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Abstract: In this work we regard the problem of trajectory planning for aggressive maneuver
of a wheeled mobile robot on loose surface. Our approach is inspired by previously reported
analysis of professional rally racers actions during sharp turn. Using numerical simulations we
obtain a set of solutions representing all possible compromises between speed and accuracy of
maneuver. We choose a particular solution and extend it by producing a continuous mapping
from desired trajectory turn angles to parameters of the control inputs.
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1. INTRODUCTION

Autonomous field robotics is an attractive and challeng-
ing area of research. The problems range from obstacles
avoidance, path planning and trajectory tracking under
space limitations, to enhancement of the obstacle climbing
capabilities on highly uneven terrain. The most famous
application, of such researches is the planetary explo-
ration. In most cases, the considered velocities are low
and involve only small dynamical perturbations on the
system. Thus, most of the developed approaches are based
on kinematic modeling. Since recently research projects
started to analyze problems induced by the locomotion
of ground vehicle at higher velocity (about 10 m/s). One
of the famous milestone among past researches was the
Great DARPA Challenge that took place in 2005 (see
Buehler et al. (2007)). This kind of challenge requires to
find a way to deal with the problems, like locomotion on
natural terrain, the control of highly dynamic behavior,
the presence of large wheel-ground slippage, problems of
perception at high rate frequency, the planning of feasible
reference trajectory, etc.

In this paper we focus on the problem of path planning
on slipping terrain that allows for aggressive maneuvers
at high velocity. The general approach of our work is to
control a wheeled mobile robot at high velocity, performing
steering maneuvers by taking into account the wheel-
ground slippage. We expect that admitting significant
slippage angle during vehicle displacement would allow to
noticeably increase the velocity of the maneuver.

In a past work, we have proposed methods to stabilize the
control of a mobile robot performing a path tracking task
on a slipping terrain (see Lucet et al. (2008b), however
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see also Peters and Iagnemma (2008)). In this method the
robot was driven by standard kinematic controller, but
the final control inputs were corrected by an algorithm
that stabilizes the yaw dynamics. The method has been
extended to skid-steering robots using a sliding mode
controller (see Lucet et al. (2008a)). This method allows
to deal with the slippage when the stabilized trajectory is
produced by a classical controller. An evident limitation
of that work is that it does not allow to take advantage of
slippage effect in order to produce aggressive maneuvers
like over-steer. In this work, we propose a methodology
that deals with the problem of feasible dynamic trajectory
planning, i.e., that is consistent with the dynamics of the
vehicle.

Recently few attempts were made to approach the problem
of highly maneuver steering by getting inspiration from the
performance of professional rally drivers (see Velenis et al.
(2007a,b)). The driver’s actions were recorded during a
sharp steering maneuver with 90 degrees turning angle.
The authors proposed a reasonable approximation of the
driver’s actions: the steering, the break and the throttle
were shown to be nearly piecewise linear functions of time.
Using a computer model the authors have shown that such
approximation produces vehicle motion similar to the one
exhibited by rally racers.

In order to use the solutions proposed by Velenis et al.
(2007a) as a reference trajectory for the vehicle it is nec-
essary to have a set of possible maneuvers including solu-
tions for different trajectory turn angle, road conditions,
etc. In fact, one needs a mapping from the set of task
conditions to the set of corresponding maneuvers. It is
highly desirable that such mapping is sufficiently smooth.
Indeed, it may happen, for example, that in course of a
maneuver the initial estimation of the road turn angle



Fig. 1. Schematic representation of the robot.

is discovered to be incorrect and thus another maneuver
should have been used. In case of continuous mapping
the discrepancy between the performed and the necessary
maneuver is not so dramatic and thus, a correction can
be made. In addition, the continuous mapping could be
used for interpolation of solutions absent in the initial
set. The ability of skilled human rally drivers to perform
maneuver in different conditions make us think that such
a continuous mapping may be possible.

In the current study we aim towards adapting the solution
proposed in Velenis et al. (2007a) for a mobile robot
with two independent steering wheels and four driving
wheels. We want to extend the obtained solution for
a range of the angles of the road turn and thus to
obtain a continuous mapping from the turn angles to the
parameters of the control inputs. For this purpose, we
first obtain a mathematical model of the robot, then find
a solution for a given road turn angle, e.g 90 degrees,
and finally extend the solution continuously for other
turn angles. To obtain the solutions we use algorithms of
stochastic optimization.

