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Abstract The subject of this paper is the design and implementation of a robust
dynamic feedback controller, based on the dynamic model of the four-wheel skid-
steering RobuFAST A robot, undergoing high-speed turns. The control inputs are
respectively the linear velocity and the yaw angle. The main objective of this paper
is to formulate a sliding mode controller, robust enough to obviate the knowledge
of the forces within the wheel-soil interaction, in the presence of sliding phenom-
ena and ground-level fluctuations. Finally, experiments are conduced on a slippery
ground to ascertain the efficiency of the control law.

1 Introduction

This paper considers the problem of a robust control of high-speed wheeled robots
maneuvering on slippery grounds with varying properties.

The dynamic control of skid-steering robots was studied in particular in [1] us-
ing a dynamic feedback linearization paradigm for a model-based controller which
minimizes lateral skidding by imposing the longitudinal position of the instanta-
neous center of rotation. Another algorithm reported in [2], offers a good robustness
considering uncertainties on the robot dynamic parameters. In addition to the non-
holonomic constraint of the controller designed by Caracciolo, the authors use an
oscillator signal [3] for kinematic control.

We suggest a strategy based on the sliding-mode theory. The sliding-mode con-
trol law—or, more precisely, controller with variable structure generating a sliding
regime—aims to obtain, by feedback, a dynamics widely independent from that
of the process and its possible variations. Hence, the controller can be considered
as belonging to the class of robust controllers. The sliding-mode control appears
attractive for the handling of nonlinear and linear systems, multivariable and single-
variable systems, as well as model or trajectory pursuit problems and problems of
regulation.

Sliding-mode control allows a decoupling design procedure and good distur-
bance rejection. This control scheme is robust to the uncertainties in the dynamic
parameters of the system, and is easily implementable. Indeed, robust control is
widely used in the literature; particular [4] and [5] propose examples of dynamic
sliding-mode controllers without taking into account the vehicle dynamics. In [6],
and then [7], the authors consider the dynamics model of a unicycle system dur-
ing the implementation of their control law by using the kinematic nonholonomic
non-skidding constraint. The non compliance with nonholonomic constraints in real
conditions is taken into account in [8]. However, the problem is formalized for the
particular case of the partially linearized dynamics model of a unicycle robot.

Using the sliding-mode theory, we suggest here a new approach to control a
fast skid-steering mobile robot with wheel torques as inputs, based on its dynamics
model. The objective is to force the mobile robot to follow a desired path at rel-
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atively high speed, by controlling its yaw angle and its longitudinal velocity. The
ground considered is nominally horizontal and relatively smooth as compared with
the wheel dimensions. If most of the control laws consider that the conditions of
movement without slippage are satisfied, this hypothesis is not valid at high speed,
where wheel slippage becomes significant, thus reducing the robot stability. The
implemented controller will have to be robust with respect to these phenomena in
order to ensure an efficient path-following.

2 Application to a Skid-steering Mobile Robot

Because it has proved to be robust enough to obviate the modeling of the forces
in the wheel-soil interaction in the presence of slippage, a sliding-mode controller
is applied to a skid-steering mobile robot. This scheme ensures the control of the
hending velocity and the yaw angle.

2.1 System Modeling

Considering the integer i € [1;N] with N denoting the number of wheels of the
skid-steering robot, let us define the two generalized torques 7, and g, uniformly
distributed throughout the torques 7; of each wheel i according to the equations:

N

=) T=) T (1
i=1

i=1

Fig. 1 Torques dispatching
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2.2 Control of the Yaw Angle
2.2.1 Design of the Control Law

In the case of a skid-steering robot, let us express the yaw movement dynamics from
the equations of the general dynamics:

Li=) (—wiFq+1LiF;) )

=

Il
-

14

Applying Newton’s second law to the ith wheel, we have:
Iy, = T; — RFy; 3)

with R the wheel radius and I, its centroidal moment of inertia, assumed to be the
same for all the wheels.

Considering the torque definition Tg and equations (3) and (2), we have :
i =ATg+ A9+ DgFy @
with:
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The correction of the vehicle steering does not permit the system to converge to
the desired trajectory. It is also necessary to correct the lateral error; otherwise, the
system will aim towards a movement parallel to the reference path, not necessarily
reaching it. This is why we are going to modify the desired yaw angle, as proposed
in other works [9].

The robot has to follow the path, the reference point P being all the time the
projection of its centre of mass G on this one. To take into account the lateral error,
we add to 6, a term limited between —% and % excluded, increasing with the lateral
error d, the function defining this term being also odd to permit a similar behavior
on both sides of the path. We thus define the modified desired steering angle 6, such
as:

~ d
04 = 6, +arctan | — 5)
( do )
with dy a positive gain of regulation of the intensity of the correction of the lateral
distance d.

