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1 Introduction

Visual servo control schemes use visual information obtained by one or multiple cameras as the primary measurement to regulate
the motion of a robot [21, 11, 12, 6]. In the last decade, a number of visual servo control schemes have been proposed that extract
homography image transformations between images of a planar scenes and use these as the primary visual information for aservo
control problem [17, 7, 8]. A homography can be decomposed toexplicitly reconstruct the pose (the translation and the rotation
in Cartesian space) of the camera [9, 18] and the associated servo control task undertaken in Cartesian space [25, 16, 2, 24].
Alternatively, the control task can be defined in both image and Cartesian space; the rotation error is estimated explicitly and
the translation error is expressed in the image [17, 7, 22, 8]. The resulting visual servo control algorithms are stable and robust
[16] and do not depend on tracking of individual image features. Some recent work has been done on direct servo control of the
homography matrix [1], an approach which offers considerable advantages in situations where the homography decomposition
is ill-conditioned. A key component of this work is the identification of the group of homographies as a Lie-group isomorphic to
the special linear groupSL(3), an observation that has been known for some time in the computer vision community but had not
been exploited before in the visual servo community.

In all cases, the performance of the closed-loop system depends on the quality of the homography estimates used as input
to controller. In the case of visual servo control applications, the homographies must be computed in real-time with minimal
computational overhead. Moreover, in such applications the homographies vary continuously and usually smoothly. It is natural,
then, to consider using a dynamical observer (or filter) process in the closed-loop system to achieve temporal smoothingand
averaging of the homography measurements. Such a process will reduce noise in the homography estimates, smoothing resulting
closed-loop inputs and leading to improved performance, especially in visual servo applications. There has been a surge of
interest recently in nonlinear observer design for systemswith certain invariance properties [23, 5, 10, 15, 3] that have mostly
been applied to applications in robotic vehicles [19, 20]. From these foundations there is an emerging framework for observer
design for invariant systems on Lie groups [13, 4, 14]. The special linear group structure of the homographies [1] makes the
homography observer problem an ideal application of these recent developments in observer theory.

In this chapter, we exploit the special linear Lie-group structure of the set of all homographies to develop a dynamic observer
to estimate homographies on-line. The proposed homographyobserver is based on constant velocity invariant kinematics on
the Lie group. We assume that the velocity is unknown and propose an integral extension of the nonlinear observer to obtain
estimates for both the homography and the velocity. We provethe existence of a Lyapunov function for the system, and use
this to prove almost global stability and local exponentialstability around the desired equilibrium point. The proposed algorithm
provides high quality temporal smoothing of the homographydata along with a smoothed homography velocity estimate. The
estimation algorithm has been extensively tested in simulation and on real data.

The chapter is organised into five sections followed by a short conclusion. The present introduction section is followedby
Section 2 that provides a recap of the Lie group structure of the set of homographies. The main contribution of the paper isgiven
in Section 3. Sections 4 and 5 provide an experimental study with simulated and real data.
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2 Theoretical background

A homography is a mapping between two images of a planar sceneP. Let p= (u,v) represent the pixel coordinates of a 3D point
ξ ∈ P as observed in the normalized image plane of a pinhole camera. Let A (resp.B) denote projective coordinates for the
image plane of a cameraA (resp.B), and{A} (resp.{B}) denote its frame of reference. A (3×3) homography matrixH : A →B

defines the following mapping:pB = w(H, pA), where

w(H, p)=

[
(h11u+h12v+h13)/(h31u+h32v+h33)
(h21u+h22v+h23)/(h31u+h32v+h33)

]

The mapping is defined up to a scale factor. That is, for any scaling factor µ 6= 0, pB = w(µH, pA) = w(H, pA). The Lie-group
SL(3) is the set of real matricesSL(3) = {H ∈ R

3×3 det(H) = 1}. If we suppose that the camera continuously observes the
planar object, any homography can be represented by a homography matrixH ∈ SL(3) such that:

H = γK

(
R+

tn⊤

d

)
K−1 (1)

whereK is the upper triangular matrix containing the camera intrinsic parameters,R is the rotation matrix representing the
orientation of{B} with respect to{A}, t is the translation vector of coordinates of the origin of{B} expressed in{A}, n is the
normal to the planar surfaceP expressed in{A}, d is the orthogonal distance of the origin of{A} to the planar surface, andγ is
a scaling factor:

