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We are interested in understanding how babies learallowing to associate for instance the vision of an “happy
to recognize facial expressions without having a teachinface” with their own internal emotional state of happinegs [
signal allowing to associate a facial expression to a given Our starting point was motivated by the question of how a
abstract label (i.e the name of the facial expression 'sadhe “naive” system can learn to respond correctly to other’s ex-
'happiness’...). Our starting point was a mathematical mlod pressions during a natural interaction. "Natural” here nsea
showing that if the baby uses a sensory motor architectuthat the interaction should be the less constrained aslpessi
for the recognition of the facial expression then the pasentwithout explicit reward or ad-hoc detection mechanism or
must imitate the baby facial expression to allow the on-linéormated teaching technique. In this case, a good inspirati
learning. In this paper, a first series of robotics experitsen is given by the baby-mother interaction, where the newborn
showing that a simple neural network model can controbr the very young baby, has a set of expressions linked with
the robot head and learn on-line to recognize the faciahis/her own emotions. Yet, the link with the expressions of
expressions (the human partner imitates the robot protmthers still needs to be built. How does the link between his
typical facial expressions) is presented. We emphasize tbe/n emotions and the expression of others can emerge from
importance of the emotions as a mechanism to ensure then-verbal interactions?
dynamical coupling between individuals allowing to learn Using the cognitive system algebra [8], we showed a
more complex tasks. simple sensory-motor architecture based on a classical con
ditioning paradigm could learn online to recognize facial
expressions if and only if we suppose that the robot or the

Since several years, the subject of Human/Robot intebaby produces first facial expressions according to his/her
actions is became an important area of research. Yet, theernal emotional state and that next the parents imitate
proposed architectures use mainly an ad hoc engineeritite facial expression of their robot/baby allowing in retur
strategy allowing to show some impressive results but evehe robot/baby to associate these expressions with his/her
if learning technics are used most of them use a-priori infolinternal state [20]. Imitation is used as a communicatian to
mation. In the case of complex interactions, we believe thiastead of learning tool: the caregiver communicates with
behavior must be understood in a developmental perspectithe robot through imitation. Psychological experiment3][1
to avoid the symbol grounding problem [10] (a human expetiave shown that humans "reproduce” involuntary the facial
must provide knowledge to the system). We can obtain realxpression of our robot face. This low level resonance to the
autonomous systems as the result of the interaction betwefacial expression of the other could be a bootstrap for the
human and robot. Understanding how emotional interactionsbot learning ("empathy” for the robot head).
with a social partner can bootstrap increasingly complex Using a minimal robotic set-up (Figure 1), is interesting
behaviors, which is important both for robotics applicatio first to avoid the problems linked to the uncanny valley [16]
and understanding the human development. Gathering inf@and next to test which are the really important features for
mation through emotional interaction seems to be a fast atide recognition of a given facial expression. The robot is
efficient way to trigger learning. This is especially evidenconsidered as a baby and the human partner as a parent.
in early stages of human cognitive development, but alsOriginally, the robot knows nothing about the environment
evident in other primates [23]. The emotion can be providedut it starts to learn as it interacts with the environment.
by a variety of modalities of emotional expressions, suchising a physical device instead of a virtual face brings
as facial expressions, sound, gestures, etc. We choosestweral difficulties but induces a visible "pleasure” lidke
explore the facial expressions since they are an excelletat the "presence” of the robot for the human partner. The
way to communicate important information in ambiguousobot head is also very useful because the control of the
situations [3] but also because we can show that learnirgaze direction (pan/tilt camera) that can be used both as a
to recognize facial expression can be autonomous and veagtive perception and communication tool.
fast [2] which was not evident at first. For this purpose, In this paper, we summarize first our formal model for the
we were interested in understanding how babies learn tmline learning the facial expressions. Next the implement
recognize facial expressions without having a teachingadig tion of this theoretical model without a face detection will

I. INTRODUCTION
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be presented and the constraints due to the online learniagproximately 200-400 ms depending of the distance in the

will be studied. joint space between two particular facial expressionsnksa
to the servo dynamics, the robot head is able to produce a
Il. MATERIAL & METHOD: ON LINE LEARNING OF infinity of facial expressions. In this paper, we want test ou
FACIAL EXPRESSION RECOGNITIONAN INTERACTIVE model with simply 5 prototypical facial expressions.
MODEL To test our paradigm, we propose to develop a neural

network architecture and to adopt the following experiraént
protocol: In a first phase of interaction, the robot produees
random facial expression (sadness, happy, anger, suprise
plus the neutral face during 2s, then returns to a neutral
face to avoid human misinterpretations of the robot facial
expression during 2s. The human subject is asked to mimic
the robot head. After this first phase lasting between 2 to
3min according to the subject "patience”. The generator
of random emotional states is stopped. If the N.N has
learned correctly, the robot must be able to mimic the facial
expression of the human partener.