For the implementation of the controller, we proceed to a temporary change of the
control variable by replacing the generalized torque 7y. To this end, we introduce
c49, which represents the control law to be applied and n(0,r,F) the uncertainty
function on 0, r and 7 in the dynamics equations. We thus have the relation:
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Ug Path

Fig. 2 Path following parameters

P =cq9 —n(0,n7) 6)
The control law is chosen as:
Cdo =7d+K§86 +Kgée+06 (7

which includes four terms:

74, the second derivative of 8, an anticipative term;
€p = 6, — 0, the yaw-angle error;
KI? and KL?, two positive constants that permit to define the settling time and the
overshoot of the closed-loop system;
® Oy, the sliding-mode control law.

2.2.2 Error State Equation

The second derivative of &g is given below:
&g = ;’d*i':f‘dfcd9+}’l

=y (Fa+KJeg+Kleg+0p) +n (8)

]

= —K;)SQ—K[ISQ'F(I’Z—G@)

. 1T . .
Let the error state vector be: X = [69 ,€o ] , the state equation then becoming

x=Ax+B(n—oyp) 9)
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0 1 0
A= ; B=
(kg x2) 2= ()

If 09 = 0 (and so n = 0, without model error to correct), the system is linear,
and we choose the values of Kg and Kg as KI‘,9 = w? and Kg = 2{w, in order to
define a second-order system. @, is the pulsation and { the damping ratio. To define

numerical values, the 5% settling time 7, is introduced: 7, = é a? .
n

with :

2.2.3 Stability Analysis

To approach the problem of the stability of the closed-loop system, the pursuit of
the desired yaw angle §, can be studied by using the candidate Lyapunov function
V = x!Px, with P a positive definite symmetric matrix. According to the Lyapunov
theorem, [10], the state x = 0 is stable if and only if:

V(0)=0;Vx#0 V(x)>0and V(x) <0 (10)

The first two foregoing relations being verified at once, it remains to establish the
third. From eq.(9), we compute the derivative:

V(x) = X" Px+xPx
= (x"AT +nB" — 6pB” ) Px+x" P (Ax+Bn —Boy) (11)
=x" (ATP+PA)x+2x"PB(n— 0p)

The last equality is obtained by considering that s = BT Px is a scalar, so B’ Px =
x”PB. Then, the matrix P is computed to obtain the equation (12) below:

ATP+PA =—Q (12)

with Q; a positive defined symmetric matrix; it is the Lyapunov equation. In that
case, the equation (11) is reformulated:

V =—x"Qx+2x"PB(n—0y)

It is necessary that V be negative for stability. The first term of the right-hand side
of the above equation is negative, while the second term vanishes if x lies in the
kernel of BTP. Outside the kernel, the second term has to be as small as possible.
Let us define s = B”Px. The equality s = 0 is the ideal case, represents the hyper-
plane defining the sliding surface. Keeping the sliding surface s equal to zero is then
equivalent to the pursuit of the vector of the desired states, the error state vector x
being zero. As this surface reaches the origin, the static error & will be equal to
Zero.
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We suggest the sliding-mode control law op:
s
Co = HH (13)

where we use the norm of s, and U is a positive scalar. This choice leads to:
§2
$(n=00) = sn—pug = on—pls| < Is|(nl ~p)

Thus, the conditions of convergence are: |n| < ny,y < oo and a choice of L > ny4y
which guarantee the Lyapunov theorem hypotheses. Stability is guaranteed if we
adopt the control law (13).

Finally, we have the control law:

. . s
Cde=fd+K§€e+K589+Hm (14)
with s = BT Px.
2.2.4 Solution the Lyapunov Equation
To solve the equation (12), the matrix Q; is chosen as:
a0
with a > 0 and b > 0. With matrix A determined, matrix P is:
1.05b | 5a8°T, | al; $212
P= CZT, + a21 + 1a6.8 a35.28 (15)
ag’1,? bT, | al’T?
35.28 168 T 296352

We determine the influence of the Q; matrix components. As previously defined, the
equation of the sliding hyperplane is:

s =B Px = py1€9 + pnte

with py; and py, being two entries of the positive-definite and symmetric matrix P
occurring in the expression of the candidate Lyapunov function. Here, this hyper-
plane is a straight line.

At the neighborhood of this straight line, we have: s = py1 &g + p22&g = 0, whose
integral is:
eo (t) = €9 (T)exp [(—p21/p2) (1 — 7))
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with &g (7) a real constant which depends on the initial conditions at t = 7, when
the system arrives at the neighborhood of the sliding straight line.