γ = det

(
R+

tn⊤

d

)− 1
3

=

(
1+

n⊤R⊤t
d

)− 1
3

Correspondingly, knowing the camera intrinsic parametersK, any full rank 3×3 matrix with unitary determinant can be decom-
posed according to (1) (see [9] for a numerical decomposition and [18] for the analytical decomposition). Note that there exist
two possible solutions to the decomposition. The planar surfaceP is parametrized by

P = {ξ ∈ {A} | n⊤ξ = d}

For any two frames{A} and{B} whose origins lie on the same side of the planar surfaceP thenn⊤Rt > −d by construction
and the determinant of the associated homography det(H) = 1.

The mapw is a group action ofSL(3) onR2:

w(H1,w(H2, p)) = w(H1H2, p)

whereH1,H2 andH1H2 ∈ SL(3). The geometrical meaning of this property is that the 3D motion of the camera between views
{A} and{B}, followed by the 3D motion between views{B} and{C} is the same as the 3D motion between views{A} and{C}.

Remark 1.The local parametrization given by (1) is singular when{A} and{B} are collocated. That is, whent = 0, the differen-
tial of the mapping defined by (1) is degenerate. Indeed, in this case the normal to the planen is not observable. The singularity of
the parametrization does not affect the validity of the correspondenceH ≡SL(3), however, it does mean that the parametrization
(1) is very poorly conditioned for homography matrices close toSO(3). This is fundamental reasons why it is preferable to do
both image based visual servo control and temporal smoothing directly on the homography group rather than extracting structure
variables explicitly.

The Lie-algebrasl(3) for SL(3) is the set of matrices with trace equal to zero:sl(3) = {X ∈ R
3×3 | tr(X) = 0}.

The adjoint operator is a mapping Ad :SL(3)× sl(3) → sl(3) defined by

AdHX = HXH−1, H ∈ SL(3),X ∈ sl(3).

For any two matricesA,B∈ R
3×3 the Euclidean matrix inner product and Frobenius norm are defined as

〈〈A,B〉〉 = tr(ATB) , ||A|| =
√

〈〈A,A〉〉

Let P denote the unique orthogonal projection ofR
3×3 ontosl(3) with respect to the inner product〈〈·, ·〉〉
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P(H) :=

(
H −

tr(H)

3
I

)
∈ sl(3). (2)

The projection onto the complementary subspace (the span ofI in R
3×3) is defined by

P
⊥(H) := H −P(H) =

tr(H)

3
I . (3)

Clearly one has〈〈P(H),P⊥(H)〉〉 = 0

3 Nonlinear observer on SL(3)

Consider the left invariant kinematics defined onSL(3)

Ḣ = HA (4)

whereH ∈ SL(3) andA∈ sl(3). A general framework for nonlinear filtering on the special linear group is introduced. The theory
is developed for the case whereA is assumed to be unknown and constant. The goal is to provide aset of dynamics for an estimate
Ĥ(t) ∈ SL(3) of H(t) and an estimatêA(t) ∈ sl(3) of A to drive the estimation error̃H = Ĥ−1H to the identity matrixI , and the
estimation error̃A = A− Â to zero.

The estimator filter equation of̂H is posed directly onSL(3). It includes a correction term derived from the errorH̃. We
consider an estimator filter of the form

{ ˙̂H = Ĥ
(

AdH̃ Â+α(Ĥ,H)
)

, Ĥ(0) = Ĥ0,

˙̂A = β (Ĥ,H), Â(0) = Â0.
(5)

This yields the following expression for the dynamics of theestimation error(H̃, Ã) = (Ĥ−1H,A− Â):

{ ˙̃H = H̃
(

Ã−AdH̃−1α
)

˙̃A = −β
(6)

with the arguments ofα andβ omitted to lighten the notation. The main result of the paperis stated next.

