
Chapter 2

Reinforcement Learning

2.1. Introduction

In Chapter 1, we presented planning methods in which the agent knows the tran-

sition and reward functions of the Markov decision problem it faces. In this chapter,

we present reinforcement learningmethods, where the transition and reward functions

are not known in advance.

EXAMPLE.– Let us consider again the case of a car used in the introduction of the

previous chapter (see Section 1.1). If one must look after a type of car never met

before and does not possess the corresponding manual, one cannot directly model the

problem as an MDP. One must first determine the probability of each breakdown, the

cost of each repair operation and so on. In such a case, reinforcement learning is a

way to determine through incremental experience the best way to look after the car

by trial and error, eventually without even determining explicitly all probabilities and

costs, just relying on a locally updated value of each action in each situation.

2.1.1. Historical Overview

Our presentation strongly relies on Sutton and Barto’s book [SUT 98]. But before

presenting the main concepts of reinforcement learning, we give a brief overview of

the successive stages of research that led to the current formal understanding of the

domain from the computer science viewpoint.
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Most reinforcement learning methods rely on simple principles coming from the

study of animal or human cognition, such as the increased tendency to perform an

action in a context if its consequences are generally positive in that context.

The first stages of computer science research that led to the reinforcement learn-

ing framework are dating back to 1960. In 1961, Michie [MIC 61] described a sys-

tem playing tic-tac-toe by trial and error. Then Michie and Chambers [MIC 68] de-

signed in 1968 a software maintaining an inverted pendulum’s balance. In parallel,

Samuel [SAM 59] presented a program learning to play checkers using a temporal

difference principle. Both components, trial and error exploration and learning action

sequences from temporal difference principles are the basis of all subsequent rein-

forcement learning systems.

The union of both principles was achieved by Klopf [KLO 72, KLO 75]. Follow-

ing his work, Sutton and Barto implemented in 1981 [SUT 81] a linear perceptron

whose update formula directly derives from the Rescorla-Wagner equation [RES 72],

coming from experimental psychology. The Rescorla-Wagner equation can now be

seen as the TD(0) equation (see Section 2.5.1, page 63) approximated by a linear per-
ceptron. This historical background explains the name neuro-dynamic programming

used in the early stages of the field [BER 96].

In 1983, Barto, Sutton and Anderson [BAR 83] proposed AHC-LEARNING1 con-

sidered as the first true reinforcement learning algorithm. Quite interestingly, AHC-

LEARNING is an actor-critic approach that is now at the heart of the recent dialog

between computational modeling and neurophysiological understanding of reinforce-

ment learning in animals.

Finally, the mathematical formalisation of reinforcement learning as we know it

today dates back to 1988 when Sutton [SUT 88] and then Watkins [WAT 89] linked

their work to the optimal control framework proposed by Bellman in 1957, through

the notion of MDP [BER 95].

2.2. Reinforcement Learning: a Global View

Reinforcement learning stands at the intersection between the field of dynamic

programming presented in the previous chapter and the field of machine learning.

As a result, there are two ways to introduce the domain, either by explaining the

conceptual differences with the dynamic programming context, or by contrasting re-

inforcement learning with other machine learning paradigms. We take the former

1. Adaptive Heuristic Critic learning
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standpoint in what follows and the latter in Section 2.2.2. Then we introduce the ex-

ploration/exploitation trade-off and a standard estimation method that are central to

reinforcement learning.

2.2.1. Reinforcement Learning as Approximate Dynamic Programming

As we have seen in the previous chapter, the value function of a state typically

reflects an estimate of the cumulated reward an agent might expect from being in this

state given its current behaviour. This notion is closely related to the notion of evalua-

tion function in game theory. It distinguishes reinforcement learning approaches from

all other simulation-based methods such as evolutionary algorithms that can also build

optimal policies but without using the temporal structure of the underlying sequential

decision problems.

Most reinforcement learning methods presented in this chapter are closely related

to the dynamic programming algorithms presented in the previous chapter. Indeed,

reinforcement learning can be seen as an extension of dynamic programming to the

case where the dynamics of the problem is not known in advance.

Reinforcement learning methods are said to be model-free or model-based depend-

ing on whether they build a model of the transition and reward functions p(s� | s, a)
and r(s, a) of the underlying MDP. As a matter of fact, dynamic programming meth-

ods can be seen as a special case of indirect (aka model-based) reinforcement learning

methods where the model is perfect. When the model is unknown, model-based meth-

ods must build it on-line. In the discrete case studied in this chapter, this is done

through a simple cumulative approach based on the maximum likelihood principle. In

parallel, dynamic programming methods can be applied to the increasingly accurate

model.

Direct (aka model-free) methods do not build a model: the hidden p(s� | s, a) and
r(s, a) parameters are not estimated, but the value function V is updated locally while

experimenting. This approach is advantageous in terms of memory use and, histor-

ically, reinforcement learning was initially restricted to direct methods. The central

idea of direct reinforcement learning consists in improving a policy locally after each

interaction with the environment. The update is local, thus it does not require a global

evaluation of the policy. In practice, however, most direct reinforcement learning algo-

rithms do not work directly on the policy, but iterate on an approximate value function

as defined in the previous chapter.

All methods presented in this chapter deal with the case where the transition and

reward functions of the MDP are unknown and an optimal value function V ∗ or a

function Q∗ representing the value of each action in each state will be approximated

through experience, either on a model-based or a model-free basis.
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2.2.2. Temporal, Non-Supervised and Trial-and-Error based Learning

Reinforcement learning can be distinguished from other forms of learning based

on the following characteristics:

– Reinforcement learning deals with temporal sequences. In contrast with one-

step supervised or non-supervised learning problems where the order in which the

examples are presented is not relevant, the choice of an action at a given time step will

have consequences on the examples that are received at the subsequent time steps.

