
Chapter 4

Factored Markov Decision Processes

4.1. Introduction

Solution methods described in the MDP framework (Chapters 1 and2 ) share a
common bottleneck: they are not adapted to solve large problems. Indeed, using non
structured representations requires an explicit enumeration of the possible states in the
problem. The complexity of this enumeration grows exponentially with the number
of variables in the problem.

EXAMPLE.– In the case of the car to be maintained, the number of possible states
of a car can be huge. For instance, each part of the car can have its one wearout
state. The idea of factored representations is that some part of this huge state do not
depend on each other and that this structure can be exploited to derive a more compact
representation of the global state and obtain more efficiently an optimal policy. For
instance, changing the oil in the car should have no effect on the breaks, thus one does
not need to care about the state of the breaks to determine an optimal oil changing
policy.

This chapter aims to describe FMDPs (Factored Markov Decision Processes), first
proposed by [BOU 95, BOU 99]. FMDPs are an extension of MDPs that allows to rep-
resent the transition and the reward functions of some problems compactly (compared
to an explicit enumeration of state-action pairs). First, we describe the framework
and how problems are modeled (Section 4.2). Then we describe different planning
methods able to take advantage of the structure of the problem to compute optimal or
near-optimal solutions (Section 4.3). Finally, we conclude in Section 4.4 and present
some perspectives.
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4.2. Modeling a Problem with an FMDP

4.2.1. Representing the State Space

It is intuitive to describe a problem by a set of observations whose values describe
the current status of the environment. So, the state s can be described as a multivariate
random variable X = (X1, . . . , Xn) where each variable Xi can take a value in its
domain DOM(Xi).1 Then, a state becomes an instantiation of each random variable
Xi and can be written as a vector x = (x1, . . . , xn) such that ∀i xi ∈ DOM(Xi).
We note DOM(X) the set of possible instantiations for the multivariate variable X .
Consequently, the state space S of the MDP is defined by S = DOM(X).

With such representations, states are not atomic and it becomes possible to exploit
some structures of the problem. In FMDPs, such representation is mainly used to rep-
resent the problem compactly and to reduce the complexity of the computation of the
solution. More precisely, FMDPs exploit function-specific independence to represent
compactly the transition and the reward functions. Moreover, FMDPs are also appro-
priate to exploit two other properties related to the structure of the problem, that is
context-specific independence and linear approximation.

To illustrate the FMDP framework, we are going to use a well known example in
the literature named Coffee Robot (Section 4.2.2), first proposed by [BOU 00]. Using
this example, we are then going to describe the decomposition of the transition and
the reward functions (Section 4.2.3) with a formalization of function-specific indepen-
dencies. Section 4.2.4 proposes a formalization of context-specific independencies.

4.2.2. The Coffee Robot Example

A robot must go to a café to buy a cup of coffee for its owner who is located
at its office. When it is raining, it must get an umbrella to stay dry when going to
the café. The state of the system is composed of six binary variables2 Xi where
DOM(Xi) = {0, 1} (corresponding respectively to and ). These variables
are:

H: Has the owner a coffee?

C: Has the robot a coffee?

1. For convenience, we will sometimes see such multivariate random variables as sets of random
variables.

2. This example uses binary variables. However, nothing prevents from using a random variable
Xi where |DOM(Xi)| > 2.
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W: Is the robot wet?

R: Is it raining?

U : Has the robot an umbrella?

O: Is the robot in the office?

For instance, the vector [H=0,C=1,W=0,R=1,U=0,O=1] represents the state of the Coffee
Robot problem where the owner does not have a coffee, the robot has a coffee, it is not
wet, it is raining, the robot does not have an umbrella and it is located in the office.
This problem being composed of 6 binary variables, there is 26 = 64 possible states.

In this problem, four actions are available to the robot:

Go: Move to the other location.

BuyC: Buy a coffee: the robot gets one only if it is in the café.

DelC: Deliver coffee: the owner will get a coffee only if the robot is located in the
office and it has a coffee.

GetU: Get an umbrella: the robot will get one only if it is located in the office.

Actions can be noisy to represent stochastic problems. For instance, when the
robot gives the coffee, its owner will get his coffee only with a given probabil-
ity (the cup may fall). Thus, when the action DelC is executed in the state x =
[C=0,H=1,W=0,R=1,U=0,O=1] (the robot is in the office and the owner does not have a
coffee), the transition function of the problem defines:

– P ([C=1,H=1,W=0,R=1,U=0,O=1]|x,DelC) = 0.8,

– P ([C=0,H=1,W=0,R=1,U=0,O=1]|x,DelC) = 0.2,

– 0.0 for other transition probabilities.

Finally, for the reward function, the robot gets a reward of 0.9 when the owner has
a coffee (0 when it does not) and 0.1 when it is dry (and 0 when the robot is wet).
The reward the robot obtains when the owner gets a coffee is larger than the reward
obtained when the robot is dry so as to specify that the task of getting a coffee has a
higher priority than the constraint of staying dry.
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4.2.3. Decomposition and Function-Specific Independence

Function-specific independencies refer to the property that some functions in the
problem do not depend on all the variables in the problem or on the action executed
by the agent. For instance, in the Coffee Robot problem, the value of the variable R
at the next time step, meaning if it is raining or not, only depends on its own value at
the current time step. Indeed, the fact that it is going to rain at the next time step is
independent of variables such as “Has the robot a coffee ?” (variable H) or the last
action executed by the robot.

The FMDP framework allows to take advantage of such independencies in the rep-
resentation of the transition and reward functions. Once these independencies spec-
ified, planning algorithms can then exploit them to improve their complexity. This
notion is formalized by two different operators, namely PARENTS and SCOPE, de-
fined respectively in the next section (Section 4.2.3.1) for the transition function and
in Section 4.2.3.4 for the reward function.

