen-
tation of this cue is very often followed by an error - because the animal
persists in repeating the same choice while the problem has changed. Thus
we consider here that the PCC has been associated to an error during the
pretraining phase and consequently produces an increase of MV each time
it occurs during the task.

Importantly, MV is used to modulate the exploration rate and the gain in
the DLPFC. The first function is assured in the following manner :

βt =
ω1

(1 + exp(ω2 ∗ (1−MVt) + ω3))
(5)

Where ω1, ω2 and ω3 are parameters respectively equal to 10, -6 and 1.
Such function is a sigmoid which inverses the tendency of MV (see fig.5) and
transforms a value between 0 and 1 (for MV ) into a value between 0 and 10 (for
β) according to table 1.
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Figure 4. (A-B) Reaction times during the PST task show a progressive decrease along
the search period, and a sharp change during repetition. Adapted from [8]. C) Average
activity in the dorsolateral prefrontal cortex show a similar (inversed) pattern. Adapted
from [15].

MV 0.00 0.25 0.50 0.75 1.00

β 9.9 9.7 8.8 6.2 2.7

Table 1. MV effect on β following equation (5) with a = 10, b = -6, c = 4.4

The second function is assured by weighting DLPFCs activity by multiplying
it by MV (which is always inferior or equal to 1). As a consequence, a low
MV produces a high β (almost no exploration) and a low DLPFC activity so
as to focus and lock the DLPFC on performing the action with the highest
value ; whereas a high MV produces a low β (higher stochasticity in decision-
making, thus more exploration) and a high activity in DLPFC so as to enable
the performance of non optimal actions.

The model can perform the task like monkeys, alternating between search
and repetition phases. Fig.5 shows the activation of different neurons in the
model during a sample simulation.

5 Discussion and conclusion

We implemented a reinforcement learning model that can monitor exploration-
exploitation trade-off in a monkey visuo-motor task. The model helped us for-
mally describe monkey behavior in a task involving clear distinction between
search and repetition trials. In addition, the model is based on existing ana-
tomical and physiological properties of the monkey brain. Properties of MV
modulation in our model are consistent with data in human and in animal sho-
wing a higher involvement of ACC-DLPFC when the task is demanding or when
it involves conflict resolution [17]. Moreover, our results are consistent with pre-
vious electrophysiological work suggesting a role of the ACC-DLPFC system
in performance monitoring [5], and in reinforcement learning [2, 7]. Our mo-
del enables to draw a list of experimental predictions that have to be tested
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Figure 5. Neural network model simulation during 2 consecutive problems. Black tri-
angle indicate cued problem changes.

by simultaneously recording Anterior Cingulate Cortex (ACC) and dorsolateral
Prefrontal Cortex (DLPFC) neurons in this task :

1. There should exist MV neurons in ACC. Such MV neurons would have a par-
ticular profile of activity : progressive increase of activity during the search
period, drop of activity after the first correct response, activity remaining
low during the repetition period (as shown on fig.5).

2. MV modulation should effect only on DLPFC action value neurons and not
on ACC action value neurons. In the model, we made the choice to keep
original action values (that is, not altered by the MV modulation) in the
ACC so as to have part of the system properly perform the reinforcement
learning algorithm without perturbation, so as to ensure convergence.

3. There should be a higher global spatial selectivity - which reflects the degree
to which neurons discriminate choices of spatial targets on the touch screen
[15] - in DLPFC than in ACC due to the decision-making process based on
the softmax function (which increases contrasts between action values when
β is high).

4. There should be an increase of spatial selectivity in DLPFC but not in
ACC during the repetition period. Such increase of spatial selectivity in
DLPFC neurons in the model is due to the modulatory effect of MV on the
β parameter used in the softmax function.

Performance of the neural-network model enables a robotics arm to repro-
duce monkey behavior in front of a touch screen. Such a pluridisciplinary ap-
proach provides tools both for a better understanding of neural mechanisms of
decision making and for the design of artificial systems that can autonomously
extract regularities from the environment and interpret various types of feed-
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backs (rewards, feedbacks from humans, etc...) based on these regularities to
appropriately adapt their own behaviors.

Future work will consist in modelling how RL parameters are progressively set
during familiarization with the environment. Such goal can be achieved by using
the model to predict day-by-day behavior observed during monkey pretraining.
This will help us understand the dynamics of meta-learning which enable animals
in this task to autonomously learn that a high learning rate is relevant and that
clear transition between exploration and exploitation are required - based on the
extracted structure of task.
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