This is particularly critical in the context of delayed reward problems where a reward

may be received far after the important choices have been made.

– In contrast with supervised learning, the environment does not tell the agent what

would be the best possible action. Instead, the agent may just receive a scalar reward

representing the value of its action and it must explore the possible alternative actions

to determine whether its action was the best or not.

– Thus, in order to determine the best possible action in any situation, the agent

must try a lot of actions, through a trial-and-error process that implies some explo-

ration, giving rise to the exploration/exploitation trade-off that is central to reinforce-

ment learning.

2.2.3. Exploration versus Exploitation

Exploitation consists in doing again actions which have proved fruitful in the past,

whereas exploration consists in trying new actions, looking for a larger cumulated

reward, but eventually leading to a worse performance. In theory, as long as the agent

has not explored all possible actions in all situations, it cannot be sure that the best

policy it knows is optimal. The problem is even more accurate when the environment

is stochastic, leading to the necessity to try each action in each situation several times

to get a reliable estimate of its average value. As a result, all convergence proofs

for reinforcement learning algorithms assume that each transition will be experienced

infinitely often [WAT 92]. In practice, however, one must do with a partial exploration.

Dealing with the exploration/exploitation trade-off consists in determining how the

agent should explore to get as fast as possible a policy that is optimal or close enough

to the optimum.

The agent may explore states as well as actions. With respect to states, the most

natural choice consists in just following the dynamics of the agent-environment sys-

tem, using the state resulting from the previous action as state of the next learning

step. This way, exploration is focused on the relevant part of the state space that will

be covered in practice by the agent. On-line planning methods such as RTDP rely on

this idea (see Chapter 6). Furthermore, there are many practical settings where doing

otherwise is extremely difficult. In robotics, for instance, it may be hard not to follow

the natural dynamics of the robot. Note however that in settings where there is a state
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or set of states where the system stays once it enters it, it is generally necessary to

reinitialize the system somewhere else to keep exploring.

With respect to actions, sampling the action uniformly in the action space at each

iteration satisfies the convergence criterion, ensuring a maximal exploration, but such

a choice is inefficient for two reasons. First, the value of the best action in each

state is updated as often as the value of the worst action, which results in robust, but

slow learning. Second, the cumulated reward along the experiment is just the average

performance over all possible policies, which may be inadequate when learning is

performed on the target system.

On the opposite, choosing at each iteration the greedy action with respect to the

current known values, i.e. performing a greedy policy is not satisfactory either, be-

cause it generally converges to a suboptimal policy or may even diverge.

Thus reinforcement learning algorithms are based on a trade-off between full ex-

ploration and full exploitation which generally consists in performing the greedy ac-

tion most of the time and an exploratory action from time to time. In this setting,

finding the optimal way of tuning the rate of exploratory actions along an experiment

is still an open problem.

Methods to deal with the exploration/exploitation trade-off can be classified into

two categories: undirected methods and directed methods [THR 92].

Undirected methods use few information from the learning experiments beyond

the value function itself. For instance, one may [BER 96]:

– follow the greedy policy along N1 iterations, then perform random exploration

along N2 iterations;

– follow at each iteration the greedy policy with probability 1 − � or a random
policy with probability �, with � ∈ [0, 1]; these methods are called �-greedy;

– draw an action according to a Boltzmann distribution, i.e the probability of draw-

ing action a is

pT (a) =
exp(−

Qn(sn,a)
T

)
P

a�
exp(−

Qn(sn,a�)
T

)

with limn→∞ T = 0

where Qn(s, a) is the action-value function of performing action a in state s; these
methods are called softmax. The roulette wheel selection method is a particular soft-

max method in which T is constant instead of decreasing.

These diverse exploration functions call upon parameters (N1, N2, � and T ) control-

ling the exploration rate. The useful cases are N2 > 0, T < +∞ and � < 1, which
experimentally ensure fast convergence.
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By contrast, directed methods use specific exploration heuristics based on the in-

formation available from learning. Most such methods boil down to adding some

exploration bonus to Q(s, a) [MEU 96]. This bonus can be local such as in the in-

terval estimation method [KAE 93], or propagated from state to state during learning

[MEU 99]. Simple definitions of this exploration bonus can lead to efficient methods:

– in the recency-based method, the bonus is ε
√
δnsa where δnsa is the number of

iterations since the last execution of action a in state s, and where ε ∈ [0, 1[;

– in the uncertainty estimation method, the bonus is c
nsa

, where c is a constant and

nsa is the number of times action a was chosen in state s.

These different exploration methods can be used in the context of any reinforce-

ment learning algorithm. Indeed, in all the temporal difference learning algorithms

presented below, convergence towards optimal values is guaranteed provided that the

Markov assumption is fulfilled and that each state is visited an infinite number of

times.

2.2.4. General Preliminaries on Estimation Methods

Before presenting general temporal difference methods in the next section, we will

present Monte Carlo methods as a specific instance of these methods. For the sake of

clarity, we will consider a policy π such that the corresponding Markov chain p(st+1 |
st) = p(st+1 | st, π(st)) reach from any initial state an (absorbing) terminal state T

with a null reward. We consider the total reward criterion and we try to approximate

V (s) = E(
�
∞

t=0Rt | s0 = s).

