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Abstract— The Transverse Function (TF) approach is applied
to the tracking control problem for a nonholonomic three-
segments/snake-like wheeled mechanism similar to a planar
low-dimensional version of Hirose’s Active Cord Mechanism
(ACM). Unlike earlier studies devoted to this type of serpentine
mechanism and based on the computation and sequential appli-
cation of a discrete number of open-loop control primitives, the
proposed control design yields smooth (nonlinear) feedbacks
in the spirit, and prolongation, of Linear Control Theory.
It is also supported by a rigorous stability analysis, and it
further includes a solution to the delicate –often overlooked–
problem of mechanical singularities avoidance. Another asset
of the approach is that the ultimate boundedness of the
tracking errors, with arbitrary tracking precision obtained via
the tuning of the considered transverse function parameters,
is achieved for any motion of the reference frame used to
specify the desired gross motion of the mechanism. These
properties are illustrated by simulation results. The fact that the
TF approach involves periodic functions with time-derivatives
depending on frequencies used as extra control variables points
out connections between this approach and biologically inspired
Central Pattern Generators (CPG) often evoked in the literature
on systems exhibiting internal oscillatory behavior.

I. I NTRODUCTION

We are pursuing the development of the Transverse Func-
tion (TF) approach [1] [2] for the control of highly nonlinear
systems. In relation to this endeavour, the study of snake-
like wheeled robots gives us the opportunity to i) apply and
adapt this approach to various mechanical systems for which
no feedback control solution existed so far, ii) prolong and
generalize the control design methodology associated with
it, and iii) propose new paradigms for the control of systems
whose motion capabilities are based on the generation of
oscillatory (or undulatory) shape changes.

The idea of studying biological systems via the study
of man-made robotic ersatz is not new. Nor is the mirror
concept of bio-observation-inspiration often invoked as an
effective way to address difficult problems for which no solid
theoretical corpus is yet available [3] [4]. For instance, a
significant research effort, started many years ago, is devoted
to the control of anthropomorphic and animal-like robots
in order to better understand legged locomotion. Crawling
locomotion, as examplified and perfected in Nature by
snakes, is another complex locomotion mode which, despite
decades of scrutiny by different scientific communities, still
retains many mysteries. Of particular interest to us is the

control of snake-like wheeled mechanisms, proposed by
various researchers to better understand crawling locomotion
(starting with the pioneering works of Hirose et al. [3] [5]).
Indeed, most of the studies devoted to this theme have
focused on the generation of open-loop control strategies
yielding simple overall displacements along specified (and
specific) directions [6], [7], [8], [9], whereas attempts to
synthesize feedback control laws are few [10], incomplete
and (to our point of view) mostly inconclusive due to the
non-existence of adequate control design tools. One of our
objectives is to show that the TF approach, and its extensions,
provide such tools.

The first mechanism of this kind that we have considered
is the trident snakesystem originally proposed by Ishikawa
[11]. This mobile robot has a “parallel” mechanical structure
and is composed of a triangular-shaped body with wheeled
legs attached at its summits via rotoid articulations. The
structure of the Control Lie Algebra associated with the
kinematic equations of this system differs from the one of
more commonly studied chained systems and gave us the
idea to look for new transverse functions defined on the
rotation groupSO(3) –instead of the three-dimensional torus
T

3 [12]. The better performance observed in simulation when
using these new functions comes from the fact that they bet-
ter respect the system’s symmetries. We have subsequently
generalized the construction of such functions onSO(n) in
relation to the case of a Control Lie Algebra maximally
generated by Lie brackets of order less or equal to one [13].

The present study focuses on Hirose’sACM III snake robot
and, more specifically, on the simplified planar model com-
posed of three segments, as depicted on Figure 1. This system
can be actuated in various ways. For instance, Ostrowski and
Burdick [6] have considered the case of five control inputs:
the velocities of the two articulation anglesϕ1,2 represented
on the figure, and three complementary “steering” wheel
angular velocities which provide extra degrees of freedom.
The more difficult case when only the articulation angular
velocities can be changed is the one here addressed. It has,
for instance, been considered by Ishikawa [8] to illustratethe
possibility of switching between a set of piecewise sinusoidal
inputs to produce a desired net displacement effect. However,
to our knowledge, the tracking control problem for this type
of system has not been solved previously. The facts that i)



asymptotic point-stabilization is not possible by using a pure
state feedback –by application of Brockett’s theorem [14]–,
ii) the system’s Control Lie Algebra has a structure different
from the one of the same dimensional chained system –and
from the one of the trident snake–, iii) this system is not
differentially flat so that feasible state trajectories of interest
are not easily computed, and iv) mechanical singularities –
which occur either when the anglesϕ1,2 are equal or when
one of them is equal toπ– must not be encountered whatever
the imposed gross motion of the mechanism, give an idea of
the difficulties to overcome and explain in part the absence
of results concerning the feedback control issue.