4.2.3.1. Transition Function Decomposition

A transition function in a finite MDP is defined by the finite set of probabilities
p(xt+1|xt, at). Assuming that the state can be decomposed using multiple random
variables (see Section 4.2.1), it is possible to decompose the probability p(xt+1|xt, at)
as a product of probabilities, then to exploit the independencies between these random
variables to decrease the size of the representation of the transition function.

For instance, in the Coffee Robot problem, the transition function for the action
DelC is defined by the set of probabilities PDelC(xt+1|xt). By first decomposing the
state xt+1 and using the Bayes rule, we have:

PDelC(xt+1|xt) = PDelC(ct+1, ht+1, wt+1, rt+1, ut+1, ot+1|xt)

= PDelC(ct+1|xt) ∗ PDelC(ht+1|xt, ct+1) ∗ . . . ∗

PDelC(ot+1|xt, ct+1, ht+1, wt+1, rt+1, ut+1)

where Xt is a random variable representing the state at time t. In the case of the
Coffee Robot problem, we know that the value of a variableXt+1 only depends on the
variables at time t, so that we have:

PDelC(xt+1|xt) = PDelC(ct+1|xt) ∗ PDelC(ht+1|xt, ct+1) ∗ . . . ∗

PDelC(ot+1|xt, ct+1, ht+1, wt+1, rt+1, ut+1)

= PDelC(ct+1|xt) ∗ . . . ∗ PDelC(ot+1|xt).
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Similarly, it is possible to decompose the state xt:

PDelC(xt+1|xt) = PDelC(ct+1|xt) ∗ . . . ∗ PDelC(ot+1|xt)

= PDelC(ct+1|ct, ht, wt, rt, ut, ot) ∗ . . . ∗

PDelC(ot+1|ct, ht, wt, rt, ut, ot).

Then, given the structure of the Coffee Robot problem, we know, for instance, that
the probability PDelC(Rt+1 = 1|xt) that it will rain at the next time step only de-
pends on rt, that is if it is raining at time t. Thus, we have PDelC(Rt+1 = 1|xt) =
PDelC(Rt+1 = 1|rt). By exploiting function-specific independencies, it is possible to
compactly represent the transition function for the actionDelC by defining each prob-
ability PDelC(xt+1|xt) only by the variables it depends on at time t in the problem
(rather than all the variables composing the state xt):

PDelC(xt+1|xt) = PDelC(ct+1|ct, ht, wt, rt, ut, ot) ∗ . . . ∗

PDelC(ot+1|ct, ht, wt, rt, ut, ot)

= PDelC(ct+1|ct, ht, ot) ∗ PDelC(ht+1|ht, ot) ∗

PDelC(wt+1|wt) ∗ PDelC(ut+1|ut) ∗

PDelC(rt+1|rt) ∗ PDelC(ot+1|ot).

So, for instance, rather than defining the probability distribution PDelC(Rt+1|Xt), we
now use only the required variables, that is the same variable at time t: PDelC(Rt+1|Xt) =
PDelC(Rt+1|Rt). The Coffee Robot problem is composed of six binary variables,
meaning that it requires to define 26 ∗ 26 = 4096 probabilities PDelC(xt+1|xt) for
the action DelC whereas the compact representation above only requires to define
2 ∗ 23 + 2 ∗ 22 + 2 ∗ 21 + 2 ∗ 21 + 2 ∗ 21 + 2 ∗ 21 = 40 probabilities.

Consequently, function-specific independence related to the structure of the prob-
lem are explicitly defined and allow to aggregate regularities in the transition function.
Moreover, function-specific independence refers to an often intuitive representation
of a problem by describing the consequences of actions on the values of the different
variables. In FMDPs, function-specific independencies are formalized with dynamic
Bayesian networks [BOU 95].



118 Markov Decision Processes in AI

4.2.3.2. Dynamic Bayesian Networks in FMDPs

Bayesian networks [PEA 88] are a representational framework to represent depen-
dencies (or independencies) between random variables. These variables are the nodes
of a directed graph. Direct probabilistic dependencies between two variables are repre-
sented by an edge between the two nodes representing these two variables. Dynamic
Bayesian networks (DBNs) are Bayesian networks representing temporal stochastic
processes. The nodes in a DBN represent variables for a particular time slice.

Assuming that the problem is stationary (the transition function T of the MDP

does not depend on the time), it is possible to represent T with DBNs using only two
successive time steps (assuming the Markov property is satisfied). In such a case,
DBNs are composed of two sets of nodes:

1) the set of nodes representing the variables of the problem at time t,

2) the set of nodes representing the variables of the problem at time t+ 1.

Edges indicate direct dependencies between variables at time t and variables at time
t+ 1 or between variables in the same time slice at time t+ 1 (such edges are named
synchronous arcs). Such DBNs are sometimes named 2 Time-slice Bayesian Networks.

Independencies between random variables to define the transition function can
then be represented using one DBN per action. Similarly, even if the action is rather
a decision variables, actions that were executed in the past by the agent can also be
considered as a random variable at time t. In such a case, only one DBN is necessary
to define independencies between variables (and the action) in the transition function
[BOU 96]. Finally, the DBN is quantified by a conditional probability distribution to
define the probability of each value x ∈ DOM(X) for each variableX given the value
of the random variables X directly depends on (its parent variables), as illustrated in
the next section with the Coffee Robot example.

4.2.3.3. Factored Model of the Transition Function in an FMDP

Figure 4.1 represents the effect of the action DelC on a state. The DBN τDelC

(Figure 4.1(a)) clearly states that, for instance, for the action DelC, the variable C
does only depend on the values of the variables O, H and C at the previous time step
and is independent of the other state variables.

We can define PARENTSτ (X �
i) the set of parents of the variableX �

i in DBN τ . This
set can be partitioned in two subsets PARENTS

t
τ (X �

i) and PARENTS
t+1
τ (X �

i) repre-
senting respectively the set of parents at time t and the set of parents at time t + 1.
In the Coffee Robot example, we assume that there is no synchronous arcs, that is
PARENTS

t+1
τ (X �

i) = ∅ and PARENTSτ (X �
i) = PARENTS

t
τ (X �

i). Thus, in Figure 4.1,
we have PARENTSDelC(C�) = {O,H, C}.
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Figure 4.1. Partial representation of the transition function T for the Coffee Robot problem.
Figure (a) represents the dependencies between variables for the DelC action.