The computional architecture (Figure 2) allows to recogniz
the visual features of the people interacting with the robot
head and to learn if these features are correlated with its ow
facial expression.

IIl. FACIAL EXPRESSION RECOGNITION

Fig. 1. Examples of robot facial expressions: a) sadnessufgyise, c) A. Model
happiness. d) Example of a typical human / robot interactianegéhere
the human imitating the robot). 15: Internal State

VF: Visual Features
W
)

ISP: Internal State Prediction
FE: Facial Expression
STM: Short Term Memory

—//—}an one to all modifiable
—/—plink one to one non modifiable

A very simple robotic expressive head was developed as
a tool for researches in cognitive sciences involving both

psychological experiments and computational modelliaj[1 v e

The head was designed to be a minimal system allowing to

display some prototypical basic emotions [5]. In this work,

we will only use: happiness, sadness, hunger and surprise £ ’

(Figure 1). The validity of this choice could be discusset bu
for our purpose, all we need is a small set of emotions that

can be associated to internal signals that should be presé€ist 2. The global architecture to recognize facial expogsand imitate.
in the human or animal brain A visual processing allows to extract sequentially the llat@ws. TheV F

. . (Visual features: local view recognition) group learns theal views. The
Our robot head is composed of 13 servo motors WhIiCRsp (internal state prediction)leams the association betwi (internal

are controlled by a mini SSC3 servomotor controller caretate) andV F. STM is a short term memory in order to obtain more
allowing to maintain the servo motors in a given positiorfoustness. Each group of neurd, ISP, STM and F'; contains 5

. .. . neurons corresponding to the 4 facial expressions plus ¢b&ral face.
(control in position) and control the different parts of the
face. 4 motors control the eyebrows (bending), 1 motor
controls the forehead (to move up and move down), 5 motors Our initial approach followed classical algorithms: (1)
control the mouth (opening and bending). At last, 3 motorface localization using for instance [22] or [25], then (2)
control the orientation of the 2 cameras located in the robdce framing, and (3) facial expression recognition of the
"eyes” : 1 motor controls the vertical plane (pan movementormalized image. In this case the quality of the results is
and 2 motors control the horizontal plane (1 servos for eadfighly dependant on the accuracy on the frame of the face
camera and independent tilt movement). The robot hedthe generalization capability of the N.N can be affected).
has been programmed to display the 4 facial expressioMoreover, the robot head cannot be really autonomous
plus a neutral pattern. Each of the four facial expressiorsecause of the offline learning of the face/non face. Sur-
have been controlled by FACS experts [5]. The prograrprisingly, an online learning of the face/non face recdgnit
controlling the robot head is able to reproduce prototylpicas not as easy as the online learning of the facial expression
facial expressions, in other words, all the servo will movén the case of our mimicing paradigm since we do not
in parallel, each unit executing the position command givehave a "simple” internal signal to trigger a speficic fac&/no
by the controller. This results in a dynamic and homogenouace reaction of the human partner. In the perspective
process where all the parts of the face change to form a giveh an autonomous learning avoiding any ad hoc framing
expression. One change of facial expression is achieved nmechanism appeared as an important feature. Our solution

1S ISP STM FE



hal-00522773, version 1 - 1 Oct 2010

ST™, pixels, and gabor filters are performed (robust to rotations
poG win and distance variations) (Figure 4). The features extmct f
e the convolution between the gabor filter and the focus point
= . are the mean and the standard deviation. This collection of
local views is learned by the recrutement of new neurons
in the visual featuresW{F) group using a k-means variant
allowing online learning and real time functions [12]:

net;) Q)

radient local

9 |
extraction view (-

Visual processing

input image gradient extraction

Fig. 3. Visual processing: This visual system is based oncaestial
exploration of the image focus points. The input image (25@xfBels)
is performed the gradient extraction, convolution with af&#nce Of