The paper is organized as follows. Preliminary technical
recalls and notation are provided in Section II. The robot’s
kinematic model and error state equations are presented in
Section III. The main contribution, in Section IV, speci-
fies the control objectives and details the control design
methodology based on the application of the TF approach.
The validity and performance of the proposed controller
are demonstrated in Section V with illustrative simulation
results. Finally, the concluding Section VI points out a few
research directions which could prolong the present study.

II. N OTATION AND REVIEW

In this paper,x′ denotes the transpose of a vectorx ∈ R
n,

In is the identity matrix of dimension(n × n), andOm×n

is the zero-valued matrix of dimension(m×n). T
p denotes

the p-dimensional torus.

A. Systems on Lie groups

Only basic properties of systems on Lie groups will be
used. A few definitions and notation are recalled hereafter.
The reader is referred, e.g., to [15] for more details in the
context of the control of nonholonomic systems.

The tangent space of a manifoldM at a pointq is denoted
as TqM . If X is a vector field (v.f.) onM , the solution
at time t of ẋ = X(x) with initial condition x(0) = q
is denoted asexp(tX, q). A Lie group G is a manifold
with a group operation(g1, g2) 7−→ g1g2 such that the
mapping(g1, g2) 7−→ g1g

−1
2 is smooth, withg−1 denoting

the group inverse ofg. Let G denote a connected Lie group
of dimensionn. The unit element ofG is denoted ase,
i.e. ∀g ∈ G, ge = eg = g. The left and right translation
operators onG are denoted asL and R respectively, i.e.
∀(σ, τ) ∈ G2, Lσ(τ) = Rτ (σ) = στ . A v.f. X on G is
left-invariant iff ∀(σ, τ) ∈ G2, dLσ(τ)X(τ) = X(στ), with
df denoting the differential of a functionf . The Lie algebra
–of left-invariant v.f.– of the groupG is denoted asg. If
X ∈ g, exp(tX) is used as a short notation ofexp(tX, e).
A driftless control systeṁg =

∑m
i=1 Xi(g)ξi on G is said to

be left-invariant onG if the control v.f.Xi are left-invariant.
With f , g, and h denoting smooth curves onG, one has
(omitting the time index)

d

dt
(gf−1) = dRf−1(g)

(

ġ − dLgf−1(f)ḟ
)

(1)

and

d

dt
(h−1g) = dLh−1(g)ġ − dRh−1g(e)dLh−1(h)ḣ (2)

In the special case of the Lie groupG = SE(2), the group
operation is defined by

g1g2 =





(

x1

y1

)

+ Q(θ1)

(

x2

y2

)

θ1 + θ2



 (3)

with gi = (xi, yi, θi)
′ andQ(θ) the matrix of rotation in the

plane of angleθ. The unit element ise = (0, 0, 0)′ and the
inverse ofg = (x, y, θ)′ is

g−1 =





−Q(−θ)

(

x
y

)

−θ



 (4)

One deduces from (3) that

dLg1
(g2) =

(

Q(θ1) 02×1

01×2 1

)

(5)

and

dRg2
(g1) =





I2 Q(θ1)

(

−y2

x2

)

01×2 1



 (6)

The family X = {X1,X2,X3} of v.f. defined byXi(g) =
X(g)ei, i = 1, 2, 3 with

X(g) =

(

Q(θ) 0
0 1

)

(7)

and e1, e2, e3 the canonical basis vectors ofR
3, constitutes

a basis of left-invariant vector fields.

B. Transverse Functions

Notions about Transverse Functions are now recalled –see
e.g. [2] for more details. LetX = {X1, . . . ,Xm} denote
a family of smooth v.f.X1, . . . ,Xm on a n-dimensional
manifoldM , with m < n. X satisfies the Lie Algebra Rank
Condition (LARC) at some pointq0 if Lie(X)(q0) = Tq0

M
with

Lie(X) = span{Xi, [Xi,Xj ] , [Xi, [Xj ,Xk] . . .
i, j, k, . . . = 1, . . . ,m}

and Lie(X)(q) = {X(q) : X ∈ Lie(X)}. Given a compact
manifold K, a smooth functionf : K −→ M is transverse
to X if, for any α ∈ K,

span{X1(f(α)), . . . ,Xm(f(α)), df(α)(TαK)} = Tf(α)M
(8)

with df the differential off . Note that the dimension ofK
must be at least equal to(n−m). Givenq0 ∈ M such that the
family X satisfies the LARC atq0, the “Transverse Function
theorem” in [1] ensures the existence of a family(fε)ε>0 of
functions transverse toX, with maxα dist(fε(α), q0) → 0
asε → 0, where “dist” denotes any distance locally defined
in the neighborhood ofq0. Such functions can be used to
achievepractical stabilization in a neighborhood ofq0 of
the nonholonomic control systeṁq =

∑

i viXi(q), with vi



denoting the control inputs. The idea is to stabilizeq to
fε(α). Thanks to (8), this is easily achieved by usingα̇ as
a (virtual) complementary control input. For instance, when
M = R

n and q̃ = q − fε(α) is small, one has

˙̃q ≈ H(α) ( v
α̇ )

with H(α) = (X1(f
ε(α)) · · ·Xm(fε(α)) − ∂fε

∂α
(α)) and

( v
α̇ ) = −kH(α)†q̃ is a local exponential stabilizer.