Figure (b) defines the conditional probability distribution PDelC(C�|O,H, C) using a tabular

representation.

corresponding DBN τ is quantified by a set of conditional probability distributions,
noted Pτ (X �

i|PARENTSτ (X �
i)) for a variable X �

i . Then, the probability Pτ (X �|X)
can be defined compactly as:

Pτ (x�|x) =
�

i

Pτ (x�i|parents(x
�

i)) (4.1)

with x�i the value of the variable X �
i in state x

� and parents(x�i) the values of the
variables in the set PARENTSτ (X �

i).

Figure 4.1(b) gives the conditional probability distribution PDelC(C�|O,H, C) in
the Coffee Robot problem in a tabular form. The columns O, H and C represent
the values of these variables at time t. The column C� represents the probability for
variable C to be true at time t+ 1.

The multiplicative decomposition (Equation 4.1) and the specification of func-
tional independencies in the model description of the transition function are the main
contributions of FMDPs compared to MDPs. Both of these properties are exploited by
the algorithms exploiting the structure of the problem specified in the FMDP.

4.2.3.4. Factored Model of the Reward Function

A similar representation can be used to specify the reward function of the problem
in FMDPs. Indeed, first, the reward function R can be decomposed additively and,
second, the different terms of the decomposition do not necessarily depend on all the
state variables of the problem.
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For instance, in the Coffee Robot problem, the reward function, represented by a
diamond in Figure 4.2, only depends on two variables C and W . It is independent of
the action executed by the agent or of other variables in the problem.

C

W

R

(a)

C W R

1 0 1.0

1 1 0.9

0 0 0.1

0 1 0.0

(b)

C WR0 R1

C R0

0 0.0

1 0.9

+

W R1

0 0.1

1 0.0

(c)

Figure 4.2. Representation of the reward function R(s) in the Coffee Robot problem.

The table in Figure 4.2(b) specifies that the best state for the robot is when its
owner has a coffee and the robot is dry whereas the worst case is when its owner does
not have a coffee and the robot is wet. We can notice that a preference is given to the
state where the owner has a coffee and the robot is dry over the state where the owner
does not have a coffee and the robot is dry.

[BOU 00] defines the reward function of the Coffee Robot problem by summing
the two criteria of the problem: “the owner has a coffee” and “the robot is dry”.
However, these two criteria are independent of each other. To be able to exploit this
additive decomposition of the reward function, [GUE 03b] proposes to represent the
reward function of an FMDP as a sum of different localized reward functions.

Given the Coffee Robot problem, we can define the reward function as being the
sum of two localized reward functions depending respectively on the variables C and
W , representing the criteria “the owner has a coffee” and “the robot is dry”.

[GUE 03b] formalizes such a structure by first defining the scope of a localized
function f (noted SCOPE(f)). Similarly to PARENTS for DBNs, the scope of f is
defined as follows:

DEFINITION 4.1.– Scope

A function f has a scope SCOPE(f) = C ⊆ X if f : DOM(C) → IR.

Let a function f such as SCOPE(f) = C, we note f(x) as a shorthand for f(x[C])
where x[C] is the restriction of x to the variables in C. Consequently, the SCOPE

definition allows to define the function-specific independence of f .

It is now possible to define a localized reward function. Let a set of localized
reward functions Ra

1 , . . . , R
a
r with scope SCOPE(Ra

i ) for each Ra
i constrained to a
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subset Ca
i ⊆ {X1, . . . , Xn}, then the reward function associated to action a is defined

as:

Ra(x) =
r�

i=1

Ra
i (x[Ca

i ]) (4.2)

=
r�

i=1

Ra
i (x). (4.3)

Regarding the Coffee Robot example, the problem can be defined by the two re-
ward functions R1 and R2 given in Figure 4.2(c) and representing respectively the
two criteria “the owner has a coffee” and “the robot is dry” with SCOPE(R1) = {C}
and SCOPE(R2) = {W}. We note R1(x) as a shorthand for R1(x[C]) with x[C]
representing the value of C in x.

Whereas all algorithms in the FMDP framework exploit function-specific indepen-
dencies of the reward function, they do not necessarily exploit its additive decompo-
sition. Moreover, not all problems exhibit such structure in their reward function.

4.2.4. Context-Specific Independence

For a given function and a given context, it is not necessarily required to test every
variable on which the function depends to define the output of the function. Such
property is named context-specific independence.

For the Coffee Robot problem, in the definition of the conditional probability
distribution PDelC(C�|O,H, C) (see Figure 4.1(b)), whereas PARENTSDelC(C�) =
{O,H, C}, it is not necessary to test variables O and H if C = 1 when Ct = 1 to
know the probability distribution of the variable C�.

From [GUE 03a], a context is formalized as follow:

DEFINITION 4.2.– Context

Let a function f : X → Y . A context c ∈ DOM(C) is an instantiation of a

multivariate random variable C = (C0, . . . , Cj) such that C ⊆ X . It is noted:

(C0 = c0) ∧ . . . ∧ (Cj = cj) or C0 = c0 ∧ . . . ∧ Cj = cj .

Unlike function-specific independence, exploiting context-specific independence
is directly related to the data structure used by the algorithms to solve the problem.
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Indeed, the operators PARENTS and SCOPE, representing function-specific indepen-
dence, define the set of variables on which the function depends. As seen in Sec-
tion 4.2.3, such structure allows to compactly represent some problems, even when
the data structure used to define these functions is not structured, as it is the case for
the tabular representation used in Figure 4.1.