Theorem 1. Assume that the matrix A in(4) is constant. Consider the nonlinear estimator filter(5) along with the innovationα
and the estimation dynamicsβ defined as





α = −kHAdH̃P(H̃T(I − H̃)) , kH > 0

β = −kAP(H̃T(I − H̃)) , kA > 0
(7)

with the projection operatorP : R
3×3 → sl(3) defined by(2). Then, for the estimation error dynamics(6),

i) All solutions converge to E= Es∪Eu with:

Es = (I ,0)

Eu = {(H̃0,0)|H̃0 = λ (I +(λ−3−1)vv⊤),v∈ S
2}

whereλ ≈−0.7549is the unique real solution of the equationλ 3−λ 2 +1 = 0.
ii) The equilibrium point Es = (I ,0) is locally exponentially stable.
iii)Any point of Eu is an unstable equilibrium. More precisely, for any(H̃0,0) ∈ Eu and any neighborhoodU of (H̃0,0), there

exists(H̃1, Ã1) ∈ U such that the solution of System(6) issued from(H̃1, Ã1) converges to Es.

Proof of Theorem 1:
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Proof of Part i) :Let us consider the following candidate Lyapunov function

V(H̃, Ã) =
1
2
‖I − H̃‖2 +

1
2kA

‖Ã‖2

=
1
2

tr((I − H̃)T(I − H̃))+
1

2kA
tr(ÃT Ã),

(8)

The derivative ofV along the solutions of System (6) is

V̇ = −tr((I − H̃)T ˙̃H)+
1
kA

tr(ÃT ˙̃A)

= −tr((I − H̃)TH̃Ã− (I − H̃)TH̃AdH̃−1α)−
1
kA

tr(ÃTβ )

Knowing that for any matricesG∈ SL(3) andB∈ sl(3), tr(BTG) = tr(BT
P(G)) = 〈〈B,P(G)〉〉, one obtains:

V̇ = 〈〈P(H̃T(I − H̃)),AdH̃−1α〉〉−〈〈Ã,P(H̃T(I − H̃))+
1
kA

β 〉〉

Introducing the expressions ofα andβ (Eq. (7)) in the above equation yields

V̇ = −kH ||P(H̃T(I − H̃))||2 (9)

The derivative of the Lyapunov function is negative semi-definite, and equal to zero whenP(H̃T(I − H̃)) = 0. The dynamics of
the estimation error is autonomous, i.e. it is given by

{ ˙̃H = H̃
(

Ã+kHP(H̃T(I − H̃))
)

˙̃A = kAP(H̃T(I − H̃))
(10)

Therefore, we deduce from LaSalle’s theorem that all solutions of this system converge to the largest invariant set contained in
{(H̃, Ã)|P(H̃T(I − H̃)) = 0}.

We now prove that, for System (10), the largest invariant setE contained in{(H̃, Ã)|P(H̃T(I − H̃)) = 0} is equal toEs∪Eu.
We need to show that the solutions of System (10) belonging to{(H̃, Ã)|P(H̃T(I − H̃)) = 0} for all t consist of all fixed points

of Es∪Eu. Note thatEs = (I ,0) is clearly contained inE. Let us thus consider such a solution(H̃(t), Ã(t)). First, we deduce from

(10) that ˙̃A(t) is identically zero sinceP(H̃T(t)(I − H̃(t))) is identically zero on the invariant setE and thereforẽA is constant.

We also deduce from (10) that̃H is solution to the equatioṅ̃H = H̃Ã. Note that at this point one cannot infer thatH̃ is constant.
Still, we omit from now on the possible time-dependence ofH̃ to lighten the notation.

SinceP(H̃T(I − H̃)) = 0, we have that

H̃⊤(I − H̃) =
1
3

trace(H̃⊤(I − H̃))I (11)

which means that̃H is a symmetric matrix. Therefore, it can be decomposed as:

H̃ = UDU⊤ (12)

whereU ∈ SO(3) andD = diag(λ1,λ2,λ3) ∈ SL(3) is a diagonal matrix which contains the three real eigenvalues ofH̃. Without
loss of generality let us suppose that the eigenvalues are inincreasing order:λ1 ≤ λ2 ≤ λ3. Plugging equation (12) into equation
(11), one obtains:

D(I −D) =
1
3

trace(D(I −D))I

Knowing that det(D) = 1, theλi ’s satisfy the following equations:
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λ1(1−λ1) = λ2(1−λ2) (13)

λ2(1−λ2) = λ3(1−λ3) (14)

λ3 = 1/(λ1λ2) (15)

which can also be written as follows:

λ1−λ2 = (λ1−λ2)(λ1 +λ2) (16)

λ1−λ3 = (λ1−λ3)(λ1 +λ3) (17)

λ3 = 1/(λ1λ2) (18)

First of all, let us remark that ifλ1 = λ2 = λ3 thenλ1 = λ2 = λ3 = 1. This solution is associated with the equilibrium point
Es = (I ,0).