III. M ODELING AND CONTROL OBJECTIVES

The wheeled snake robot depicted on Fig. 1 is composed
of three wheeled ”segments” connected by two actuated
rotoid articulations. From a mechanical point of view, this
system is alike a unicycle vehicle pulling two trailers with
off-axle trailer hitches. However, due to the existence of
mechanical singularities, actuating the joint anglesϕ1,2 is not
strictly equivalent to actuating the longitudinal and angular
velocities of one of the unicycles. Actually, this actuation
particularity makes an important difference at the control
level. It also underlies the serpentine locomotion mode
which allows the system to be displaced without crossing
mechanical singularities.

ϕ2 Rc

R0

θ

Pc
γ∗

ϕ1

Fig. 1. Three-segments snake robot

Given an inertial frameR0 and a body-fixed frameRc,
here attached for symmetry reasons to the snake’s mid-
segment, the configuration of this segment in Cartesian space
is given by

g =





x
y
θ



 ∈ SE(2)

with x and y the coordinates of the pointPc (the origin of
Rc located on the wheels’ axle at mid-distance of the rotoid
articulations) inR0, andθ the orientation ofRc w.r.t. R0.
The orientation angle ofRc w.r.t. this segment is denoted
asγ∗. The choice of this angle will be discussed later on in
relation to the fact that some values are better than others in
terms of control and singularity avoidance.

A. Control model

The “shape” of the snake robot depends on the angle shape
vector

ϕ =

(

ϕ1

ϕ2

)

∈ T
2

and the complete configuration vector of the system is thus
given by (g, ϕ) ∈ SE(2) × T

2.
Let vℓ andvθ denote the linear and angular velocity of the

mid-segment respectively, so that






ẋ = vℓ cos(θ − γ∗)
ẏ = vℓ sin(θ − γ∗)

θ̇ = vθ

(9)

Assuming, for the sake of notation simplicity, that the
distances between the three wheels’axles and adjacent rotoid
articulations are all equal to one, the classical non-slipping
assumption associated with wheel-ground contact yields the
following two nonholonomic constraints:

−vℓ sinϕ1 + vθ(1 + cos ϕ1) + ϕ̇1 = 0
vℓ sinϕ2 − vθ(1 + cos ϕ2) + ϕ̇2 = 0

In matrix form these equations can be written as

ϕ̇ = Aϕ(ϕ)v (10)

with v = (vℓ, vθ)
′ and

Aϕ(ϕ) =

(

sin ϕ1 −1 − cos ϕ1

− sin ϕ2 1 + cos ϕ2

)

(11)

As long as the matrixAϕ(ϕ) is invertible,ϕ̇ andv are one-
to-one related and one can view either one of these vectors as
the control input. In this case Eq. (9-10) define a kinematic
control system for the wheeled snake withv as the control
input. Otherwise,v is no longer well defined as a function
of ϕ̇ and, since thephysical control input is ϕ̇, v cannot
be taken as an equivalent control input at these singular
configurations. One of the control objectives is to ensure
that such configurations are never met. From (11)

det(Aϕ(ϕ)) = sinϕ1 − sin ϕ2 + sin(ϕ1 − ϕ2)
= 4 sin ϕ1−ϕ2

2 cos ϕ1

2 cos ϕ2

2

ThereforeAϕ(ϕ) is singular when eitherϕ1 or ϕ2 is equal
to π, or ϕ1 = ϕ2. The following change of coordinates

ϕ 7−→ η =

(

η1

η2

)

=

(

tan ϕ1

2
tan ϕ2

2

)

(12)

is well defined away fromϕ1,2 = π and is introduced to sim-
plify both the avoidance of the first type of singular angles
and the writing of the control model. Indeed, concerning the
latter issue, one has from (10)

η̇ = A(η)v , A(η) =

(

η1 −1
−η2 1

)

(13)

so that each shape variableηi now satisfies a linear differ-
ential equation. By regrouping relations (9) and (13) one
obtains the following driftless control model (10):

{

ġ = X(g)Cv
η̇ = A(η)v

(14)



with X(g) defined by (7) and

C =





cos γ∗ 0
− sin γ∗ 0

0 1



 (15)