A simple way of performing this estimation consists in using the average cumu-

lated reward over different trajectories obtained by following a policy π. If Rk(s)
is the expected utility in state s along trajectory k, then an estimation of the value

function V in s based on the average after k + 1 trajectories is:

∀s ∈ S, Vk+1(s) =
R1(s) +R2(s) + ...+Rk(s) +Rk+1(s)

k + 1
. (2.1)

To avoid storing all the rewards, this computation can be reformulated in an incre-

mental way:

∀s ∈ S, Vk+1(s) = Vk(s) +
1

k + 1
[Rk+1(s)− Vk(s)]. (2.2)

To get Vk+1(s), one just needs to store Vk(s) and k. One can even avoid storing
k, using an even more generic formula:

∀s ∈ S, Vk+1(s) = Vk(s) + α[Rk+1(s)− Vk(s)] (2.3)
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where α is positive and should decrease along time, and we get:

lim
k→∞

Vk(s) = V π(s) (2.4)

This incremental estimation method is at the heart of temporal difference methods,

but is also present in Monte Carlo.

2.3. Monte Carlo Methods

The Monte Carlo approach consists in performing a large number of trajectories

from all states s in S, and estimating V (s) as an average of the cumulated rewards
observed along these trajectories. In each trial, the agent records its transitions and

rewards, and updates the estimates of the value of the encountered states according

to a discounted reward scheme. The value of each state then converges to V π(s) for
each s if the agent follows policy π.

Thus the main feature of Monte Carlo methods lies in the incremental estimation

of the value of a state given a series of cumulated reward values resulting from running

a set of trajectories. The estimation method itself is the one presented in Section 2.2.4.

More formally, let (s0, s1, . . . , sN ) be a trajectory consistent with the policy π and
the unknown transition function p(), and let (r1, r2, . . . , rN ) be the rewards observed
along this trajectory.

In the Monte Carlo method, the N values V (st), t = 0, . . . , N − 1 are updated
according to:

V (st) ← V (st) + α(st)(rt+1 + rt+2 + · · ·+ rN − V (st)) (2.5)

with the learning rates α(st) converging to 0 along the iterations. Then V converges

almost surely towards V π under very general assumptions [BER 96].

This method is said “every-visit” because the value of a state can be updated sev-

eral times along the same trajectory. The error terms corresponding to all these up-

dates are not independent, giving rise to a bias in the estimation of the V function

along a finite number of trajectories [BER 96, page 190]. A simple solution to this

bias problem consists in only updating V (s) on the first visit of s in each trajectory.
This “first-visit” method is not biased. Experimentally, the average quadratic error of

the first-visit method tends to be lower than that of the every-visit method [SIN 96].
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2.4. From Monte Carlo to Temporal Difference Methods

The standard Monte Carlo methods above update the value function at the end of

each trajectory. They can be improved so as to perform updates after every transition.

The update rule (2.5) can be rewritten in the following way, giving rise to a more

incremental method:2

V (st) ← V (st) + α(st)
�
(rt+1 + γV (st+1)− V (st))

+(rt+2 + γV (st+2)− V (st+1))
+ · · ·

+(rN + γV (sN )− V (sN−1))
�

or

V (st) ← V (st) + α(st)(δt + δt+1 + · · ·+ δN−1) (2.6)

by defining the temporal difference error δt by

δt = rt+1 + γV (st+1)− V (st), t = 0, . . . , N − 1.

The error δt can be interpreted in each state as a measure of the difference between

the current estimation V (st) and the corrected estimation rt+1 + V (st+1). It can be
computed as soon as the transition (st, rt+1, st+1) has been observed, giving rise to
an “on-line” version of the update rule (2.6). Thus one can start updating V without

waiting for the end of the trajectory.

V (sl) ← V (sl) + α(sl)δt, l = 0, . . . , t (2.7)

Once again, if a trajectory can visit the same state several times, the on-line version

can differ from the original version (2.6). However, it still converges almost surely and

the first-visit method still seems more efficient in practice [SIN 96].

Thus, whereas standard Monte Carlo methods require that each trajectory is fin-

ished to perform updates, the on-line version presented just above can be said incre-

mental. We can now turn to temporal difference methods that combine the incremen-

tality property of dynamic programming and the experience based update mechanism

of Monte Carlo methods.

2. γ is 1, it is introduced in the equations to highlight the relationship with the temporal differ-

ence error used in temporal difference methods. Furthermore, we use V (sN ) = V (T ) = 0
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2.5. Temporal Difference Methods

So far, we have seen two classes of behaviour optimisation algorithms:

– Dynamic programming algorithms apply when the agent knows the transition

and reward functions. They perform their updates locally, which results in the pos-

sibility to act without waiting for the end of all iterations. However, they require a

perfect knowledge of the underlying MDP functions.

– By contrast, Monte Carlo methods do not require any knowledge of the transition

and reward functions, but they are not local.

Temporal difference methods combine properties of both previous methods. They

rely on an incremental estimation of the value or action-value functions. Like Monte

Carlo methods, they perform this estimation based on the experience of the agent and

can do without a model of the underlying MDP. However, they combine this estimation

using local estimation propagation mechanisms coming from dynamic programming,

resulting in their incremental properties.

Thus temporal difference methods, which are at the heart of most reinforcement

learning algorithms, are characterised by this combination of estimation methods with

local updates incremental properties.

2.5.1. The TD(0) Algorithm

The different criteria that can be used to determine the cumulated reward along

a trajectory from local rewards have been presented in the previous chapter. Among

these criteria, we will focus in this section on the discounted reward that leads to the

most classical studies and proofs.

The basic temporal difference algorithm is TD. We note it here TD(0) for reasons
that will get clear in the section dedicated to eligibility traces. This algorithm relies

on a comparison between the actually received reward and the reward expected from

the previous estimations.