If λ1 = λ2 < λ3 then:

1 = λ2 +λ3 (19)

λ3 = 1/(λ 2
2 ) (20)

whereλ2 ≈−0.7549 is the unique real solution of the equationλ 3
2 −λ 2

2 +1 = 0. This solution is associated with the equilibrium
setEu.

If λ1 < λ2 = λ3 then:

1 = λ1 +λ2 (21)

λ1 = 1/λ 2
2 (22)

so thatλ2 is also solution of the equationλ 3
2 −λ 2

2 +1 = 0. But this is impossible since we supposedλ1 < λ2 and the solution of
the equation is such that−1 < λ2 < 0 and 0< λ1 = 1/λ 2

2 < 1.
If λ1 6= λ2 6= λ3, then:

1 = λ1 +λ2 (23)

1 = λ1 +λ3 (24)

λ3 = 1/(λ1λ2) (25)

which means thatλ2 = λ3. This is in contradiction with our initial hypothesis.
In conclusion,H̃ has two equal negative eigenvaluesλ1 = λ2 = λ (λ ≈ −0.7549 is the unique real solution of the equation

λ 3−λ 2 +1 = 0) and the third one isλ3 = 1/λ 2. Writing the diagonal matrix D as follows:

D = λ (I +(λ−3−1)e3e⊤3 )

and plugging this equation into equation (12), the homography for the second solution (λ1 = λ2) can be expressed as follows:

H̃ = λ (I +(λ−3−1)(Ue3)(Ue3)
⊤)

Settingv = Ue3, we finally find thatH̃ must have the following form:

H̃ = λ (I +(λ−3−1)vv⊤)

wherev is a unitary vector:‖v‖ = 1 andλ is the unique real constant value that verifies the equationλ 3−λ 2 +1 = 0.
It remains to show that̃A = 0. The inverse of̃H is

H̃−1 = λ−1(I +(λ 3−1)vv⊤)

The derivative ofH̃ is
˙̃H = λ (λ−3−1)(v̇v⊤ +vv̇⊤)
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so that
Ã = H̃−1 ˙̃H = (λ−3−1)(I +(λ 3−1)vv⊤)(v̇v⊤ +vv̇⊤)

Knowing thatv⊤v̇ = 0, this equations becomes:

Ã = (λ−3−1)(v̇v⊤ +vv̇⊤ +(λ 3−1)vv̇⊤)

and knowing thatλ 3 = λ 2−1, we obtain:

Ã = (λ−3−1)(v̇v⊤ +vv̇⊤ +(λ 2−2)vv̇⊤) (26)

= (λ−3−1)(v̇v⊤−vv̇⊤ +λ 2vv̇⊤) (27)

Sincev̇v⊤−vv̇⊤ = [v× v̇]× = [[v]×v̇]×1, we finally obtain

Ã = (λ−3−1)([[v]×v̇]× +λ 2vv̇⊤)

Since[[v]×v̇]× is a skew-symmetric matrix, the diagonal elements ofÃ areaii = (λ−3−1)λ 2vi v̇i . Knowing that eachaii is con-
stant we have two possible cases. The first one isaii = 0 for eachi. Thenv is constant so that̃H is also constant and̃A= 0. If there
existsi such thataii 6= 0, then there existsi such thataii < 0. This is due to the fact that̃A∈ sl(3) and therefore∑i aii = 0. In this
case, the correspondingvi diverges to infinity becausevi v̇i is a strictly positive constant. This contradicts the fact that‖v‖ = 1.
This concludes the proof of Parti) of the theorem.