For a given set of variables (specified with the PARENTS and SCOPE operators),
context-specific independencies are used to represent a function more compactly. In
this case, the main idea is to use structured representations to aggregate similar states,
unlike tabular representations. Thus, [BOU 00] suggests different data structures to
represent the different functions of a given FMDP, such as: rules [POO 97], decision
lists [RIV 87] or algebraic decision diagrams [BRY 86]. Consequently, because each
algorithm proposed in the FMDP framework uses a different data structure and strongly
relies on it, we have preferred focusing on the description of these data structures in
the next section.

4.3. Planning with FMDPs

This section describes different planning methods to solve problems specified as
FMDPs. Rather than describing the algorithms in details, we describe the different
representations and data structures they use as an outline of their main properties.
However, all the required references are given for the reader interested in more in-
depth descriptions.

4.3.1. Structured Policy Iteration and Structured Value Iteration

Structured Value Iteration (SVI) and Structured Policy Iteration (SPI) [BOU 00]
are adaptations to FMDPs of the Policy Iteration and Value Iteration algorithms. In
addition to using function-specific independence, SVI and SPI exploit context-specific
independence by using decision trees to represent the different functions of the prob-
lem.

4.3.1.1. Decision Trees

Decision trees represent a function by partitioning its input space and associating
the output value to each of these partitions. A decision tree is composed of:

– internal nodes (or decision nodes): they represent a test on a variable of the input
space. They are parents of other nodes in the tree and define the partitions of the input
space;

– edges: they connect a parent interior node to a child node and constrain the value
of the variable tested at the parent node to one value to reach the child node;
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– external nodes (or leaves): they represent the terminal nodes of the tree and
define the value of the function for the partition defined by the parent (internal) nodes.

Note that, in a decision tree, one node has only one parent (except for the root which
has no parent).

In SVI and SPI, decision trees are used to represent the different functions of the
FMDP, such as reward functions, transition functions, policies and value functions. A
function f represented by a decision tree is noted Tree [f ]. Graphically, we represent
decision trees with the following convention: for an internal node testing a Boolean
variable X , the left and right edges correspond respectively to X = 1 and X = 0 (or
respectively X being true and X being false).

4.3.1.2. Representation of the Transition Function

In the Coffee Robot problem, the tabular representation of the conditional prob-
ability distribution PDelC(C�|O,H, C) (see Figure 4.3(a)) exhibits, depending on the
context, different regularities that can be exploited to represent the function more com-
pactly. For instance, as described above in Section 4.2.4, in the context where C = 1,
the probability that C� is true is equal to 1, whatever the value of the two other variables
O,H ∈ PARENTSDelC(C�). In the problem, this means that it is certain that an owner
having a coffee will still have it at the next time step. Decision trees allow to represent
such context-specific regularities more compactly than tabular representations.

C H O C�

1 1 1 1.0

1 1 0 1.0

1 0 1 1.0

1 0 0 1.0

0 1 1 0.8

0 1 0 0.0

0 0 1 0.0

0 0 0 0.0

(a)

1 0

C

H

O

1.0

0.0

0.8 0.0

(b)

Figure 4.3. Representation of the conditional probability distribution PDelC(C�|O,H, C) with
a tabular data structure (Figure a) and a decision tree (Figure b). The leaf noted 0.8 means that

the probability for the variable C� of being true at the next time step is: PDelC(C� = 1|O =
1,H = 1, C = 0) = 0.8. In the decision tree, note that some regularities are aggregated such

the probability distributions when PDelC(C� = 1|C = 1) = 1.0.

A decision tree Tree [Pτ (X �|PARENTSτ (X �))] representing a conditional proba-
bility distribution Pτ (X �|PARENTSτ (X �)) is made of:

– internal nodes: they represent a test on a variable Xj ∈ PARENTSτ (X �);
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– edges: they represent a value xj ∈ DOM(Xj) of a variable Xj tested at the
parent node and defining a partition represented by the child node connected to the
edge;

– external nodes: they represent the probability distribution Pτl
(X �|cl), with cl the

context defined by the set of values of the variables Xj ∈ PARENTSτl
(X �) tested in

the parents node for a leaf l in the tree.

Reading such a tree is straightforward: the probability distribution of a variable X �

for a given instantiation x is given by the unique leaf reached by selecting the edge at
each internal node corresponding to the value of the tested variable in the instantiation
x. Such a path defines the context Cl associated to the leaf l reached.

Figure 4.3(b) represents the conditional probability distribution PDelC(C�|O,H, C)
as a decision tree. The value at a leaf indicates the probability that the variable C� will
be true at the next time step. Because the decision tree representation exploits context-
specific independence in this example, the representation of PDelC(C�|O,H, C) is
more compact compared to the tabular representation. Whereas 8 lines are required
(Figure 4.3(a)) for the tabular form, only 4 are required for the same function with a
decision tree. Such factorization is one of the main principle used by SPI and SVI for
planning.

4.3.1.3. Representation of the Reward Function

The representation of the reward function with decision trees is very similar to the
representation of conditional probability distributions described above. Indeed, the
semantics of the internal nodes and edges are the same. Only the values attached to
the leaves of the tree are different: rather than probabilities, the leaves represent real
numbers.

Figure 4.4 represents the reward function for the Coffee Robot problem and com-
pares the tabular representation R(x) (Figure a) with a decision tree representation
Tree [R(x)] (Figure b). Note that the number of leaves in the tree is equal to the num-
ber of lines in the table, meaning that there is no context-specific independence to
exploit in the representation of this function.

Finally, SVI and SPI are not able to exploit the additive decomposition of the reward
function as described in Section 4.2.3.4.

4.3.1.4. Representation of a Policy

Of course, a policy π(x) can also be represented with a decision tree Tree [π(x)].
Figure 4.5 represents a stationary optimal policy Tree [π∗(x)] in the Coffee Robot

problem.

The state space of the problem Coffee Robot is composed of 6 binary variables.
So, a tabular representation of a policy π requires 26 = 64 entries. The tree Tree [π∗]
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Figure 4.4. Definition of the reward function R(x) with a tabular representation (Figure a)

and a decision tree (Figure b). The leaf noted 0.9 means R(C = 1,W = 1) = 0.9.