2. MATHEMATICAL MODEL

For our purpose we need a computationally inexpensive
model of a mobile robot, which at the same time captures
the main features of its behavior. Currently we are only
interested in the robot’s movement when all four wheels
stay in contact with the ground. For the sake of simplicity
we regard only planar motion of the robot (see Fig. 1).

The position of the robot can be defined by the location
of its center of mass x, y and the heading angle ϕ between
the x axis and the longitude axis of the robot. The motion
of the robot satisfies the equations:

ẋ = Vm cosϕ− Vl sinϕ
ẏ = Vm sinϕ+ Vl cosϕ
ϕ̇ = ω

Jω̇ = T

MV̇m = Fm +MωVl
MV̇l = Fl −MωVm

(1)

where ω is the angular velocity of the robot’s trunk, Vm
and Vl are the projections of the linear velocity of the
robot’s center of mass on the medial (longitude) and lateral
axes respectively, Fm, Fl and T are the total medial and
lateral forces and the total torsion torque, defined as the
following:

Fm = Fm1 cosα1 − Fl1 sinα1 + Fm2 cosα2−
Fl2 sinα2 + Fm3 + Fm4

Fl = Fl1 cosα1 + Fm1 sinα1 + Fl2 cosα2+
Fm2 sinα2 + Fl3 + Fl4

T = L(−Fm1 cosα1 + Fl1 sinα1 + Fm2 cosα2−
Fl2 sinα2 − Fm3 + Fm4)+
d(Fl1 cosα1 + Fm1 sinα1 + Fl2 cosα2+
Fm2 sinα2 − Fl3 − Fl4)

Fmi, Fmi are lateral and medial projections of the tan-
gential forces of wheel-road interaction for each wheel
reference frame (see Fig. 1), α1, α2 are the steering angles
of the left and right wheels, respectively.

For the forces Fmi and Fli we use the brush model,
which is relatively simple computationally, but at the same
time captures main features of the wheel-road interaction.
The details of the brush model can be found in Pacejka
(2005). Roughly, the medial and lateral tangential forces
are defined as nonlinear function of the lateral and medial
projections of the slippage velocity, Vsli and Vsmi, that is
the velocity of the contact point of the wheel (in case of
no sliding this velocity is zero):

Fmi = µFnif(Vsmi/Vi)
Fli = µFnif(Vsli/Vi)

where Vi is absolute value of the velocity of the center
of i-th wheel, Fni is the normal force at the i-th wheel
contact point and µ is the coefficient of Coulomb friction.
The function f depends on the tangential stiffness of the
tire cp.

To determine the normal forces we used the method
described in Velenis et al. (2007b). The resultant normal
forces for i-th wheel is given by the equations:

Fni =
M

4dL
(dLg + hLiV̇l + hdiV̇m) (2)

where h is the height of the center of mass of the robot.

The equation (2) describes weight redistribution caused by
the acceleration of the center of mass of the robot in case
when the pitch and roll angles of the robot are close to zero.
However, to compute the medial and lateral acceleration
one must provide the total medial and lateral tangential
forces, which, according to the brush model, depend on the
normal forces themselves. In order to solve this problem
we made an assumption that the weight redistribution (2)
does not happen instantly but with a characteristic time τ ,
which roughly correspond to the characteristic time of the
suspension system of the robot. We appended the dynamic
equations of the robot (1) with the following:

τ ȧl = Fl/M − al
τ ȧm = Fm/M − am

and used the values al, am instead of V̇L, V̇m in the
equation (2).

For sake of simplicity, we ignored the dynamics of the
wheels and assumed that the velocity controller in each
wheel tracks the desired wheel rotation velocity perfectly.
We make the same assumption regarding the functioning
of the steering system. Thus, 2 steering angles and 4
wheel rotation velocities represent the control inputs to
the model. In order to reduce the dimension of the control
inputs we regarded a steering angle α of the front wheels



Table 1. Parameters of the model.