Proof of Part ii) : We compute the linearization of System (10) atEs = (I ,0). Let us defineX1 andX2 as elements ofsl(3)

corresponding to the first order approximations ofH̃ andÃ around(I ,0):

H̃ ≈ (I +X1) , Ã ≈ X2

Substituting these approximations into (10) and discarding all terms quadratic or higher order in(X1,X2) yields
(

Ẋ1

Ẋ2

)
=

(
−kH I3 I3
−kAI3 0

)(
X1

X2

)
(28)

SincekH ,kA > 0, the linearized error system is exponentially stable. This proves the local exponential stability of the equilibrium
(I ,0).

Proof of Part iii) : First, we remark that the functionV is constant and strictly positive on the setEu. This can be easily verified
from (8) and the definition ofEu, using the fact that on this set̃A = 0, H̃TH̃ = H̃2 = λ 2I +( 1

λ 2 −λ )vvT , and tr(vvT) = 1 since
‖v‖ = 1. We denote byVu the value ofV on Eu. The fact thatVu is strictly positive readily implies (in accordance with Part
ii) ) that Es is an asymptotically stable equilibrium, sinceV is non-increasing along the system’s solutions, and each ofthem
converges toEs∪Eu. Using the same arguments, the proof of Partiii) reduces to showing that for any point(H̃0,0) ∈ Eu, and any
neighborhoodU of this point, one can find(H̃1, Ã1) ∈ U such that

V(H̃1, Ã1) < Vu (29)

Let H̃(.) denote a smooth curve onSL(3), solution of ˙̃H = H̃C with C a constant element ofsl(3) that will be specified latter
on. We also assume that(H̃(0),0) ∈ Eu. Let f (t) = ‖I − H̃(t)‖2/2 so that, by (8),f (0) = Vu. The first derivative off is given by

ḟ (t) = −tr((I − H̃(t))T ˙̃H(t))

= −tr((I − H̃(t))TH̃(t)C)

= −〈〈P(H̃T(t)(I − H̃(t))),C〉〉

For all elements(H̃0,0) ∈ Eu, one hasP(H̃T
0 (I − H̃0)) = 0, so thatḟ (0) = 0. We now calculate the second order derivative off :

1 [v]× represents the skew-symmetric matrix associated with the cross-product byv∈ R
3, i.e. [v]×y = v×y, ∀y∈ R

3.
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f̈ (t) = tr( ˙̃H(t)T ˙̃H(t))− tr((I − H̃(t))T ¨̃H(t))

= tr( ˙̃H(t)T ˙̃H(t))− tr
(
(I − H̃(t))T ˙̃H(t)C

)

where we have used the fact thatC is constant. Evaluating the above expression att = 0 and replacinġ̃H(0) by its valueH̃(0)C
yields

f̈ (0) = ‖H̃(0)C‖2− tr
(
(I − H̃(0))TH̃(0)C2

)
(30)

When(H̃0,0) ∈ Eu, one has

H̃2
0 = λ 2I +(

1
λ 2 −λ )vvT = H̃0 +(λ 2−λ )I

Therefore, we deduce from (30) that
f̈ (0) = ‖H̃(0)C‖2 +λ (λ −1)tr(C2) (31)

Since(H̃(0),0) ∈ Eu, there existsv ∈ S
2 such thatH̃(0) = λ I + ( 1

λ 2 − λ )vvT . From this expression and using the fact that

λ 3−λ 2 +1 = 0, one verifies that

‖H̃(0)C‖2 = λ 2‖C‖2 +(
1

λ 2 −λ )tr(CTvvTC) (32)

Now let us setC = [v]×, the skew-symmetric matrix associated with the vectorv. Clearly,C ∈ sl(3). Then, it follows from
(31) and (32) that

f̈ (0) = λ 2‖C‖2 +λ (λ −1)tr(C2)

= λ 2tr(vT
×v×)+λ (λ −1)tr((v×)2)

= −λ 2tr((v×)2)+λ (λ −1)tr((v×)2)

= −λ tr((v×)2) = 2λ‖v‖2 = 2λ < 0

Therefore, there existst1 > 0 such that for anyt ∈ (0, t1),

f (t) ≈ f (0)+ t ḟ (0)+ t2/2 f̈ (0)

≈ Vu + t2/2 f̈ (0) < Vu

Eq. (29) follows by setting(H̃1,A1) = (H̃(t),0) with t ∈ (0, t1) chosen small enough so as to have(H̃(t),0) ∈U . This concludes
the proof of Partiii) and the proof of the theorem.