VFj = ’I’L@tj H

maz(y,net+onet) (

Gaussian (DOG) providing the focus points, the focus poexsaction, 1 N
local views extraction around each focus points. netj =1- N Z ‘Wij - [i| (2)
i=1
I {2 V F} is the activity of neurory in the groupV F'. I is a visual
' %)

k ) input. Hy(z) is the Heaviside functiof. v is the vigilance
(threshold of recognition, if the prototype recognition is

below v then a new neuron is recruitedjet is the average

of the output,o,.; is the standard deviation. The learning

DL ncli - O0—3 rule allows both one shot learning and long term averaging.
.QshN{ m 4 0 g8 The modification of the weights is computed as follow:
D N—E1L 0 > \ O—3 k

theta Zagﬁ%ms AWW = 5j ((lj (t)]l + E(IZ — W”)(]. — VFJ)) (3)

2 R with k = ArgMax(a;), a;(t) = 1 only when a new neuron

. . AN &
Fig. 4. Visual features: a) The local polar transform insessthe robustness |3$ recrun_ed OtherWISeﬂ (t) =0. 5J is the Kronecker symbol

of the extracted local views to small rotations and scaleatiaris (log polar and e is the constant in order to average the prototypes.
transform centered on the focus point is performed to obtaiimage more  \When a new neuron is recruited, the weights are modified to

robust to small rotations and distance variations and hisisad 20 pixels). : ] ] ;
b) gabor filters are performed to obtain an image more robusttatioos match the Input (termf (t)I’)' The other part of the Ieamlng

and distance variations (the gabor filters are 60x60), thaufes extract for fule e(I; — Wy;)(1 — V' I;) averages the already learned

each convolution with a gabor filter are the mean and the stdnittviation.  prototypes (if the neuron was previously recruited). Theano
the input will be close to the weights, the less the weights
are modified. Conversely the less the inputs will be close to

uses a visual system independent from face framing. THBe weights, the more they are averaged: I§ chosen too
visual system is based on a sequential exploration of tifgnall then it will have a small impact. Conversely,cifis
image focus points (Figure 3). The focus points are the resiiP0 big, the previously learned prototypes can be unlearned
of a DOG filter convolved with the gradient of the inputThanks to this learning rule, the neurons in tié" group
image. This process allows the system to focus more on tHarn to average prototypes of face features (for instaace,
corners and end of lines in the image for example eyebrow&ean lip for an happy face).

corners of the lips, but also distractors (hair, background Of course, there is no constraint on the selection of the
Its main advantages over the SIFT (Scale Invariant Featut@cal views (no framing mechanism). This means that numer-
Transform) [15] method are its computational speed and @s distractors can be present (local views in the backgroun
fewer extracted focus points (the intensity of the point i®f inexpressive parts of the head). It also means that any

directly its level of interest). One after the other, the mosof these distractors can be learned Bif". Nevertheless,
the architecture will tend to learn and reinforce only the

Human's expressive features of the face (Figure 2). In our face to
ex;fraecs‘?i'ons'ﬂ'ﬂ' . o face situation, the distractors are present for all theafaci
‘ expressions so their correlation with an emotional statdge
el toward zero.
expressions

The internal state predictiod § P) associates the activity
Fig. 5. The robot is able to recognize the facial expressishen the Of V F' W'Fh th_e current’.S _('ntem"_il state) of the robot (sim-
human’s partner is at a distance of 2 m. ple conditioning mechanism using the Least Mean Square

. . i 2Heaviside function:
active focus points of the same image are used to compute | ifo<a

local views: either a log polat transform centered on the Hy(x) = { 0 otherwise
focus point is performed to obtain an image more robust to
small rotations and distance variations and his radius is 20°Kronecker function:

1The local polar transform increases the robustness of ttracted local 8k = { (1) gtfie?wligse
views to small rotations and scale variations
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(LMS) rule [26]) success

rate (%)

Awij = GVFZ(ISJ — ISPJ) (4) sor ]

STM is Short Term Memory used to sum and filter on
a short period ¥ iterations) the emotional statdssP;(t)
associated with each explored local view:

STM;(t+1) = %.ISR-(t +1)+ %STMi(t) (5) aof ]
L —*—sadness
1 is the indice of the neurons, for instant€ P; corresponds ” T neutal face
to thei** emotional state(( < i < 5). °f e ]
Arbitrary, a limited amount of time is fixed for the visual " —=— sumprise
exploration of one image. The system succeeds to analyse T
10 local views on each image. It is a quite small number of number of persons

points but since the system usually succeeds to take 3 toF_4 6 Th e of each facial ion (sa 't

: " ig. 6. e success rate of each facial expression (sadnessal face,
_relevant points on the face (momh’_ eygbrow).\(et, 't_ IS @’rrou happyness, anger, surprise). These results are obtaimew dbe natural
in most cases and it allows to maintain real time interactiofteraction with the robot head. 10 persons interacted tiéhrobot head

(3 to 5 images/second) in order to test our model. (32 ima?eshby faﬁial expression brx: perzon)- Eurinﬁ thet:eer_mihtaﬁste 2

. : . minutes), these humans imitate the robot, then the robot irsitétem.