M 40 kg

J 3 kg·m2

L 0.50 m

d 0.25 m

h 0.10 m

µ 0.6

cp 105 N/m2

τ 0.05 s

and the linear velocities of the front and rear wheels, VF ,
VR, correspondingly. The steering angles and velocities of
the wheels were computed using Ackermann rule:

Rω1 = VF

[(
1− d

2L
sinα

)2

+ sin2 α

]1/2
Rω3 = VR

(
1− d

2L
sinα

)
α1 = arctan

sinα

1− d
2L sinα

(3)

where ω1, ω3 are the left front and left rear wheel angular
velocities; α1 is the steering angle of the left front wheel;
R is the wheel radius. The formulas for right wheels and
steering angle are the same as (3), with the exception that
every “plus” is substituted with “minus”.

The parameters of the model used in the simulations are
presented in Tab. 1.

3. 90 DEGREES TURN

We first regard the case of 90 degrees turn. We assume
that the desired path is composed of three parts: two
linear parts orthogonal to each other and one circular
part connecting them (see Fig. 4). The robot is located
30 m from the point of turn, directed towards that point
and has initial velocity of 10 m/s. The simulation is run
for 10 seconds, during which the robot is controlled in
a feedforward manner. The goal is to perform a ma-
neuver, minimizing the deviation from the desired path
and maximizing the average movement velocity. These
two objectives are clearly conflicting. To deal with the
conflicting objectives, one usually fixes extremal value of
one of them, for example, the maximum deviation, at a
reasonable value and then solves the optimal problem with
single objective and the additional inequality constraint.
A significant drawback of this approach is that the choice
of the extrema value is to great extent arbitrary, that
provokes questions like how good the choice is and how
the result of optimization depends on it. Another way
to approach this problem is to use the framework of the
multiobjective optimization.

Recent research in the stochastic optimization proposed
numerous algorithms to simultaneously optimize several
objectives (see Deb (2001)); most of them rely on the
concept of Pareto dominance, defined as follows:

A solution p∗ is said to dominate another solution p, if
both conditions 1 and 2 are true:

(1) the solution p∗ is not worse than p with respect to all
objectives;

(2) the solution p∗ is strictly better than p with respect
to at least one objective.

The non-dominated set of the entire feasible search space
is the globally Pareto-optimal set (Pareto front). It repre-
sents the set of optimal trade-offs, that is solutions that
cannot be improved with respect to one objective without
decreasing their score with respect to another one.

Pareto-based multi-objective optimization algorithms aim
at finding the best approximation of the Pareto front, both
in terms of distance to the Pareto front and of uniformity
of its sampling. The whole set of optimal trade-offs is found
using only one execution of such algorithm and the choice
of the final solution is left to the researcher/engineer.
Compared to classic approaches to multi-objective opti-
mization, which most of the time aggregate objectives
(e.g. with a weighted sum) then rely on a single-objective
optimization algorithm, multi-objective optimization algo-
rithm don’t require to tune the relative importance of each
objective. Moreover, depending of the shape of the Pareto
front, some optimal trade-offs cannot be found using the
most classic aggregation methods (see Deb (2001)).

Typical algorithms of multiobjective optimization first
generate a set of N random points, called a population.
Then they enter a loop of four steps until a convergence
criteria is met (in this work, a fixed number of iterations
is performed):

(1) Sort population with respect to dominance such
that non-dominated candidate solutions are ranked
1, those which are only dominated by non-dominated
ones ranked 2, etc. Candidate solutions that are at-
tributed the same rank are then sorted with regard
to a diversity measure (in objective space) to favor
solutions in the less crowded parts.

(2) Keep only the best N solutions (during the first
iteration, this step is useless).

(3) Use the sorted population to generate new candidate
solutions by perturbing the kept ones (e.g. by adding
a Gaussian noise).

(4) Merge the newly generated candidate solutions and
the previous population; this gives the new popula-
tion.

In this work, we employed NSGA-2 (see Deb et al. (2000)),
one of the most efficient stochastic multi-objective opti-
mization algorithm (see Zitzler et al. (2000)); it follows the
previously introduced steps. The computations were per-
formed using the Sferes v2 framework described in Mouret
and Doncieux (2010).