Consequently, we derive from this solution that to correct the error, it is necessary
to increase the value of p;1 and to decrease the value of p;,. According to expression
(15) for P, we know these two parameters. Hence, to eliminate quickly the position
error, it is necessary to increase the value of a and to decrease that of b. As far as
the sliding straight line is concerned, this modification of the various coefficients
increases the straight line slope.

2.3 Control of the Longitudinal Velocity

We use the dynamics model according to the longitudinal axis from the equations
of the general dynamics:

M=

M@@—rv)=) Fy (16)

1

From the definition of the torque 7, and equations (3) and (16), we solve for the
longitudinal acceleration:

N

0=YT+A Y, O+ rv (17)

i=1
with:
—_— 1 . p— _Iw
"= MR T MR
As stated previously, ¢, is the control law and m (u,4) is a function of uncertain-
ties on u and # in the equations of the system dynamics. We have the following
relationship:
iw=c,—m(u,i) (18)

with the control law defined as:
Cu :ud+Kz£u+Gu (19)

and:

iy, an anticipative term;
€, = ug — u, the velocity error;
K, a positive constant that permits to define the settling time of the closed-loop
system,
e 0y, the sliding-mode control law.
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Using the Lyapunov candidate function V = (1/2) €2, it can be immediately veri-
fied that the stability of the system is guaranteed by the choice of the sliding-mode
control lawo,, = p‘i—‘;l, with p a positive scalar, large enough to compensate the
uncertainties on the longitudinal dynamics of the system.

2.4 Expression of the Global Control Law

In practice, uncertainty about the dynamics of the system to control leads to un-
certainty in the sliding hyperplane s = 0. As a consequence s # 0 and the sliding
control law s, which has a behavior similar to the signum function, induces oscilla-
tions while trying to reach the sliding surface s = 0 with a theoretically zero time.
These high-frequency oscillations around the sliding surface, called chattering, in-
crease the energy consumption and can damage the actuators. In order to reduce
them, we can replace the signum function by an arctan function or, as chosen here,
by adding a parameter with a small value v in the denominator. So, we use the func-
N

tion m .

Finally, the following torques are applied to each of the N wheels:

1 R
Ti:N ( u_WiT9> (20)

with 7, and 7y re-computed with a change of variable, from the inverse of the robot
dynamics model—equations (17) and (4) with the accelerations & and 6 replaced
respectively by the control laws (19) and (14)—namely,

1 £ N
T, =—|ug+Kle,+p—2——A,Y @& —r1v 21
7( R Py, M >
1 /. B7Px
= — (s + K% +K¢ = _Ag®—DyF,
To 7 (rd-i- p €0t K, 9+“|BTPX|+V9 6 oFy)
(22)

To estimate the value of the lateral forces Fy, Pacejka theory [11] could be used,
by taking into account the slip angle. Because of the robustness of the sliding-mode
control, however we can consider that F, is a perturbation to be rejected, and we
do not include it in the control law. A slip-angle measure being in practice not very
efficient, this solution is better.
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3 Application to the RobuFAST A Robot

3.1 Experiments

3.1.1 Control Law Implementation

The sliding-mode control law is tested with the RobuFAST A robot on a slippery
flat ground. This experimental platform, shown in Fig.3, consists of an electric off-
road vehicle, whose maximum reachable speed is 8 m/s. Designed for all-terrain
mobility, the robot can climb slopes of up to 45° and has the properties displayed
in Table 1. The front and rear directions of the vehicle are blocked to allow the
skid-steering mode operation.

Total mass M =350 kg
Yaw inertia I, =270 kg.m?
Wheelbase [=12m

Rear half-wheelbase w =0.58 m

Table 1 Experimental robot inertial parameters

The implementation of the control law in real-life conditions requires some mea-
sures and observations. In particular the norm of the velocity vector, measured by
the GPS, must be decomposed into its lateral and longitudinal components. This
decomposition is made possible by the addition of an observer of the slippage angle
[12], the knowledge of this angle and the velocity vector norm allowing us to make
a projection on the axes of the robot frame.

The controller is implemented in two steps: first, a proportional derivative con-
troller is settled for path following; then, the sliding-mode controller is added and
its gains tuned.

This sliding-mode controller being a torque controller, a difficulty is that the
robuFast A robot inputs are its wheel velocities. It is thus necessary to convert the
amplitude of the torques generated by the controller.