If the estimated values V (st) and V (st+1) in states st and st+1 were exact, we

would have:

V (st) = rt+1 + γrt+2 + γ2rt+3 + ... (2.8)

V (st+1) = rt+2 + γrt+3 + γ2rt+4 + ... (2.9)

Thus we would have:

V (st) = rt+1 + γV (st+1). (2.10)
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As stated before in Section 2.4, the temporal difference error δt = rt+1+γV (st+1)−
V (st) measures the error between the current estimation V (st) and the corrected es-
timation rt+1 + V (st+1). The temporal difference method consists in correcting this
error little by little by modifying V () according to a Widrow-Hoff equation, often
used in neural networks:

V (st) ← V (st) + α[rt+1 + γV (st+1)− V (st)] = V (st) + αδt. (2.11)

This update equation immediately reveals the connection between temporal differ-

ence methods, Monte Carlo methods and dynamic programming. Indeed, it combines

two features:

– as in dynamic programming algorithms, the estimate of V (st) is updated as a
function of the estimate of V (st+1). Thus the estimation is propagated to the current
state from the successor states;

– as in Monte Carlo methods, each of these values results from an estimation based

on the experience of the agent along its interactions with its environment.

One can thus see that temporal difference methods and, in particular, TD(0), are

based on two coupled convergence processes, the first one estimating the immediate

reward in each state and the second one approximating the value function resulting

from these estimates by propagating them along transitions.

In the context of TD(0), the updates are local each time the agent performs a tran-

sition in its environment, relying on an information limited to (st, rt+1, st+1). The
convergence of TD(0) was proven by Dayan and Sejnowski [DAY 94].

However, one must note that knowing the exact value of all states is not enough

to determine what to do. If the agent does not know which action results in reaching

any particular state, i.e. if the agent does not have a model of the transition function,

knowing V does not help it determine its policy. This is why similar algorithms based

on state-action pairs and computing the action-value function Q were developed, as

we will show below.

2.5.2. The SARSA Algorithm

As we just explained, finding V through V = LV does not result in a policy if the

model of transitions in unknown. To solve this problem, Watkins [WAT 89] introduced

the action-value function Q, whose knowledge is similar to the knowledge of V when

p is known.
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DEFINITION 2.1.– Action-value function Q

The action-value function of a fixed policy π whose value function is V π is:

∀s ∈ S, a ∈ A Qπ(s, a) = r(s, a) + γ
�

s�

p(s� | s, a)V π(s�).

The value ofQπ(s, a) is interpreted as the expected value when starting from s, ex-
ecuting a and then following the policy π afterwards. We have V π(x) = Qπ(x, π(x))
and the corresponding Bellman equation is:

∀s ∈ S, a ∈ A Q∗(s, a) = r(s, a) + γ
�

s�

p(s� | s, a) max
b
Q∗(s�, b).

Then we have

∀s ∈ S V ∗(s) = max
a
Q∗(s, a) and

π∗(s) = argmax
a

Q∗(s, a).

The SARSA algorithm is similar to TD(0) in all respects but the fact that it works

on state-action pairs rather than on states. Its update equation is the following:

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]. (2.12)

The information necessary to perform such an update is (st, at, rt+1, st+1, at+1),
hence the name of the algorithm.

The SARSA algorithm suffers from one conceptual drawback: performing the up-

dates as stated above implies to know in advance what will be the next action at+1 for

any possible next state st+1. As a result, the learning process is tightly coupled to the

current policy (the algorithm is said “on-policy”) and this complicates the exploration

process. As a result, proving the convergence of SARSA was more difficult than prov-

ing the convergence of “off-policy” algorithms such as Q-learning, presented below,

thus the corresponding convergence proof was published much later [SIN 00].

Note however that empirical studies often demonstrate the better performance of

SARSA compared to Q-learning.
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2.5.3. The Q-learning Algorithm

The Q-learning algorithm can be seen as a simplification of the SARSA algorithm,

given that it is no more necessary to determine the action at the next step to compute

updates. Its update equation is the following:

Q(st, at) ← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)]. (2.13)

Algorithm 2.1: Q-learning

αt

Q0

for t← 0 to Ttot − 1 do
st ←
at ←
(st+1, rt+1) ← st, at

{ update Qt:}

begin
Qt+1 ← Qt

δt ← rt+1 + γmaxbQt(st+1, b)−Qt(st, at)
Qt+1(st, at) ← Qt(st, at) + αt(st, at)δt

end

return QTtot

The main difference between SARSA and Q-learning lies in the definition of the

error term. The Q(st+1, at+1) term in Equation 2.12 is replaced bymaxaQ(st+1, a)
in Equation 2.13. It would be equivalent in the context of a greedy policy since we

would have at+1 = arg maxaQ(st+1, a). But, given the necessity to deal with the
exploration/exploitation trade-off, one can perform a non greedy action choice while

still using themax term in the update rule. Thus SARSA performs updates in function

of the actually chosen actions whereas Q-learning performs updates in function of the

optimal actions irrespective of the actions performed, which is simpler.

This greater simplicity resulted both in earlier proofs of its convergence [WAT 92]

and in the fact that it has been the most used algorithm over years, despite its eventual

lower performance.

The Q-learning algorithm is shown in Algorithm 2.1. Updates are based on instan-

taneously available information. In this algorithm, the Ttot parameter corresponds to

the number of iterations. There is here one learning rate αt(s, a) for each state-action
pair, it decreases at each visit of the corresponding pair. The function

returns a new state and the corresponding reward according to the dynamics of the
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system. The choice of the current state and of the executed action is performed by

functions and and will be discussed hereafter. The

function initialises the Q function with Q0, which is often initialised

will null values, whereas more adequate choices can highly improve the performance.