_FE tnggers th? facial ex}presgon of the. robot, the; In order to build statistics, each image was annotated wighrésponse

highest activity triggers th&” facial expression thanks to a of the robot head. The annotated images were analyzed andothectc

WTA. correspondance was checked by a human. On line robot perfoename
far better but more difficult to analyze.

B. Experiment results

After learning, the associations between the view recogni-
tion (V F) and the emotional statd §P) are strong enough '
to bypass the low level reflex activity coming from the vsr
internal state/.S. In this case, the facial expressidnk ost
will result from the temporal integration of the emotional
state associated to the different visual features analipzed
the system (features will have an emotional value if they
are correlated with the robot facial expression, basiciéy
expressive features of the human head). The robot head cal
imitate the human’s facial expression and the focus points
are associated to each facial expression i.e these focatspoi ozl
vote for the recognition of a given facial expression. Each o
facial expression is mainly characterized by a specific set

= sadness

" neutralface
= happyress
—*F— anger
—B— surprise

True Positive rate

of focal points corresponding to local areas on the face boonoh2@E 04 08 08 0708 0s

which are relevant for the recognition of that expressian. F False Positive rate

example, some local view around the mouth (lip) charaateriz

the “happyness” facial expressions some others around tﬁi . 7. Generalisation to new faces: After 20 persons iotethwith the
’ robot head (learning phase), the robot had to imitate newopsrsever

eyebrows characterize the anger facial expression. Aftgfen. The false positive rate and true positive rate of eilfexpression
learning of the N.N, Figure 5 shows that the robot recognizesadness, neutral face, happiness, anger, surprise) hetlvisual process

; ; ; ; ; ion (log polar transform and gabor filters). Here, we tdoise aWT A,
the facial Expressions even when the interaction d|stan§§t a threshold function is used to enable all neurons ablwwehreshold.

is important (2m of di.Star.]C?)- In this case, We Can Segtrue positive is a correctly categorized positive instaaad false positive
the system learns to discriminate background informatioris a negative instance which is categorized positive.

(distractors in the image) from the visual features on the

face, really relevant for our interaction game (local views

associated to an emotional content). that the people have difficulties to display sadness witlout
Figure 6 shows that the interaction with the robot headontext. Each partner imitating the robot displays the sadin

during 2 min can be enough in order to learn the faciah a different way. Nevertheless, the on line learning can

expressions before the robot can imitate the human partngwolve problems because the human reaction time to the

This incremental learning is robust although the number abbot facial expressions is not immediate (Figure 8a).tFirs

human partners increases and that the expressivity betweEs0 ms are required to recognize an object [24], hence

the humans (for example the sadness facial expression)tige minimal duration to recognize the facial expression for

very different. Figure 7 shows that the model can generalize human is not negligible. The minimal peridd of an

to people who were not present during the learning phase.iAteraction loop is the sum of; the delay for the robot

possible explanation for the bad result concerning sadsesgo perform a facial expression plus the delay for the
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human to recognize the facial expression plyghe delay (SVM) to categorize the facial expressions. Wiskott[27@sis

for the human subject to mimic the recognized expressigBabor wavelets to code the face features as ’jets’. All these
(T = t1 + t2 + t3). When the robot is only an automatatechnics used an offline learning and try to introduce a lat of
producing facial expressions, we measure a minimal periqutiori to improve the performances of the system. Moreover,
T around 800ms for expert subjects and 1.6 s for a novial these methods need to access the whole learning database
subject. This time lag can pertubate the learning becausetlifus they can't be accepted for a realistic model of the baby

learning.
= Joy internal These methods have better results (above 80%) but they
%/N use databases without “noise” (database clean) where the
face are framed (only the face in the image), the facial
expressions are checked by human experts and the problems
npuire foce [ feppyepression | f the brightness are controlled. The question about how a
\ [ oo 0 9 : ‘ne qu L
robot can learn the facial expressions without supervigon
TR - Y not essential for them. Moreover, our model has abilities of
& “““““ m&; 4444444 & adaptation thanks to the neural network and the on line {earn
ing . The "database” is built through emotional interacsion
belong to “‘e previous expression a as a consequence the robot can start to reproduce the facial
m m m m m expressions even if the database is incomplete (increinenta
e learning).
O S / Breazeal[4] designed Kismet, a robot head that can rec-