Referring to eq.(3) of the wheel dynamics, we can consider that the addition of a
force differential in a wheel is equivalent to a differential in its angular acceleration,
ie.,

Ad = EAF
Iy
The losses in the movement transmission, due to wheel-soil contact, are disturbances
to be compensated by the robust controller. This method is justified in particular in
a patent [13].

The value of I, is obtained by the sum I = I, + I,,. For a Marvilor BL 72 motor

of a mass of 2.06kg and a reduction gear with K = 16, we have I, = 0.364kg.m>,
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where 1), is the wheel inertia and 1., = K1, is the inertia equivalent to the motor
and reduction gear unit, with K the reduction gear speed reducing ratio and 7,,, the
motor inertia.

3.1.2 Experiment Results

The robot moves at a velocity of 3 m/s along a sinusoidal road. A derivative-
proportional controller is applied to the robot, then the sliding-mode controller is
implemented.

The position is plotted on figure 4 in m, the gains being tuned for optimum path-
following: K% = 0.05 5!, K¢ =0.02 s7!, Kf = K52/4§2, {=0.70,T,=0.5s,
v, =0.01 ms™!, vg =0.02,a=0.10, b= 0.1, u = 0.1 and p = 0.01 ms 2.

Y (m)

o Reference path

Without sliding mode
Sliding mode controller

0 5 10 15 20 25 30 35
X(m)

Fig. 3 RobuFAST A on site with its DGPS
fixed base (upper left hand side) Fig. 4 Position (m)

Fig. 5, which indicates the curvature of the reference path as a function of the
time, yields the robot position for the analysis of the evolution of its state variables
in the time, the lateral error of Fig. 6, the yaw error of Fig. 7, the longitudinal veloc-
ity error of Fig. 8, and the torque inputs of Fig. 9 and Fig. 10.

Without sliding-mode, we see on the position curve that the vehicle follows the de-
sired path with a small position offset. After a bend, the robot takes time to converge
to the path. The succession of bends maintains this position error. With sliding-
mode, the position curve converges much better to the desired path with however a
small lateral error of about the length of a vehicle track, between the second and the
third bend.

The delay of the actuators is due to the inertia of the vehicle slipping on a wet
ground. There is almost no yaw-angle error during this period, as we can see at
around a time of 14 s on the sliding mode controller curve Fig. 7. There is thus only
a lateral error to be corrected, which explains a slower convergence. The conver-
gence time can be tuned with parameter dy of eq.(5), but too high a value will bring
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Lateral error (m)

8 10
Time (s)

(] 2 4 6 8
Time (s)

Fig. 5 Curvature of the path to follow during
the time (1/m) Fig. 6 Lateral error (m)

about the risk of yaw instability, which could occur during bend.
On the lateral error curves displayed on Fig. 6, we notice a good following until the

0 2 4 6

8 10 8 10
Time () Time (s)

Fig.7 Yaw angle error (deg) Fig. 8 Longitudinal velocity error (m/s)

second bend (11 s) with an error that remains under 0.6 m oscillating around 0.2 m,
whereas the error reaches 1.8 m without sliding-mode.

There is no significant difference between the yaw error with and without the
sliding-mode control law; however, after the last bend (15 s) the robot has some
difficulties to reach the path without the sliding-mode controller. The longitudinal
velocity error is globally well reduced with the sliding-mode controller, as we can
see in Fig. 8. We observe the chattering phenomenon during the second bend (11 s),
with the strong oscillations of the velocity curve.

To correct the velocity errors, higher torque values are applied with the sliding-
mode controller (torque curve for the velocity regulation of the Fig. 10), stabilized
around 30 Nm. On the torque curve for the yaw regulation, we observe few peaks
for three bends (7 s, 11 s et 15 s), with higher values without sliding-mode because
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Fig. 9 Torques without the sliding-mode Fig. 10 Torques with the sliding-mode con-
controller (Nm) troller (Nm)

of larger errors to correct in order to reach the path.

Finally, during several trial days, we noticed an increase of the energy consump-
tion of 20 % to 30 % with the sliding-mode controller, the robot batteries emptying
faster because of a higher frequency request of the actuators. This last point is a
constraint, the supply of energy being an important problem in mobile robotics.
This control law could be used at intervals, when it turns out to be necessary.

4 Conclusions

The sliding-mode controller introduced here was tested in real-life conditions with
a torque-controlled four-wheel skid-steering robot. It was proven to be robust on
sinusoidal paths, and despite wheel slippage. The chattering noticed during the ex-
periments led to a higher energy consumption. In order to reduce it, we defined the
gain variables according to some criteria such as the velocity or the path curvature.
If the energy consumption becomes a concern, a higher-order sliding-mode control
law should be considered.
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