The Q-learning algorithm can also be seen as a stochastic formulation of the value

iteration algorithm presented in the previous chapter. Indeed, value iteration can be

expressed in terms of action value function:

Vn+1(s)=maxa∈A

Qn(s,a)
� �� ��

r(s, a) + γ
�

s�∈S

p(s� | s, a)Vn(s�)

�

⇒ Qn+1(s, a)=r(s, a) + γ
�

s�∈S p(s
� | s, a)Vn+1(s

�)
⇒ Qn+1(s, a)=r(s, a) + γ

�
s�∈S p(s

� | s, a) maxa�∈AQn(s�, a�)

The Q-learning algorithm is obtained by replacing r(s, a) +
�

s� p(s
� | s, a)

maxa�∈AQ(s�, a�) by its simplest unbiased estimator built from the current transition

rt+1 + maxa�∈AQ(st+1, a
�).

The convergence of this algorithm is proved [WAT 89, JAA 94] (Qn converges

almost surely to Q∗) under the following assumptions:

– S and A are finite,

– each (s, a) pair is visited an infinite number of times,

–
�

n αn(s, a) = ∞ and
�

n α
2
n(s, a) <∞,

– γ < 1 or, if γ = 1, there exists an absorbing state with null reward for any policy.

The almost sure convergence means that, ∀s, a, the sequence of Qn(s, a) con-
verges to Q∗(s, a) with a probability equal to 1. In practice, the sequence αn(s, a) is
often defined as αn(s, a) = 1

nsa
.

2.5.4. The TD(λ), Sarsa(λ) and Q(λ) Algorithms

The TD(0), SARSA and Q-learning algorithms only perform one update per time

step, in the state that the agent is visiting. As shown in Figure 2.1, this update process

is particularly slow. Indeed, an agent deprived of any information on the structure of

the value function needs at least n trials to propagate the immediate reward of a state

to another state that is n transitions away. Before this propagation is achieved, if the

initial values are null, the agent performs a random walk in the state space, which

means that it needs an exponential number of steps in function of n before reaching

the reward “trail”.
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Figure 2.1. Q-learning: first and second trial. One can see that, all values being initially null,

the propagation of non-null values does not start until the agent finds the reward source for the

first time, and only progresses once per trial.

A first naive way to solve the problem consists in using a memory of the trajec-

tory and to propagate all the information backwards along the performed transitions

each time a reward is reached. Such a memory of performed transitions is called an

“eligibility trace”.

Based on this idea, Sutton and Barto [SUT 98] proposed a class of algorithms

called “TD(λ)” that generalise TD(0) to the case where the agent uses a memory of

transitions. Later, SARSA and Q-learning have also been generalised into SARSA(λ)

and Q(λ), by two different ways and two different authors for the latter [WAT 92,

PEN 96].

These algorithms are more efficient than their standard counterpart, but they re-

quire more memory.

A problem with the naive approach above is that the required memory grows with

the length of trajectories, which is obviously not feasible in the infinite horizon con-

text.

In TD(λ), SARSA(λ) and Q(λ), a more sophisticated approach that addresses the

infinite horizon case is used.

We will discuss in Section 2.6.1, page 76, another solution that performs several

updates at each time step, in the indirect (or model-based) reinforcement learning

framework. Let us start by describing the TD(λ), SARSA(λ) and Q(λ) algorithms in
more details.

2.5.5. Eligibility Traces and TD(λ)

The originality of the TD(λ) method lies in the proposal of a compromise between

Equations 2.6 and 2.7. Let λ ∈ [0, 1] be a parameter. With the same notations as
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before, the TD(λ) algorithm defined by Sutton [SUT 88] is:

V (st) ← V (st) + α(st)

N−1�

m=t

λm−tδm, t = 0, . . . , N − 1 (2.14)

The role of λ can be understood by rewriting Equation 2.14 as follows:

V (st) ← V (st) + α(st)(z
λ
t − V (st)).

Then we have

zλt = V (st) +
N−1�

m=t

λm−tδm

= V (st) + δt + λ

N−1�

m=t+1

λm−t−1δm

= V (st) + δt + λ(zλt+1 − V (st+1))

= V (st) + rt+1 + V (st+1)− V (st) + λ(zλt+1 − V (st+1))

= rt+1 + (λzλt+1 + (1− λ)V (st+1))

In the λ = 0 case, this is equivalent to using a one step horizon, as in dynamic
programming. Thus this is TD(0).

If λ = 1, Equation 2.14 can be rewritten

V (st) ← V (st) + α(st)
N−1�

m=t

δm, t = 0, . . . , N − 1,

which is exactly Equation 2.5 in Monte Carlo methods.

For any λ, both first-visit and every-visit approaches can be considered. An on-line

version of the TD(λ) learning algorithm described by Equation 2.14 is possible:

V (sl) ← V (sl) + α(sl)λ
t−lδt, l = 0, . . . , t (2.15)

as soon as the transition (st, rt+1, st+1) is performed and the δt error is computed.

Applying TD(λ) to evaluate a policy π according to the discounted criterion im-

plies some modifications to the standard Algorithms 2.14 or 2.15.
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In the γ = 1 case, the update rule is the following:

V (st) ← V (st) + α(st)
∞�

m=t

(γλ)m−tδm. (2.16)

It is then clear that an off-line algorithm to compute V is inadequate in the absence

of an absorbing terminal state since the trajectory is potentially infinite. The on-line

version of (2.16) is then defined as:

V (s) ← V (s) + α(s)zt(s)δt, ∀s ∈ S, (2.17)

as soon as the tth transition (st, rt+1, st+1) is performed and the δt error is computed.
The eligibility trace zt(s) is defined as follows:

DEFINITION 2.2.– Cumulative eligibility trace

z0(s) = 0, ∀s ∈ S,

zn(s) =

�
γλzn−1(s) if s �= sn,
γλzn−1(s) + 1 if s = sn.