4 Simulations with ground truth

We validated the proposed observer with several simulations. In this section, we illustrate and discuss two simulations results.
We use the known ground truth to assess the quality of the homography and velocity estimations.

In order to simulate a real experiment, we build a sequence ofreference homographies, starting from an initial homography
H0 ∈ SL(3). The reference set of homographies was built using the following formula:

Hk+1 = Hk exp(A∆ t +Qk∆ t)

whereA ∈ sl(3) is a constant velocity,Qk ∈ sl(3) is a random matrix with Gaussian distribution, and∆ t is the sampling time
(in the simulation we set the variance toσ = 0.1). By building the homographies in this way, we guarantee that the measured
Hk ∈ SL(3), ∀k.

We implemented a discretized observer in order to process the data. In all examples the gains of the observer were set to
kH = 2 andkA = 1.

Fig. 1 shows the elements of the measured and estimated homography matrices. Fig. 2 shows the elements of the associated
homography velocities. In this simulation the initial “error” for the homography is chosen at random and it is very large. The
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initial velocity estimatêA0 is set to zero. Fig. 1 shows that after a fast transient the estimated homography converges towards the
measured homography. Fig. 2 shows that the estimated velocity also converges towards the true one.

Fig. 3 and 4 illustrate the unstability of the critical points. In this simulation, the initial estimation error for the homography
matrix is chosen at a critical point. The velocity estimate is again set to zero. Fig. 3 shows that the critical point is unstable: a
small noise allows the estimated homography to converge towards the measured homography. Fig. 4 shows that the estimated
velocity converges towards the true velocity.

5 Experiments with real data

In this section, we present results obtained with real data.In the first image the user selects a rectangular area of interest. The
homographies that transform the area of interest in the current image are measured using the ESM visual tracking software2 [1].
Fig. 5 shows four images extracted from the sequence Corkes.The first image in the figure shows a rectangle containing the
area of interest that must be tracked in all the images of the video sequence. For each image of the sequence, the output of the
ESM visual tracking algorithm is the homography that encodes the transformation of each pixels of the rectangular area from the
current to the first image.

The measured homographies are the input of the proposed nonlinear observer. In this experiment the gains werekH = 5 and
kA = 1. The filtering effect of the observer on the estimated homography are visible in Fig. 6.

In this experiment with real data, the velocityA is unknown and not constant. Nevertheless, the observer provides a smoothed
estimation of the homography velocity, as illustrated on Fig. 7.

6 Conclusion

In this paper, we proposed an observer for the homographies defined onSL(3) and their velocities defined onsl(3). We proved that
the observer is almost globally stable. We also proved that isolated critical points exist but that they are far from the equilibrium
point and unstable. We performed several simulations with ground truth to validate the theoretical results. Experiments with real
data show that the observer performs well even when the constant velocity assumption does not hold.

Acknowledgments: The authors gratefully acknowledge the contribution of INRIA, CNRS and ANU. This research was partly
supported by the Australian Research Council through discovery grant DP0987411 and the PEGASE EU project.

2 Available for download at http://esm.gforge.inria.fr.
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Fig. 1 Plain line: the measured homography matrixH. Dashed line: the observed homographyĤ.
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Fig. 2 Plain line: the true homography velocity A. Dashed line the observed homography velocitŷA.
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Fig. 3 Unstability of critical points. Plain line: the measured homography matrixH. Dashed line: the observed homographyĤ.
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Fig. 4 Unstability of critical points. Plain line: the true homography velocity A. Dashed line the observed homography velocityÂ.
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Fig. 5 Images from the Corkes sequence. The quadrilateral representsthe tracked area. The visual tracking is correctly performed in real-time.
However, the noise in the images and modeling errors affect the accuracy of the measured homographies.
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Fig. 6 Corkes sequence. Each plot represents an element of the (3×3) homography matrix. Plain line: the measured homography matrixH. Dashed
line: the observed homographŷH.
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Fig. 7 Corkes sequence. Each plot represents an element of the observedhomography velocity matrix̂A.