Solving the mentioned optimization problem in the space
of all possible control functions is barely possible. So, we
used piecewise linear functions of time, similar to those
proposed in Velenis et al. (2007a). We parametrized the
time change of the steering angle α, the velocity of the
front wheels VF and the velocity of the rear wheels VR
with the duration of each linear part and the amplitude of
its change. Schematic representation for the steering angle
is given in Fig. 2. The velocities were allowed to change
withing the range from 1 to 10 m/s, the steering angle
varied from −60 to 60 degrees. The time intervals were
forced to be not longer then 5 s and not shorter then 0.4 s.
In addition, they were checked to not exceed 10 s interval
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Fig. 2. Schematic illustration of parametrization used for
the steering angle control input.
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Fig. 3. Example of a Pareto front for 90 degrees turn. The
circle denotes the selected solution on the front.
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Fig. 4. The desired and actual trajectory for the selected
solution. Black circles denote robot position every 250
ms; the straight lines show the direction of the robot.
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Fig. 5. Examples of a Pareto front for different angles. The
circles denote the selected solutions.

on the whole. For the velocities VF and VB the initial and
final values were set to 10 m/s, for the steering angle they
were set to 0 degrees. We had 6 parameters for each control
input (see Fig. 2) and 18 parameters on the whole.

The estimated Pareto front is provided in Fig. 3. It can be
clearly seen that the objectives of speed and accuracy of
the maneuver are indeed conflicting and thus each point on
the Pareto front represents a compromise between them.
The tail of the front (the right side, e.g. the points with
high values of maximum deviation) corresponds to the
solutions, in which almost no decrease of the average speed
can be observed while the steering is performed exclusively
by the control of the steering angle of the front wheels.
Because of the high deviation from the reference trajectory
these solutions are unacceptable for the robot control. In
turn, the solutions with small value of maximum deviation
are associated with significant deceleration and, as it can
be seen from Fig. 3 (the plots, corresponding to 90 degrees
turn), require significant change of all three control inputs.
In general, we are interested in the most accurate perfor-
mance possible. However, after some instant (left from the
circle in Fig. 3) the average velocity of the maneuver drops
dramatically without significant gain in accuracy. Thus we
have selected that solution as a reasonable compromise
at the point when further increase of performance would
require significant drop of velocity. The performance of
the selected solution is illustrated in Fig. 4. It must be
noted that the produced solution is far non-trivial as it is
associated with large slippage angle (the angle between
the longitude axis of the robot and the instant linear
velocity). It must be noted that the obtained trajectory
is qualitatively similar to the one, obtained for human-
controlled mobile robot, reported in Huang et al. (2005).
More detailed discussion of the obtained solution is given
below.

4. CONTINUATION

At the second stage we want to obtain a continuous
mapping from the desired turn angles to the parameters
of the control inputs. We would like to note that the latter
can be hardly achieved simply by applying to each turn
angle the procedure, described in the previous paragraph.
Indeed, since the described problem is expected to have
numerous local extrema, such approach, applied for two
close values of the turn angle, would lead to rather distant
solutions. In order to avoid such behavior the solutions
must be forced to stay close to each other, for example,
by constraining the distance between the solutions in the
space of parameters. Thus, here again we have conflicting



objectives: (i) to minimize the distance between the close
solutions and at the same time to maximize (ii) average
velocity of the maneuver and (iii) its accuracy.

This problem can be regarded in the framework of multi-
objective optimization. In this case the Pareto front should
be a surface in the three-dimensional space of the objective
functions. However, solving the problem with 3 objective
functions requires an order more computation then with
2. Thus, we decided not to optimize the average velocity
of maneuver assuming that minimization of the distance
between the solutions would in addition force the average
velocities to be close to each other. From the Fig. 7A one
can see that this assumption is reasonable enough.

To find the mapping between the turning angles and
parameters of the control inputs, we start with solution
selected for 90 degrees turn (Fig. 3). Then we compute the
Pareto front for 95 degrees turn. The difference between
the parameters is defined as following:

ρ(p1, p2) =

√√√√ 18∑
i=1

(p1i − p2i)2

where vectors of parameters p1 and p2 were normalized in
such a way that pji ∈ [0, 1].

An example of the Pareto front for 95 degrees is provided
in Fig. 5. It can be seen that the Pareto front has a flat tail
(to the right from the circle) associated with nearly linear
relationship between the difference from the previous solu-
tion and the accuracy of maneuver. The tail proceed to the
right until it reaches the solution selected for the 90 degrees
turn. The tail is almost flat, meaning that until some point
significant gain in accuracy is achieved without deviating
a lot from the previous solution. In turn, after that point
dramatic growth of difference happens without bringing
considerable increase in accuracy. Thus, it makes sense to
select the corresponding solution as the best compromise
between the two objectives.