The eligibility coefficient increases at each visit of the corresponding state and

exponentially decreases during the other iterations until a new visit of that state (see

Figure 2.2).

n

z(s)

1

visit dates of state s

n

Figure 2.2. Cumulative eligibility trace: at each visit, one adds 1 to the previous value, thus

this value can get over 1

In some cases, a slightly different definition of zn(s) seems to lead to a faster
convergence of V .

DEFINITION 2.3.– Eligibility trace with reinitialisation

z0(s) = 0 ∀s ∈ S,

zn(s) =

�
γλzn−1(s) if s �= sn,
1 if s = sn.



Reinforcement Learning 71

Thus the value of the trace is bounded by 1, as shown in Figure 2.3.

1

visit dates of state s

n

n

z(s)

Figure 2.3. Eligibility trace with reinitialisation: the value is set to 1 at each visit

The almost sure convergence of the TD(λ) algorithm was shown for any λ, both

with on-line and off-line approaches, under classical assumptions of infinite visits

of each state s ∈ S and convergence of α towards 0 at each iteration n, such that�
n αn(s) = ∞ and

�
n α

2
n(s) <∞ [JAA 94, BER 96].

The effect of the λ value is still poorly understood and tuning optimally its value

for a given problem is still an open empirical problem.

A direct implementation of TD(λ) based on eligibility traces is not efficient as soon

as the state space S becomes large. A first approximate solution [SUT 98] consists in

setting to 0 the value of all traces zn(s) < ε, thus in stopping to maintain traces that

have not been visited since more than
log(ε)

log(γλ) transitions.

Another approximate method known as “truncated temporal differences”, or TTD(λ)

[CIC 95], is equivalent to storing a window of size m memorising the m last visited

state and updating from this window at each iteration n the value of the state visited

in iteration (n−m).

2.5.6. From TD(λ) to Sarsa(λ)

TD(λ) can be applied in a reinforcement learning context to learn an optimal pol-

icy. To do so, one can couple TD(λ) with an algorithm storing a sequence of policies

πt, as will become clear when presenting actor-critic approaches (see Chapter 5).

However, Q-learning directly integrates the temporal difference error idea. With

the update rule of Q-learning:

Qt+1(st, at) = Qt(st, at) + αt{rt+1 + γVt(st+1)−Qt(st, at)}
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for transition (st, at, st+1, rt+1), and in the case where action at executed in state st
is the optimal action for Qt — that is for at = πQt

(st) = argmaxbQt(st, b) —, then

the error term is:

rt+1 + γVt(st+1)− Vt(st)

which is exactly that of TD(0). This can be generalised to λ > 0, through coupling
TD(λ) and Q-learning methods.

The SARSA (λ) algorithm [RUM 94] is a first illustration. As shown in Algo-

rithm 2.2, it adapts Equation (2.17) to an action value function representation.

Algorithm 2.2: SARSA(λ)

αt

Q0

z0 ← 0
s0 ←
a0 ←
for t← 0 until Ttot − 1 do

(s�t, rt+1) ← st, at

a�t ←
{update Qt and zt:}

begin
δt ← rt+1 + γQt(s

�

t, a
�

t)−Qt(st, at)
zt(st, at) ← zt(st, at) + 1
for s ∈ S, a ∈ A do
Qt+1(s, a) ← Qt(s, a) + αt(s, a)zt(s, a)δt
zt+1(s, a) ← γλzt(s, a)

end

if s�t non absorbing then
st+1 ← s�t and at+1 ← a�t

else
st+1 ←
at+1 ←

return QTtot

The zt(s, a) eligibility trace is extended to state-action pairs and the state space
exploration is guided by the dynamics of the system, unless a terminal state is reached.

2.5.7. Q(λ)

Dealing with the case where the optimal action πQt
(s�t) was not chosen leads to

Q(λ) algorithms proposed by Watkins (see [SUT 98]) and Peng [PEN 94].
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Watkins’ approach toQ(λ) is characterized by the fact that it only considers λ > 0
along pieces of trajectories where the current policy πQt

has been followed. Thus,

with respect to SARSA(λ), the update rules of Qt and zt are both modified, as shown

in Algorithm 2.3. The problem with this approach is that, when the exploration rate

is high, the zt traces are often reset to 0 and Q(λ) behaves closely to the original

Q-learning.

Peng’s approach toQ(λ) solves this problem. It manages not to reset the trace zt to
0 when an exploratory, non optimal action is chosen. There are very few experimental

results about this approach (see however [NDI 99]) nor comparison between TD(λ),

SARSA(λ) and Q(λ), thus drawing conclusions about these approaches is difficult. The

only general conclusion that can be drawn is that using eligibility traces with λ > 0
reduces the number of necessary learning iterations to converge. The analysis in terms

of computation time is more difficult, given the overhead resulting from the increased

complexity of the algorithms.