IV. CONTROL DESIGN

A. Basics of the control design

Given a (any) reference gross-motion for the snake
body, specified by a reference frame trajectorygr(.) =
(xr, yr, θr)

′(.), the control goal is to stabilize this reference
trajectory (for the snake body configurationg) while avoiding
singular shape values for whichA(η) is not invertible. To
this purpose it is useful to also introduce a reference ”shape
trajectory” ηr the choice of which, beyond the fact that this
trajectory must stay away from singular configurations, will
be discussed later on. One can then form an “error-system”
by considering the tracking errors defined by

g̃ = g−1
r g , η̃ = η − ηr (16)

By using (2), (5), (6), and (14),
{

˙̃g = X(g̃)Cv + pg(g̃, vr)
˙̃η = A(ηr + η̃)v − η̇r

(17)

with vr the reference frame velocity vector defined byġr =
X(gr)vr, and

pg(g̃, vr) = −





1 0 −g̃2

0 1 g̃1

0 0 1



 vr

the additive “perturbation” arising from the motion of the
reference frame. This error-system may also be written as

ξ̇ = Z1(ξ)v1 + Z2v2 + pξ(ξ, vr, η̇r) (18)

with

ξ =

(

g̃
η̃

)

, Z1(ξ) =













cos(ξ3 − γ∗)
sin(ξ3 − γ∗)

0
ξ4 + ηr,1

−(ξ5 + ηr,2)













, Z2 =













0
0
1
−1
1













(19)

and

pξ(ξ, vr, ηr) =

(

pg(g̃, vr)
−η̇r

)

(20)

Due to possible variations ofηr, the control v.f.Z1 of this
system can be time-varying. By considering the Lie brackets
Z3 = [Z1, Z2], Z4 = [Z1, Z3], and Z5 = [Z2, Z3], one
verifies that span{Zi(0); i = 1, . . . , 5} = R

5 provided that
ηr,1 6= ηr,2. Therefore, in this case, the local controllability
at ξ = 0 of the error-system is obtained with Lie brackets of
order up to two only.

The tracking control problem can now be formulated as
the problem of stabilizing the originξ = 0 of the error-
system. What is meant here by “stabilization” calls for a
few complementary remarks and explanations. In particular,
it must be noted that theasymptoticstabilization of the
origin is not, in this case, a suitable control objective.

Indeed, assuming for instance thatηr is constant, then the
convergence of̃η to zero by using a smooth feedback control
would yield the convergence ofv to zero, thus forbidding
the stabilization of̃g = 0 whenever the reference velocity
vr would not itself tend to zero. Similarly, the asymptotic
stabilization of g̃ = 0 would in general imply the passage
thru –or the convergence to– singular shape configurations,
and thus the non-stabilization of̃η = 0. In the present
case, a more appropriate –and achievable– objective is the
practical stabilizationof the origin of the error-system, i.e.
the stabilization of a set within aneighborhoodof the
origin. The Transverse Function (TF) approach [1], [2] has
been developped for this purpose, with the image set of
an adequately chosen transverse function playing the role
of the above-mentioned set. The remainder of this paper
details some aspects of its application to the mechanism
under consideration.

As recalled in Section II, the existence of transverse
functions is guaranteed for any controllable driftless system,
and explicit general expressions have been proposed in [2].
Nevertheless, the fact that different functions yield different
closed-loop behaviors (some better than others) explains why
the design of transverse functions is still a largely open topic.
Moreover, there are also various ways to design stabilizing
feedback laws based on the TF approach. For instance, a
systematic method is proposed in [2] when the considered
control system is invariant w.r.t. a Lie group operation.
Otherwise, one can use an homogeneous (nilpotent) control-
lable approximation of the system (see, e.g. [16] for more
details) to design both the TF and an associated feedback
law. This solution is, for instance, the one reported in [12]
for the control of Ishikawa’s trident snake. A drawback of
this solution is that it only yields, in general, local stability
results. We show next that, by taking advantage of the
decoupling between the dynamics onSE(2) and the shape
dynamics, one can obtain stronger stability and convergence
properties.

Let f̄ : (α, ηr) 7−→ f̄(α, ηr) denote a smooth function
from K×R

2 to SE(2)×R
2, with K a l-dimensional compact

manifold. Along any smooth curvesα(.), ηr(.),

˙̄f(α, ηr) = dαf̄(α, ηr)α̇ + dηr
f̄(α, ηr)η̇r

with dα (resp.dηr
) the operator of differentiation w.r.t.α

(resp.ηr). The time-derivativeα̇ can itself be decomposed
as

α̇ = Y (α)ω :=
l

∑

i=1

Yi(α)ωi (21)

with theYi’s denoting vector fields defined in a neighborhood
of α andω some ”free” variable. Thus,

˙̄f(α, ηr) = dαf̄(α, ηr)Y (α)ω + dηr
f̄(α, ηr)η̇r (22)