i ognize human’s facial expressions. Thanks to an intenactio
] — T game between the human and the robot, kismet learns to
:";‘W‘ mimic the human’s facial expressions. In this work, there
o is a strong a priori about what is a human face. Important
focus points such as the eyes, the eye brows, the nose,
N / NN g the mouth, ..., are pre-specified and thus expected. These
DS A ) strong expectations lead to a lack autonomy because the
robot must have a specific knowledge (what is a human face)
Fig. 8. a) phase shifting between the human facial expressishthe N order to learn the facial expressions. On the contrary,
rOEOE fag)ia%;pzer?iggtﬁﬁring ?r?eir:gl?:ignnsgérzgci(gft\eedh;ﬁggxg tfcl;? in our model, facial expressions can be learned without
trr?eod)ifferent faréial expres)s/ions when the robot imitates lthiman (gfter any pno_r knowledgg_abogt what is a fac?' Moreover, facial
learning). expressions recognition, instead of needing a face model to
be usable, can bootstrap face/non-face discriminatiomeiGt
the robot learns the first images which are still associatg@bot heads as Einstein’s robot [28] explores the process of
to the human previous facial expression then the previogelf-guided learning of realistic facial expression prctitin
expression is unlearned. The presentation time of a givdly a robotic head (31 degrees of freedom). Facial motor
expression must be long enough to neglect the first imaggerameters were learned using feedback from real-timelfaci
Figure 8.b shows the neural activity during the test phase. expression recognition from video. Their work interested t
this figure, we can see that the robot reacts correctly for thww learning to make the facial expressions (fit very well
different facial expressions excepted the neutral face. with our theoretical framework and will be useful for motor
In this section, we showed that the robot head is ableontrol of more complex robot head).
to learn and recognize autonomously facial expressions if Our robot learns thanks to the interaction with a human
during the learning the robot head does facial expressiopartner, so several difficulties occur. First, the on-liearh-

neurone activity

and the human partner mimicks it. ing can involve problems because the human reaction time
can be long. This point is crucial in order to improve the
IV. DiscussIiON& CONCLUSION results. In classical image processing system, this pnoble

Many existing researches focus on the building of a robust avoided because the learning database is labelled byrhuma
system to recognize the facial expressions but they aexperts. Moreover, some human partners are not expressive
not interested in understanding how this learning could btherefore the robot has difficulties to categorize the facia
performed autonomously. Some methods are based on #pressions. What is interesting is that the robot makes
Principal Component Analysis (PCA) for example the LLEmistakes but if a person checks the facial expressions that
(Locally Linear Embedding) [14]. Neuronal methods havehese human partners do then this person make the same
also been developed for facial expression recognition. Imistakes.

Franco and Treves[6] network uses a multi layer network Our theorical model [20] has allowed us to show that in

using a classical supervised learning rule. Others methodsder to learn on line to recognize the facial expressions,
are based on face models which try to match the fadbe learner must produce facial expressions first and be
(appearance model[1]). Yu[29] uses a support vector machimimicked by his/her caregiver. The system proposed had no
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real interaction capability during the learning phaseseitinis  [4]
phase was completely predefined. The attentional strategy
(using focus points) presented in this paper corresponds to
sequential and time consuming analysis of the image. liccoul [5]
be seen as a simple implementation of the thalamo-cortico-
amygdala pathway in the mammal brain [13]. In previous[e]
works [9], we tested simpler and faster architectures usiag
whole image. They could correspond to the short thalamo-
amygdala pathway [21], [13] implied in rapid emotional 7
reactions. In conclusion, this work suggests the babyrare

(8]

9]
(20]

facial
expressions|
recognition

—#— modifiable link
—/— non modifiabe link

object's
emotional
value

(11]

TESL =3 [12]

reach or avoid objects

Fig. 9. Experimental set-up for social referencing. We rghpmu the use [13]

of a robotic head which is able to recognize facial expressié\ robotic
arm will reach the positive object and avert the negativeecbas a result
of the interaction with a human partner.

[14]

15
system is an autopoietic social system [17] in which the em(g- !
tional signal and the empathy are important elements of t
network to maintain the interaction and to allow the leagnin
of more and more complex skills as the social refererfcing[18]
Figure 9 presents new experiments in which a robotic arm
learns to reach positive objects or avoid negative objests fg;
a result of the emotional interaction with a human partner.
The emotional interaction provides an emotional value & tI:l20
objects (the objects have a meaning: a dangereous object or al
interested object). This work emphasizes that the reciognit
of others agents and objects can be built through interastio

[21]
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