Algorithm 2.3: Q(λ)

αt

Q0

z0 ← 0
s0 ←
a0 ←
for t← 0 until Ttot − 1 do

(s�t, rt+1) ← st, at

a�t ←
{update Qt and zt:}

begin
δt ← rt+1 + γmaxbQt(s

�

t, b)−Qt(st, at)
zt(st, at) ← zt(st, at) + 1
for s ∈ S, a ∈ A do
Qt+1(s, a) ← Qt(s, a) + αt(s, a)zt(s, a)δt

zt+1(s, a) ←

�
0 if a�t �= πQt

(s�t)
γλzt(s, a) if a�t = πQt

(s�t)

end

if s�t non absorbing then
st+1 ← s�t and at+1 ← a�t

else
st+1 ←
at+1 ←

return QTtot
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2.5.8. The R-learning Algorithm

All algorithms presented so far were based on the discounted criterion. The R-

learning algorithm, proposed by Schwartz [SCH 93], is the adaptation of Q-learning

to the average criterion and all previously explained principles are present.

The goal of this algorithm is to learn a policy π whose average reward ρπ is as close

as possible to the maximal average reward ρ∗ of an optimal policy π∗. To ensure this

property, R-learning maintains two correlated sequences ρt and Rt. The ρt sequence

is only updated when the performed action was the greedy-action maximising Rt in

the current state st. This ρt sequence is an estimate of the criterion to maximise. As

Qt in Q-learning, Rt represents the relative value function U of a policy:

DEFINITION 2.4.– R value function

We associate a new function R with a fixed policy π whose value function is Uπ and

whose average reward is ρπ ,:

∀s ∈ S, a ∈ A Rπ(s, a) = (r(s, a)− ρπ) +
�

s�

p(s�|s, a)Uπ(s�).

Here again, Uπ(x) = Rπ(x, π(x)) and the Bellman equation applied to ρ∗ and R∗

becomes:

∀s ∈ S, a ∈ A R∗(s, a) = (r(s, a)− ρ∗) +
�

s�

p(s�|s, a) max
b
R∗(s�, b) (2.18)

with a guarantee that the average reward of policy πR∗(s) = argmaxaR
∗(s, a) is the

optimal reward ρ∗.

As Q-learning, R-learning is a stochastic version of value iteration for Equation (2.18).

Though there is no formal proof of the convergence of R-learning to the optimal

policy, numerous experiments show that ρt efficiently approximates ρ
∗ under the same

constraints as Q-learning.

Though R-learning is less famous and less used than Q-learning, it seems to per-

form more efficiently in practice [MAH 96b]. Few theoretical results are available on

this point, but it has been shown that, in the finite horizon case, R-learning is very

close to a parallel optimised version of Q-learning [GAR 98], which may explain its

better empirical results.

Other average reward reinforcement learning algorithms have been proposed [MAH 96b].

Among them, the B algorithm [JAL 89] is an indirect method based on an adaptive

estimation of the p() and r() functions. We can also mention Mahadevan’s work
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Algorithm 2.4: R-learning

αt βt

R0,ρ0
for t← 0 until Ttot − 1 do
st ←
at ←
(s�t, rt) ← st, at

{update Rt and ρt:}

begin
Rt+1 ← Rt

δt ← rt − ρt + maxbRt(s
�

t, b)−Rt(st, at)
Rt+1(st, at) ← Rt(st, at) + αt(st, at)δt

ρt+1 ←

�
ρt if at �= πRt

(st)
ρt + βtδt if at = πRt

(st)

end

return RTtot
, ρTtot

[MAH 96a] who defined a model-based algorithm learning bias-optimal policies. Av-

erage reward reinforcement learning algorithms have been getting more popular re-

cently (e.g. [BHA 07]).

We will now turn more generally to model-based approaches and we will present

two algorithms that benefit from a proof of convergence in time polynomial in the

size of the problem rather than exponential. These algorithms have also given rise to

extension in the factored MDP case, as will be presented in Chapter 4.

2.6. Model-based Methods: Learning a Model

In Section 2.5.4, we highlighted the existence of a compromise between the learn-

ing speed and the memory usage. The solution based on eligibility traces is limited by

the fact that learning results from information extracted from the immediate past of the

agent. We will now present a different approach where the agent builds a model of its

interactions with the environment and can then use dynamic programming algorithms

based on this model, independently from its current state.

The main question with this kind of approach is the following: Shall we wait for

the most exact possible model before performing Bellman backups? Shall we rather

intertwin learning the model and applying dynamic programming on it? The latter

approach seems more efficient, as illustrated by Adaptive Real-Time Dynamic Pro-

gramming (ARTDP) [BAR 95], where model learning, dynamic programming and

execution are concurrent processes. DYNA architectures such as Dyna [SUT 90a],
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Queue-Dyna [PEN 93] and Prioritized Sweeping [MOO 93] are precursors of this ap-

proach.

2.6.1. Dyna Architectures

All model-based reinforcement learning algorithms are based on the same moti-

vation. Rather than waiting for actual transitions of the agent in its environment, one

way to accelerate the propagation of values consists in building a model of the tran-

sition and reward functions and to use this model to apply a propagation algorithm

independently of the actual behaviour of the agent.

The DYNA architectures [SUT 90b], illustrated in Figure 2.4, were the first im-

plementations of a system learning a model of transitions. Indeed, Sutton proposed

this family of architectures to endow an agent with the capability to perform several

updates at a given time step. To do so, several iterations of a dynamic programming

algorithm are applied based on the model learned by the agent.

reward

action

E
N

V
IR

O
N

M
E

N
T

model of the

payoff

tr
a
n
s
it
io
n
s

previous and current situation

transitions

model of

Figure 2.4. DYNA architectures combine a model of the reward function and a model of the

transition function. The model of transitions is used to accelerate learning. Building both

models requires a memory of the previous situation, which is not explicit on the figure.