1 0

DelC

DelC Go

Go GetU

Go

Go
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C

H

O O

W

R

U

Figure 4.5. Representation of an optimal policy π∗(x) with a decision tree Tree [π∗(x)]. The
leaf noted BuyC means π(C = 0,H = 0,O = 0) = BuyC.

representing the optimal policy in the Coffee Robot problem requires only 8 leaves (15
nodes in total). Consequently, in this problem, the decision tree representation of the
policy exploits context-specific independencies. This means, for instance, that when
the robot is in the office with a coffee, it is not necessary to check the weather to define
the best action to perform.

In the worth case, note that only N tests are required to determine the action to
execute for a problem with a state space made of N variables. This is not necessarily
the case for all structured representations (see for instance Section 4.3.3.4). Moreover,
decision trees allow to compute the values of the minimum set of variables needed to
define the next action to execute. Such property can be important when the policy is
run in an environment where computing the value of a variable has a cost (computation
time for instance).
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4.3.1.5. Representation of the Value Function

Obviously, the value function Vπ of a policy π can also be represented with a
decision tree Tree [Vπ]. The semantics of such tree is identical to a tree representing
the reward function: internal nodes, edges and leaves represent respectively a test on a
variable, a value of the tested variable at the parent internal node and the value of the
function in the corresponding partition. Figure 4.6 represents the value function of the
policy Tree [π∗] represented in Figure 4.5.
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Figure 4.6. Representation of the value function Vπ∗(x) of the policy π∗ as a decision tree

Tree [Vπ∗(x)] for the problem Coffee Robot. The leaf noted 10.0 means

Vπ∗(C = 1,W = 0) = 10.0.

Tree [Vπ∗(x)] contains only 18 leaves (35 nodes in total) whereas a tabular rep-
resentation would have required 64 entries. Thus, in the Coffee Robot problem, a
decision tree representation allows to exploit context-specific independencies. For in-
stance, the value Vπ∗(C = 1,W = 0) of the optimal policy π∗, that is the owner
has a coffee and the robot is dry, does not depend on the other variables in the prob-
lem. Consequently, the representation aggregates a set of states. Thus, when the value
function is updated incrementally while solving the problem, it is required to compute
only the value at the leaf corresponding to the context rather than updating every state
corresponding to this same context.

However, a decision tree representation does not allow to exploit certain regulari-
ties in the structure of the function. For instance, the sub-trees in Tree [Vπ∗ ] composed
of the variables R, W , U and O share the same structure. Such structure can be
exploited with an additive approximation of the value function as we will see in Sec-
tion 4.3.3.5.
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Finally, in the worst case, that is when the value function of the evaluated policy
has a different value for each possible state, the size of the tree increases exponen-
tially with the number of variables composing the state space, similarly to a tabular
representation.

4.3.1.6. Algorithms

SVI and SPI are adaptations of, respectively, Value Iteration and Policy Iteration

to decision tree representation. Consequently, rather than iterating on all the states
of the problem to update the value function as Value Iteration and Policy Iteration

do, SVI and SPI compute the update only for each leaf of the decision tree, decreas-
ing the computation when states are aggregated and represented with one leaf. We
recommend reading [BOU 00] for an exhaustive description of both SVI and SPI.

4.3.2. SPUDD: Stochastic Planning Using Decision Diagrams

In some problems, value functions have symmetries that are not exploited by deci-
sion trees, for instance when the function is strictly identical in some disjoint context.
SPUDD (for Stochastic Planning Using Decision Diagrams), proposed by [HOE 99],
uses Algebraic Decision Diagrams [BAH 93] (noted ADD) to represent the different
functions of an FMDP. Similarly to SVI and SPI, SPUDD exploits function-specific and
context-specific independencies.

Using ADDs rather than decision trees has two additional advantages. First of all,
as mentioned before, ADDs can aggregate together identical substructures which have
disjoint contexts.

Second, the variables used in an ADD are ordered. Whereas finding an optimal
order of tests on the variables of the problem to represent the most compact repre-
sentation is a difficult problem, [HOE 00] describes different heuristics that are good
enough to improve significantly the size of the representation. Moreover, such an or-
dering is exploited to manipulate ADDs more efficiently compared to decision trees
where no ordering is assumed.

Whereas SPUDD, similarly to SVI, is an adaptation of Value Iteration to work with
ADDs, both of the advantages described above allow SPUDD to perform significantly
better than SPI or SVI on most problems proposed in the FMDP literature.

4.3.2.1. Representing the Functions of an FMDP with ADDs

ADDs are a generalization of binary decision diagrams [BRY 86]. Binary decision
diagrams are a compact representation of Bn → B functions of n binary variables to
a binary variable. ADDs generalize binary decision diagrams to represent Bn → IR
functions of n binary variables to a real value in IR. An ADD is defined by:
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– internal nodes (or decision nodes): they represent a test on a variable from the
input space. They are the parent of two edges corresponding respectively to the values

and ;

– edges: they connect each parent internal node to a child node depending of its
associated value or ;

– external nodes (or leaves): they represent terminal nodes in the diagram and are
associated to the value of the function in the subspace defined by the set of tests of the
parent nodes to reach the leaf.

Unlike decision trees, a node (internal or external) in an ADD can have multiple par-
ents. A function f represented with an ADD is noted ADD [f ]. We use the following
graphical convention to represent ADDs: the edges of an internal node testing a vari-
able X are drawn with a plain or dashed line, corresponding respectively to X being

or (or X = 1 and X = 0).

Compared to decision trees, ADDs have several interesting properties. First, be-
cause an order is given, each distinct function has only one representation. Moreover,
the size of the representation can be compacted because identical sub-graphs can be
factored in the description. Finally, optimized algorithms have been proposed for most
of the basic operators, such as the multiplication, the addition or the maximization of
two ADDs.