The selected solution was used to compute the Pareto front
for the 100 degrees turn and so on until 135 degrees. Sim-
ilar procedure was performed in the direction of decrease
of the turning angle until 50 degrees. Examples of Pareto
fronts obtained this way for different turn angles are given
in Fig. 5. It can be clearly seen that the described rela-
tionship between the objective functions holds for another
turn angles as well.

Fig. 6 illustrates control inputs selected for different angles
of turn. One can see that all three control functions are
qualitatively the same for different angles of turn. In
general, the maneuver starts with braking with both front
and rear wheels, so that the linear velocity of the robot
drops down (Fig. 7A). The rear wheels velocity reaches
its minimum within about 0.5 seconds. After that a 2
seconds “plato” starts. During this time the rear wheels
velocity increases just slightly. It must be noted that
profile of the rear wheels velocity is quiet the same for
all regarded angles. The front wheels velocity has nearly
triangular form: first it decreases until some minimum
and then increases with nearly the same magnitude of
acceleration. The velocity profile is essentially the same
for different turn angles, however it is shifted forward in
time for sharper turns.

The steering angle has more complicated structure, which
is significantly effected by the angle of turn. For all turn
angles the steering starts with rather steep turn of the
wheels, followed by the part with relatively slow change
of the steering angle, after which it returns to zero rather
steeply. For smaller angles of turn the initial steep part
is shorter and has smaller amplitude then for larger. It
ends approximately at the moment when the front wheels
velocity reaches its minimum. The part of slow change
is 1-1.5 seconds long and is associated with increase of
the steering angle for the turn angles below 90 degrees
and decrease otherwise. The start and the end of the
whole steering process nearly coincide with those of the
plato in the rear wheels velocity. On general, the controller
commands appears to depend on the turn angle in rather
continuous manner.

The examples of basic kinematic characteristics of the
robot motion during maneuver are given in Fig. 7. One can
see that the linear velocity of the robot has stereotypical
profile, composed of constant deceleration, transients and
acceleration. The first and the last part of the profile
are nearly the same for all steering angles, while the
transients differ in such manner that higher angle of turn
is associated with lower average velocity. One can see
that the decrease of front wheels angular velocity leads
to almost unnoticeable change in the linear velocity of
the robot. It happens because the tangential forces of the
front and rear wheels nearly compensate each other. For
easier understanding one might imagine a steady vehicles,
in which the front and the rear wheels rotated in opposite
directions with the same velocity.

The angular velocity is significantly more variable. For the
smaller angles it seems that the robot slightly overturns
and compensate it by negative value of the angular ve-
locity at the end of maneuver. This compensation arises
exclusively because of the properties of the wheel-road in-
teraction, since no compensatory steering can be observed
on Fig. 6. The slippage angle illustrates significant over-
steering in the beginning of maneuver and slight under-
steering at the end.

5. CONCLUSION

In this paper we developed the approach to aggressive
maneuver planning proposed in Velenis et al. (2007a,b)
and inspired by the behavior of rally drivers. We slightly
modified it in order to adapt to mobile robot application
and gave an estimation of the Pareto front of the speed-
accuracy relationship of the maneuver. The Pareto front
estimate allowed us to propose a criteria for choosing the
“best compromise” between those two objectives. After
that we proposed a way to extend the solution for a range
of different angles of the road turn. We show that the con-
trol inputs have rather stereotypical profiles, which depend
continuously on the turn angle. The further development
of this work can be performed in several direction. First of
all, it seems reasonable to extend the current approach for
different road conditions, i.e. different values of Coulomb
friction coefficient. Next, it can be combined with existing
algorithms of trajectory stabilization, like those proposed
in Lucet et al. (2008b). And, finally, we would be interested
in introducing feedback elements into the obtained control
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Fig. 6. Control parameters in solutions selected for dif-
ferent angles of the turn: A velocity of the front left
wheel, B velocity of the rear left wheel, C steering
angle of the front left wheel.

inputs, which are purely time-dependent at the moment.
As the final goal of the current research we consider im-
plementing the developed control algorithms on a mobile
robot that is being currently designed at our institute.
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