The model of transitions is a list of �st, at, st+1� triples indicating that, after the
agent performs action at in state st, it may reach state st+1. Once this model is

learned, the value iteration or policy iteration algorithms can be applied on it. One can

also perform “virtual transitions” using the model and a local update rule, any number

of times per time step, so as to accelerate the propagation of values. This approach is

particularly appealing when using physical systems like a robot, where performing an

actual transition is much more expensive than a virtual one.

Furthermore, if the reward function suddenly changes, the value propagation mech-

anism can help reconfigure the whole value function quickly. Finally, building a model

of transitions endows the agent with a planning capability: if one state is known as de-

sirable or considered as a goal, the agent can look forward into its transition graph for
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sequences of action that can result in reaching this state and execute the sequence that

gives the highest probability of reaching it.

All Dyna architectures implement the principles described above. They differ

from one another on the update rule or exploration strategy. The first implementation,

DYNA-PI, also called Dyna-AC afterwards [SUT 98], is based on Policy Iteration.

Sutton [SUT 90b] showed that this system is less flexible than Dyna-Q, which is

based on Q-learning. He finally proposed Dyna-Q+, a Dyna-Q augmented with active

exploration capabilities.

Finally, the dynamic programming component of these systems can be improved

by performing value updates more efficiently than a blind and systematic “sweep” of

all transitions. Several improved sweeping mechanisms have been proposed, such as

Prioritized Sweeping [MOO 93], Focused Dyna [PEN 92], Experience Replay [LIN 93]

or Trajectory Model Updates [KUV 96].

2.6.2. The E3 Algorithm

The first algorithm converging in polynomial time with respect to the size of the

problem is called E3, for Explicit Explore and Exploit [KEA 98]. Like DYNA archi-

tectures, E3 builds a model of transitions and rewards. Nevertheless, instead of trying

to build a complete model, it only memorises the subset of the visited transitions that

are involved in the optimal policy.

To build this model, the algorithm visits all states homogeneously, i.e. the agent

chooses in any state the less often performed action in that state. Then it updates a

model of the probability distribution over subsequent states, which constitute a model

of the transition function.

This way to deal with the exploration/exploitation trade-off is based on the “pigeon

hole principle” that stipulates that, with such an homogeneous exploration, there will

always be a time at which the model of the probability distribution for some state is

close enough to the true transition function for that state. The authors define a notion

of “known state” so that the number of visits necessary to consider a state as known

remains polynomial in the size of the problem.

The model built by E3 is an MDP containing all the “known” states with the ob-

served transition probabilities and a unique absorbing state representing all the states

that are not known yet. The algorithm then distinguishes two contexts:

– either there exists a policy that is close enough to the optimum based only on

known states; in that case, dynamic programming can be applied to the known model;
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– or this is not the case and the agent must keep exploring by taking actions leading

to the absorbing state, so that more states get known.

This simple algorithm benefits from a proof of convergence in polynomial time to the

optimal policy. The point is that, to decide in which of the above contexts it is, it

must determine whether performing more exploration beyond a certain horizon would

improve the current best policy, which is itself a hard problem.

2.6.3. The Rmax Algorithm

The Rmax algorithm [BRA 01] is an improvement over E3. It relies on the same

general idea of building a model of known states and looking for an optimal policy in

the finite horizon case under an average reward criterion. But, furthermore, it simpli-

fies the management of the exploration/exploitation trade-off thanks to an optimistic

initialisation of the value function to the maximum expected immediate reward3 and

it extends the algorithm from the MDP framework to the null sum stochastic games

framework, allowing to take the presence of an opponent into account.

The main difference with E3 comes from the fact that, thanks to the optimistic

initialisation of values, Rmax does not need to decide whether it should explore or

exploit. Indeed, the agent just goes towards attractive states, and a state is more at-

tractive than the others either because it is not known enough or because it is along

the optimal trajectory. With respect to E3, Rmax is more robust in the sense that, in

the presence of an opponent, the agent cannot control accurately the transitions of the

system— thus the homogeneous exploration strategy is difficult to ensure — whereas

the optimistic exploration approach of Rmax guarantees that the agent will explore as

efficiently as possible whatever the behavior of the opponent.

Nonetheless, as for E3, the proof of convergence of Rmax calls upon two unreal-

istic assumptions. First, it is assumed that the algorithm knows the horizon T beyond

which trying to improve the model through exploration will not result in significant

improvements of the policy. Second, it is assumed that the optimal policy on hori-

zon T over the known model can be computed at each time step, which is difficult in

practice if T is large, as generally required in the context of a proof.

In practice, however, the authors show that the algorithm is efficient even with rea-

sonable values of T , given that it performs better and better as T increases [BRA 03].

Other improvements have been proposed such as the heuristic sampling of transi-

tions rather than a systematic exploration [PER 04, KEA 02].

3. Hence the name of the algorithm, Rmax.
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This polynomial time exploration topic has been very active in recent years, with

work around Probably Approximately Correct (PAC) approaches, likeMBIE [STR 05]

and Delayed Q-learning [STR 06]. A recent synthesis of these approaches and further

improvements are proposed in [SZI 08].

2.7. Conclusion

Reinforcement learning is nowadays a very active research domain, at the interface

between machine learning, statistical learning, behaviour optimisation, robotics, cog-

nitive sciences and even neurophysiology. Various techniques have been developed to

study the acquisition of an optimal behaviour in a stochastic, dynamic and uncertain

environment.

In this chapter, we have focused on the classical, basic methods that constitute the

general background of the domain. This domain being very active, a lot of recent

methods were not presented here.

Other classical approaches extending those presented here will be described in the

next chapters of this book, such as on-line resolution methods (Chapter 6), dynamic

programming with value function approximation (Chapter 3) or gradient methods to

optimize parameterized policies (Chapter 5).
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