Figure 4.7 shows an example of the same function f represented with a deci-
sion tree and an ADD. The figure illustrates that decision trees, unlike ADDs, are not
adapted to represent disjunctive functions. Thus, the tree representation Tree [f ] is
composed of 5 different leaves (and 4 internal nodes) whereas the ADD representation
ADD [f ] contains only 2 leaves (and 3 internal nodes). Thus, an algorithm iterating on
the leaves of the representation may have its complexity decreased when using ADDs
rather than decision trees.

However, using ADDs adds two constraints on the FMDP to solve. First, all the
variables in the FMDP have to be binary, ADDs representing only functions Bn → IR.
For FMDPs with non binary variables, these variables are decomposed and replaced
by their corresponding additional (binary) variables. Secondly, as mentioned above,
the algorithms manipulating ADDs assume that, in the ADDs, the tests on the variables
(the internal nodes) are sorted. When both constraints are satisfied, it is possible to
represent all the functions of an FMDP with ADDs.

4.3.2.2. Algorithm

Similarly to SVI, SPUDD is based on Value Iteration with the operators imple-
mented to manipulate ADDs, assuming that all the variables are binary and that they
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Figure 4.7. Comparison of the representation of a function f as a decision tree Tree [f ]
(Figure a) and as an algebraic decision diagram ADD [f ] (Figure b).

are ordered. The work on SPUDD has led to APRICODD [STA 01] which contains ad-
ditional improvements. First of all, the user can parameterize the algorithm to approx-
imate the value function by limiting the maximum size of the ADD used to represent
the value function. Moreover, APRICODD implements different methods for automatic
variable ordering to avoid the user to have to specify it manually.

The last version of APRICODD is available on the Internet.3 Note that APRICODD

can be considered as a ready-to-use solution method to solve large problems that can
be modeled as FMDPs.

4.3.3. Approximate Linear Programming in FMDPs

An alternative to dynamic programming to solve an MDP is linear programming
(see Section 1.6.2.1). Using linear programming to solve FMDPs is the result of a work
started by [KOL 99, KOL 00] and then continued with Guestrin [GUE 01, GUE 03a,
GUE 03b].

The optimal value function of an MDP can be computed by formulating the MDP

as a linear program [MAN 60]:

For the variables: V (s), ∀s ∈ S ;
Minimize:

�
s α(s)V (s) ;

Under constraints: V (s) ≥ R(s, a) + γ
�

s� P (s�|s, a)V (s�)
∀s ∈ S, ∀a ∈ A.

(LP 1)

where α(s) > 0 is the state relevance weight for the state s.

3.
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Unfortunately, solving such a linear program is not possible for large MDPs be-
cause of the complexity of the objective function, of the number of variables to solve
and of the number of constraints. These problems are solved by, first, using a linear
approximation of the value function and, second, exploiting function-specific inde-
pendence and additive decomposition of the reward function.

More precisely, using a linear approximation of the value function (that is a linear
combination of basis functions [SCH 85]) decreases the complexity of the objective
function to optimize and the number of variables to determine. Function-specific in-
dependence and additive decomposition of the reward function are exploited by an
algorithm decomposing the constraints of the original linear program into a set of
constraints with a complexity depending on the structure of the problem rather than
on its size.

Both of these ideas are exploited by two different algorithms proposed in [GUE 03b].
The first one is based on the Policy Iteration algorithm using linear programming to
evaluate the current policy. The second one constructs a linear program similar to
(LP 1) to directly evaluate the optimal value function of the FMDP to solve. The next
section presents the representation used by both algorithms.

4.3.3.1. Representations

Two different representations are used by the algorithms proposed by [GUE 03b].
The first representation is the tabular representation (similar to the tabular representa-
tion used in Figure 4.1, Section 4.2.3.3). Algorithms using such representation exploit
function-specific independencies, linear approximation of the value function and addi-
tive decomposition of the reward function (and not context-specific independencies).

The second representation is a structured representation based on rules [ZHA 99],
allowing to exploit context-specific independencies in a function. Whereas [GUE 03b]
shows that, for some problems, tabular representations are faster, we have chosen to
describe the rules representation mainly because the complexity of the worst case us-
ing these representations is better than the worst case of tabular representations [STA 01,
GUE 03a].

[GUE 03b] prefers using rules rather than another structured representation be-
cause rules may not be exclusive, unlike decision trees or ADDs. We distinguish two
types of rules: probability rules and value rules. The former are used to represent
the transition function, the latter to represent value and reward functions. We describe
how these rules are used to represent the functions of an FMDP in the following sec-
tions. A function f is noted Rule [f ] when represented with a set of rules.
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4.3.3.2. Representation of the Transition Function

Probability rules describe the transition function in an FMDP. More precisely, they
are used to define the conditional probability distributions quantifying the DBNs. A
rule corresponds to one context defining the same probability for this context.

We first start by defining the consistency between two contexts:

DEFINITION 4.3.– Consistency between two contexts

Let C ⊆ {X,X �}, c ∈ DOM(C), B ⊆ {X,X �} and b ∈ DOM(B). Two con-

texts b and c are consistent if they have the same assignment for the variables in the

intersection C ∩B.

Consequently, identical probabilities with consistent contexts are represented with
probability rules:

DEFINITION 4.4.– Probability rule

A probability rule η = |c : p| is a function η : {X,X �} → [0, 1] with the context

c ∈ DOM(C), C ⊆ {X,X �} and p ∈ [0, 1], and such that η(x,x�) = p if the

instantiations x and x
� are consistent with c, or else equal to 1.

Two rules are consistent if their context is consistent.

A set of probability rules completely defines a conditional probability distribution:

DEFINITION 4.5.– Set of probability rules

A set of rules Pa of a conditional probability distribution is a function Pa : ({X �
i} ∪

X) → [0, 1] composed of the probability rules {η1, . . . , ηm} with their mutually ex-

clusive and exhaustive contexts. We define: Pa(x�i|x) = ηj(x,x
�) with ηj the only

rule in Pa with the context cj consistent with (x�i,x). Moreover, we necessarily have:

∀x ∈ X :
�

x�
i

Pa(x�i|x) = 1.