The components of̄f in SE(2) andR
2 are denoted bȳfg and

f̄η respectively, i.e.f̄(α, ηr) = (f̄g(α, ηr), f̄η(α, ηr)). One
of the control objectives will be to makẽg and η̃ converge
to f̄g and f̄η respectively. To this purpose, define the error



variableszg = g̃f̄−1
g and zη = η̃ − f̄η. From (1), (17), and

(22)

żg = dRf̄−1
g

(g̃)
(

˙̃g − dLzg
(f̄g)

˙̄fg

)

= dRf̄−1
g

(g̃)
(

X(g̃)Cv − dLzg
(f̄g)

˙̄fg + pg(g̃, vr)
)

= dRf̄−1
g

(g̃)dLzg
(f̄g)(X(f̄g)Cv − dαf̄gY ω − dηr

f̄g η̇r)

+ dRf̄−1
g

(g̃)pg(g̃, vr)

with the last equality obtained by using the left-invariance
of the v.f. Xi’s. From (16), (17), and (22)

żη = A(ηr + η̃)v − η̇r − dαf̄ηY ω − dηr
f̄η η̇r

Regrouping the previous relations yields the system
{(

żg

żη

)

=

(

Bv Bω

A(ηr + η̃) −dαf̄ηY

)(

v
ω

)

+

(

Pg

Pη

)

(23)

with

Bv = dRf̄−1
g

(g̃)dLzg
(f̄g)X(f̄g)C

Bω = −dRf̄−1
g

(g̃)dLzg
(f̄g)dαf̄gY

Pg = dRf̄−1
g

(g̃)(−dLzg
(f̄g)dηr

f̄g η̇r + pg)

Pη = −η̇r − dηr
f̄η η̇r

The following result specifies a feedback control law for
the extended control input(v, ω) which renders the origin
(zg, zη) = (0, 0) of this system asymptotically stable.

Theorem 1 Assume that

1) For eachηr in some compact setE ⊂ R
2, the function

α 7−→ f̄(α, ηr) is transverse to the family of vector
fields{Z1, Z2}.

2) For any (α, ηr) ∈ K × E, ηr,1 + f̄η1
(α, ηr) 6= ηr,2 +

f̄η2
(α, ηr), with f̄η1

and f̄η2
the components of̄fη.

and consider the feedback control law
{

v = A(η)−1(dαf̄ηY ω − Pη − kηzη) , kη > 0
ω = −B†(kgzg + P ) , kg > 0

(24)

with

B = BvA(ηr + f̄η)−1dαf̄ηY + Bω

B† = B′(BB′)−1, or any right pseudo-inverse ofB
P = Pg − BvA(ηr + f̄η)−1Pη

(25)
Then, for any reference trajectoriesgr, ηr such that the
associated velocitiesvr and η̇r are bounded andηr(t) ∈
E , ∀t, the origin z = 0 of the controlled system(23) is
asymptotically stable.

Proof: From (23) and (24)

żη = −kηzη (26)

so thatzη = 0 is asymptotically stable. Sinceη = ηr + η̃ =
ηr + f̄η + zη, and each component ofzη exponentially
decreases to zero, it follows from the theorem’s second
assumption that the matrixA(η)−1 in (24) is well defined
and bounded along any solution of the closed-loop system
provided thatzη(0) is small enough, i.e. provided thatη(0)
is sufficiently close toηr(0) + f̄η(α(0), ηr(0)). From now
on we assume that this condition uponzη(0) is satisfied.

Let us now consider the dynamics ofzg. Sinceη = ηr +
f̄η + zη, one deduces from (23) and (24) that

żg = BvA(ηr+f̄η+zη)−1(dαf̄ηY ω−Pη−kηzη)+Bωω+Pg

In view of (25), this relation may also be witten as

żg = Bω + P + BvR(zη) (27)

with

R(zη) = −kηA(ηr + f̄η + zη)−1zη

+
(

A(ηr + f̄η + zη)−1 − A(ηr + f̄η)−1
) (

dαf̄ηY ω − Pη

)

(28)
Let us show that the rank ofB is equal to three, so thatB†

is well defined. From the theorem’s first assumption, i.e. the
property of transversality of the function̄f , the rank of the
5 × (2 + l) matrix

H(α, ηr) =

(

X(f̄g(α, ηr))C dαf̄g(α, ηr)Y (α)
A(ηr + f̄η(α, ηr)) dαf̄η(α, ηr)Y (α)

)

is equal to five for any(α, ηr) ∈ K × E. The second
assumption implies that the matrixA(ηr + f̄η(α, ηr)) is
invertible for any(α, ηr) ∈ K × E. Define

Hg = X(f̄g)CA(ηr + f̄η)−1dαf̄ηY − dαf̄gY (29)