Note that PARENTSa(X �
i) can be defined as the union of the variables appearing

in the contexts of the rules defining the distribution.

Similarly to decision trees, the sets of rules allow to exploit context-specific inde-
pendencies. Moreover, decision trees define a complete partition of a space. Thus,
it is straightforward to define a set of mutually exclusive and exhaustive rules from a
given decision tree, as shown in Figure 4.8 for the conditional probability distribution
PDelC(C�|PARENTSDelC(C�)).

The probability PDelC(C� = 1|C = 0,O = 1,H = 1) = 0.8 is represented by the
corresponding rule |C = 0 ∧ O = 1 ∧H = 1 ∧ C� = 1 : 0.8|. One can notice that the
context of a rule is split in two parts. The first part is the set of tests on the variablesX
at time t, corresponding to the path in the tree to reach the leaf 0.8. The second part is
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Figure 4.8. Representation of the conditional probability distribution

PDelC(C�|PARENTSDelC(C�)) as a decision tree and a set of rules. The rule

|C = 0 ∧ O = 1 ∧H = 1 ∧ C� = 1 : 0.8| defines
PDelC(C� = 1|C = 0,O = 1,H = 1) = 0.8.

the value of the variableX �
i at time t+1. Such representation is advantageous to solve

problems with synchronous arcs. A conditional probability distribution f represented
with a set of probability rules is noted Rulep [f ].

4.3.3.3. Representation of the Reward Function

We define value rules to represent the reward function of an FMDP:

DEFINITION 4.6.– Value rule

A value rule ρ = |c : v| is a function ρ : X → IR such that ρ(x) = v when x is

consistent with the context c and else 0.

Note that the scope of a value rule may be defined as SCOPE(ρ) = C with C the
set of instantiated variables in the context c of the rule ρ = |c : v|.

It is now possible to define a function as a set of value rules:

DEFINITION 4.7.– Set of a value rule

A set of value rules representing a function f : X → IR is composed of the set of

value rules {ρ1, . . . , ρn} such that f(x) =
�n

i=1 ρi(x) with ∀i : SCOPE(ρi) ⊆ X .

A function f represented with a set of value rules is noted Rulev [f ].

Moreover, [GUE 03b] assumes that a reward function R(x, a) can be specified as
the sum of reward functions with a limited scope:

R(x, a) =
�

j

raj (x). (4.4)
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Figure 4.9. Representation of the reward function R in the Coffee Robot problem. The reward
is decomposed as a sum of reward functions with a scope limited to only one variable for each

function.

As shown in Figure 4.9, such representation allows to easily define functions exploit-
ing at the same time context-specific independence and additive decomposition.

As described in Section 4.2.3.4, the reward function in the Coffee Robot problem
can be decomposed as a sum of two reward functions, each with a scope limited to
only one variable of the problem. Different representations can be used to define these
functions, in particular tables, decision trees or sets of rules. [GUE 03b] uses sets of
value rules.

4.3.3.4. Policy Representation

To compactly represent a policy π, [GUE 03b] uses a data structure first proposed
by [KOL 00]. Rather than using Tree [π] or ADD [π], a default action in the FMDP is
defined a priori and a policy is represented by an ordered decision list.

Every element in the list is defined by a triple containing: a context defining
whether the action can be executed for a given state s, the action to execute if this
decision has been taken and a bonus corresponding to the additional expected long
term reward compared to the expected long term reward if the default action were
taken. The last element of a policy is always the default action with an empty context
(the decision that can be taken at any time) and a bonus of 0. A policy π represented
as a decision list is noted List [π]. Table 4.1 shows the optimal policy for the Coffee

Robot problem where the default action is Go.

Note that, unlike decision trees or ADDs, the number of tests required to determine
the action to execute can be superior to the number of variables in the problem.

4.3.3.5. Representation of the Value Function

We have seen that an MDP can be specified as the following linear program (Sec-
tion 1.6.2.1, LP 1):
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Context Action Bonus
0 C = 0 ∧H = 1 ∧W = 0 ∧R = 1 ∧ U = 0 ∧ O = 1 DelC 2.28
1 C = 0 ∧H = 0 ∧W = 0 ∧R = 1 ∧ U = 0 ∧ O = 0 BuyC 1.87
2 C = 0 ∧H = 1 ∧W = 0 ∧R = 1 ∧ U = 1 ∧ O = 1 DelC 1.60
3 C = 0 ∧H = 1 ∧W = 1 ∧ O = 1 DelC 1.45
4 C = 0 ∧H = 1 ∧W = 0 ∧R = 0 ∧ O = 1 DelC 1.44
5 C = 0 ∧H = 0 ∧W = 0 ∧R = 1 ∧ U = 1 ∧ O = 0 BuyC 1.27
6 C = 0 ∧H = 0 ∧W = 1 ∧ O = 0 BuyC 1.18
7 C = 0 ∧H = 0 ∧W = 0 ∧R = 0 ∧ O = 0 BuyC 1.18
8 C = 1 ∧W = 0 ∧R = 1 ∧ U = 0 DelC 0.84
9 C = 0 ∧H = 0 ∧W = 0 ∧R = 1 ∧ U = 0 ∧ O = 1 GetU 0.18

10 C = 1 ∧W = 0 ∧R = 1 ∧ U = 1 DelC 0.09
11 ∅ Go 0.00

Table 4.1. Representation of policy π(s) as a decision list List [π] (with the default action Go).

For the variables: V (s), ∀s ∈ S ;
Minimize:

�
s α(s)V (s) ;

Under constraints: V (s) ≥ R(s, a) + γ
�

s� P (s�|s, a)V (s�)
∀s ∈ S, ∀a ∈ A.