By pre-multiplyingH(α, ηr) with the invertible matrix
(

I3 −X(f̄g(α, ηr))CA(ηr + f̄η(α, ηr))
−1

0 I2

)

one deduces that

RankHg(α, ηr) = 3 , ∀(α, ηr) ∈ K × E (30)

SinceB = dRf̄−1
g

(g̃)dLzg
(f̄g)Hg(α, ηr), it comes from (5),

(6), and (30) that the rank ofB is always equal to three.
Therefore, the controlω in (24) is well defined and it follows
from (27) that

żg = −kgzg + BvR(zη) (31)

Using the fact that̄f takes it values in a bounded set (since
this is a smooth function and(α, ηr) belongs to the compact
set K × E), one deduces from (4)–(7) thatBv is bounded
in norm by some constant numberc0. Using the assumption
that vr and η̇r are bounded, one then verifies from (28) that
R(zη) = O1(|zη|)O2(|zg|)+O3(|zη|), with O(|x|) denoting
any function bounded in norm byc|x| with c a constant
number. Therefore

żg = −kgzg + c0(O1(|zη|)O2(|zg|) + O3(|zη|) (32)

and the asymptotic stability of the originz = 0 follows from
(26) and (32).

To finalize the control design, it remains to determine a
suitable transverse function, and provide some guidelines
concerning the choices forγ∗ andηr.



B. Design of transverse functions

There are various ways to derive transverse functions
(TFs) for a controllable driftless system. When the system
has the complementary property of being left-invariant on
a Lie group a general expression was proposed in [2]. The
corresponding functions are defined on a torus of dimension
n − m, with n the dimension of the state space, andm
the number of control v.f. Such functions have also been
considered for the control of car-like vehicles, with or with-
out trailers, that are feedback-equivalent to chained systems
[15]. In [12], [13], we proposed another design when the
LARC is satisfied ”at the order one”, i.e. when the control
v.f. and their first-order Lie brackets span the tangent space
at the considered equilibrium point. It involves TFs defined
on a Special Orthogonal group rather than on a torus. As
explained in [13], these functions present the advantage of
being endowed with symmetry properties that TFs defined on
a torus do not have. However, they cannot be used directly for
the error-system (17) because the satisfaction of the LARC
for these systems involves second-order Lie brackets. In this
section we propose new transverse functions that can be
viewed as a mixt of the above-mentioned solutions in the
sense that they are defined on the product of a torus and
a Special Orthogonal group. Before giving their expressions
for a class of 5 dimensional systems with control Lie algebras
similar to the one of the snake mechanism considered here,
some notation is specified.

• ∆ε andP denote the following constant matrices:

∆ε = Diag(ε, ε, ε2, ε3, ε3), P =

(

0 −1 0
1 0 0

)

with Diag(x1, . . . , xp) the diagonal matrix whose ele-
ments on the diagonal arex1, . . . , xp.

• The following vector-valued functions are used in the
calculation of the proposed transverse functions

τε,ε3
(θ3) = ∆ε(ε3sθ3, ε3cθ3, 0,

ε3

3

3 cθ3,−
ε3

3

3 sθ3)
′

νε,ε54
(Q) = ∆ε(ε54Q

′
1,

ε2

54

2 (PQ3)
′)′

(33)
with Q ∈ SO(3), Qi the i-th column-vector ofQ, θ3 ∈
S

1, andsθ andcθ used forsin θ andcos θ respectively.
• Given v.f. X1, . . . ,Xp and a vectorv ∈ R

p, we will
write Xv instead of

∑p
i=1 viXi to shorten the notation.

Theorem 2 Let Z1, Z2 denote v.f. on a5-dimensional man-
ifold M , and q0 a point on this manifold. Assume that
the LARC is satisfied at this point withTq0

M spanned
by the vectorsZ1(q0), . . . , Z5(q0), with Z3 = [Z1, Z2],
Z4 = [Z1, Z3], and Z5 = [Z2, Z3]. Then,

1) There exist real numbersε3, ε54, ε̄ > 0 such that, for
any ε ∈ (0, ε̄), the functionf defined onS1 × SO(3)
by

f(θ3, Q, q0) = f3(θ3, f54(Q, q0))
f3(θ3, q) = exp(Xτε,ε3

(θ3), q)
f54(Q, q) = exp(Xνε,ε54

(Q), q)
(34)

is transverse toZ1, Z2.

2) WhenM = G is a Lie group withe its unit element,
and the generating v.f.Z1 and Z2 are left-invariant,
then the above transverse function is the group-product
of elementary exponentials, i.e.

f(θ3, Q) = f54(Q, e)f3(θ3, e) (35)

The proof is omitted for lack of space. It is available from
the authors upon request.

This result calls for several remarks.
1. The rationale behind the proposed TF expressions is

as follows. Two functions are involved, namelyf3 andf54.
The role off3 is to grant transversality in the direction of
the Lie bracketZ3. More precisely,ḟ3 = Z(f3)µ(θ3)θ̇3, with
the third component of the vector-valued functionµ, i.e. the
coefficient ofZ3(f3), always different from zero. Similarly,
f54 grants transversality in the directions of the Lie brackets
Z4 andZ5.

2. The proof of Theorem 2 provides useful information
about the choice ofε3 and ε54. For example, one can set
ε54 = ε3 with ε3 small enough, thus reducing the number
of parameters to determine. In this case, the transversality
property is satisfied forε small enough. The suitability of
the choiceε54 = ε3, pointed out in the theorem’s proof, is a
consequence of the particular definition off3. Transversality
could also be granted by considering the simpler function
obtained by replacing the coefficientsε3

3/3 in the expression
of τε,ε3

(θ3) by zeros. But the choiceε54 = ε3 may not be
suitable in this case.

3. Theorem 2 can be used, for example, to design
transverse functions for the rolling sphere, which is a5-
dimensional left-invariant system onR2×SO(3). Compared
to the solution proposed in [17], we have observed in
simulation that this choice is preferable. This is related to the
fact that it better respects the system’s symmetry properties.

Let us briefly explain how Theorem 2 applies to calculate
functionsf̄ that satisfy the assumptions of Theorem 1. Since
the v.f. Z1, Z2 defined by (19) satisfy the assumption of
Theorem 2 atq0 = 0 for any constant valueηr such that
ηr,1 6= ηr,2, relation (34) can be used to derive functions
fηr

(θ3, Q, 0) which are transverse to{Z1, Z2}. The explicit
calculation of these functions poses no difficulty, as the
interested reader can verify by himself. It is not detailed
here for lack of space. SinceZ1 depends smoothly onηr,
these functions also depend smoothly onηr. Furthermore,
fηr

tends uniformly to zero asε tends to zero. We set
α = (θ3, Q) ∈ S

1 × SO(3) = K, and f̄(α, ηr) =
fηr

(θ3, Q, 0). From there, one readily verifies thatf̄ satisfies
the assumptions of Theorem 1 for any compact setE that
does not intersect the diagonal{ηr ∈ R

2 : ηr,1 = ηr,2},
provided thatε is small enough.

C. Choice of the reference joint angles andγ∗

As in the case of other mechanical systems moving in
Cartesian space, the main control objective is to track a
pre-defined reference trajectorygr ∈ SE(2). In practice, the
shape vectorϕ (or η) is usually less important. Nevertheless,
shape singularities and collisions between body segments



must be avoided. This leaves some freedom as for the choice
of the reference shape trajectoryηr. In this section, we show
that this choice can be related to the one of the angleγ∗

(see Fig. 1) in order to limit the number and intensity of
maneuvers (or shape deformations) needed to produce the
desired displacements in Cartesian space. This is based on
the following result.

Proposition 1 Assume thatvr, the velocity vector associated
with the reference frame trajectorygr (i.e. ġr = X(gr)vr),
is constant and that the lateral velocity componentvr,2 is
equal to zero. This corresponds to coupled longitudinal and
rotation motions that a nonholonomic unicycle-type vehicle
can perform. Choose

ηr =

(

1 1
−1 1

)





tan γ∗

1

cos γ∗

θ̇r

vr,1



 (36)

Then,ξr = (g′r, η
′
r)

′ satisfies the equality

ξ̇r = c1Z̄1(ξr) + c2Z̄2(ξr) + c3[Z̄1, Z̄2](ξr) (37)

with c1 = vr,1 cos γ∗, c2 = θ̇r, c3 = −vr,1 sin γ∗, and
{Z̄1, Z̄2} the control v.f. of the wheeled snake model(14).

This result, whose proof simply consists in verifying that (37)
is satisfied under the assumptions of the proposition, points
out a set of reference trajectories which are ”weakly nonfea-
sible”, in the sense that their derivatives can be decomposed
along the system’s control v.f.̄Z1 andZ̄2 and first-order Lie
bracket[Z̄1, Z̄2] only. Knowing that moving in the direction
of a Lie bracket is all the more difficult that the order of
the bracket is high, it matters that higher-order Lie brackets
are not involved in the reference motion decomposition.
Proposition 1 thus provides a simple rationale for the choice
of ηr once the angleγ∗ is itself determined. As for this
latter choice, we are not yet aware of a simple theoretical
guidance rule except that, in view of (36), this angle must
be different of zero in order to obtain non-equal, and thus
non-singular, reference shape values. Similarly,γ∗ should not
be too close toπ/2, in order to keep the shape angles away
from the singular valueπ. This still leaves us with an infinite
number of possible “nominal stance” valuesγ∗. Simulation
runs tend to indicate that “good” values, i.e. away from
shape singularities and for which the transversality property
is easily obtained via the choice of the transverse function
parameters –recall that the transverse function depends on
ηr–, are betweenπ/4 and π/3. This latter value was used
in the simulation results presented next. A thorougher study
of the choice ofγ∗, possibly in relation to ideas developed
in [9], remains to be carried out.