(LP 2)

However, as described in Section 4.3.3, because of the complexity in the number
of variables to determine, the number of terms in the sum of the objective function
and the number of constraints, it is not possible to solve this linear program for large
problems.

One solution to decrease the number of terms in the sum of the objective function
and the number of variables to solve is to approximate the value function with a linear
combination proposed by [BEL 63] (see Chapter 3). The space of approximate value
functions Ṽ ∈ H ⊆ IRn is defined by a set of basis functions with a scope limited to
a small number of variables:

DEFINITION 4.8.– Linear value function

A linear value function Ṽ with a setH = {h0, . . . , hk} of basis functions is a function

such that Ṽ (s) =
�k

j=1 wjhj(s) with w ∈ IRk.

Such an approximation can directly be used to redefine the linear program by sim-
ply replacing the value function by its approximation in the objective function of the
linear program [SCH 85]:

For the variables: w1, . . . , wk ;

Minimize:
�

s α(s)
�k

i=1 wihi(s) ;

Under constraints:
�k

i=1 wihi(s) ≥ R(s, a)+

γ
�

s� P (s�|s, a)
�k

i=1 wihi(s
�)

∀s ∈ S, ∀a ∈ A.

(LP 3)
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Consequently, rather than determining the value function in the complete space of
value functions, the search is reduced to the space corresponding to the set of weights
wi used in the linear approximation. Moreover, limiting the scope of the basis func-
tions allows to exploit function-specific independence to reduce the number of con-
straints.

However, whereas the number of variables to determine is not the number of possi-
ble states in the problem anymore but the number of weights wi in the approximation,
the number of terms in the sum and the number of constraints are still equal to the
number of states in the problem.

For such linear program, a solution exists only if a constant basis function is in-
cluded in the set of basis functions [SCH 85]. [GUE 03b] assumes that such a function
h0, such that h0(s) = 1, ∀s ∈ S, is systematically included in the set of basis func-
tions. Additionally, unlike (LP 1), the state relevance weights α(s) have an important
effect on the quality of the approximation [FAR 01] and, thus, on the quality of the
policies computed from the value function.

Such an approximation in the value function allows to exploit at the same time
function-specific independencies and to exploit additional regularities in the structure
of the value function as shown for the Coffee Robot problem in Figure 4.10. The ad-
ditive decomposition of the approximated value function allows to exploit regularities
that neither decision trees nor ADDs are able to exploit, such as the similarities in the
structure of internal nodes.

1 0
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Figure 4.10. Example of a linear combination of a value function in the Coffee Robot problem
as two decision trees representing two basis functions (with limited scopes) corresponding to

the optimal policy π∗(s) (Table 4.1). The optimal approximated value function is: Ṽ ∗(s) =
0.63 · Tree [h0] + 0.94 · Tree [h1] + 0.96 · Tree [h2]. The tree Tree [h0] is not shown since it

defines a constant basis function and contains only one leaf equal to 1.
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The definition of the value function Tree [V ] (see Figure 4.6 in Section 4.3.1) is
decomposed in two basis functions Tree [h1] and Tree [h2] and allows an approxima-
tion of Tree [Vπ∗ ] with an error inferior to 1.0.4 Additive decomposition of the value
function is exploited because rather than containing 18 leaves, this representation re-
quires only 11 leaves for both trees. So, the approximation of the value function in
the Coffee Robot problem is composed of three basis functions (including the constant
basis function). Thus, three weights, w0, w1 and w2, must be determined with (LP 2).

Finally, when the reward function is compactly represented using an additive de-
composition, it seems natural to expect that the value function also exhibits this kind
properties. However, this is not necessarily the case. Indeed, a problem with a re-
ward function with no additive decomposition may have an optimal value function
well approximated with a linear approximation. On the other hand, a compact repre-
sentation of the reward function or the transition function does not imply a compact
representation of the value function [KOL 99, MUN 00, LIB 02].

4.3.3.6. Algorithms

Consequently, the algorithms proposed by [GUE 03b], for an FMDP, generate a
linear program to compute the value function of the problem. Additional algorithms
are also described to compute a policy (as a decision list). However, such a represen-
tation can be very expensive, even intractable in some cases. So, the authors suggest
to directly estimate the approximated optimal value function of the problem. Then,
approximated action value functions are computed for each action (using the FMDP)
to compare actions between each others and to estimate the best action to execute for
a given state. Thus, an explicit representation of the policy is avoided. We suggest to
refer to [GUE 03b] and [GUE 03a] for a complete description of these algorithms.

4.4. Perspectives and Conclusion

Solving large FMDPs is still an active field of research and different extensions
have been proposed in the last ten years. One extension, studied in [POU 05], is the
extension to partially observable problems. Other extensions have been proposed to
avoid having to specify the full structure or the values of the FMDP.

In this context, the algorithms presented in Section 2.6.2, have been adapted to
FMDPs, namely DBN-E3 [KEA 99], factored R-MAX [STR 07] and factored I.E. [STR 07].
These algorithms assume that function-specific independencies are known but not
quantified. These algorithms propose exploring strategies to reach a policy near an
optimal policy of the FMDP in a finite time.

4. The basis functions Tree [h1] and Tree [h2] have been defined manually, knowing Tree [Vπ∗ ]
in the Coffee Robot problem.
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A second approach does not assume that function-specific independencies are
known beforehand and learn the structure of the problem from trials and errors of
an agent in the problem [DEG 06]. However, despite interesting experimental results,
no proof has been proposed yet. Research in this context is still being active [STR 07].

Another field of research in FMDPs is that of hierarchical approaches. A hierarchy
of sub-problems is defined directly from a given FMDP. In this context, [JON 06]
propose an algorithm named VISA with similar or better performance than SPUDD on
different problems.

Finally, [SZI 08] have proposed to use dynamic programming rather than linear
programming to solve FMDPs with a value function approximated by a linear com-
bination of basis functions. Though their approach does not have necessarily better
performance on all problems, their algorithms are notably simpler than the ones pro-
posed by [GUE 03b].
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