V. SIMULATION RESULTS

For these simulations we have used the feedback control
(24) with kg = 1 andkη = 3. The transverse function used
in the control law was calculated according to (34), with
vector-valued functionsτ and ν depending on a few more
coefficients than the functions specified in (33), in order to

have some extra freedom for the “shaping” of the transverse
functions. More precisely, we have used

τε,ε31,ε32
(θ3) = ∆ε(ε31sθ3, ε32cθ3, 0,

ε2

31
ε32

3
cθ3,−

ε31ε2

32

3
sθ3)

′

νε,ε54,d2,3
(Q) =

∆ε(ε54(Diag(1, d2, d3)Q1)
′,

ε2

54

2
(PDiag(d2d3, d3, d2)Q3)

′)′

with ε = 1, ε31 = 0.4, ε32 = 0.8, ε54 = 0.4, d2 = 2, and
d3 = 1. Note that smaller values could be used in order to
achieve a more precise tracking. However, this would yield
higher-frequency maneuvers (body deformations) and would
involve larger velocity inputs. In the control calculation, we
have purposely omitted to pre-compensate the terms arising
from the variation ofηr in the “perturbation” vectorsPη

and P (see Eq. (24)). This is to illustrate the robustness of
the control law with respect to either imperfect knowledge
of the reference velocities and accelerations, or deliberate
simplification of the control calculation. The nominal stance
angleγ∗ was set equal toπ/3, and the reference shape-vector
ηr was calculated according to (36) witḣθr/vr,1 replaced
by θ̇rvr,1/(‖vr,1‖

2 + β), with β a small positive number, in
order to avoid a possible division by zero. For the reported
simulation, the time history of the reference frame velocity
vr is summarized in the following table.

t ∈ (s) vr = (m/s, m/s, rad/s)′

[0, 5) (0, 0, 0)′

[5, 13) (0.6, 0, 0.05(t − 5))′

[13, 21) (0.6, 0, 4 − 0.05(t − 13))′

[21, 28) (0.8, 0, 0)′

[28, 37) (0, 0, 0.4)′

[37, 45) (0,−0.5, 0)′

[45, 51) (−1.5, 0, 0.6)′

[51, 55) (−1.5, 0,−0.6)′

[55, 60) (0, 0, 0)′

Fig. 2 shows the evolution of the norm ofz with re-
spect to time. The peaks that can be observed on the
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Fig. 2. ‖z‖ vs. time

figure correspond to –also purposely introduced– pointwise
discontinuities in the time-history ofvr which, via ηr,
yield discontinuities in the values of the transverse function
and thus discontinuities ofz(t). One can also observe the
subsequent exponential convergence to zero, except on the



time-interval[5, 21) whenη̇r(t) 6= 0 is not pre-compensated.
The ultimate bound of‖z‖ is then proportional to the size of
the upperbound of the non-compensated additive perturbation
and inversely proportional to the feeback gain (equal to
kg = 1 in the present case).

Fig. 3 shows the(x, y) trajectories of the origin of
the reference frame (dotted line) and of the originPc of
the robot’s frame (dashed line). It also shows superposed
snapshots, taken every ten seconds, of the wheeled
mechanism and of the reference frame that it is tracking.
The principle of practical tracking is well illustrated

Fig. 3. Reference trajectory(xr(t), yr(t)) and snake’s trajectory
(x(t), y(t))

by this figure. However, only a video of the simulation
can qualitatively report of the “natural” character of the
mechanism’s deformations in all motion phases. The time-
evolution of the components of the shape angle vectorsϕr

(piecewise almost constant lines) andϕ (oscillatory lines)
is shown on Fig. 4. The quasi-periodicity and continuous
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Fig. 4. Shape anglesϕr andϕ vs. time

adaptation of the shape angles are noticeable. Note also
that the angle amplitudes remain smaller thanπ and are
never equal. This illutrates the fact that the mechanism’s

geometrical singularities are never encountered.

VI. FUTURE EXTENSIONS

Ways to extend the present work are numerous. Let us just
mention three issues that we plan to address:

1. Feedback control of the same mechanism with actuated
steering wheels –which adds up to three control inputs.
Advantages of the complementary actuation in terms of
maneuverability and reduction of the control input intensities.

2. Study of several serially linked unit-mechanisms form-
ing a snake mechanism with multi-overlapping degrees of
freedom more alike Hirose’s original ACM III snake robot.
Consequences at the control level and for the monitoring of
geometrical singularities.

3. Adaptation of the proposed control design to car-like
vehicles pulling/pushing trailers with off-axle hitches –in
which caseϕ1 = ϕ2 is no longer a singular configuration.
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