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ABSTRACT

Evolutionary Robotics is a research field focused on
autonomous design of robots based on evolutionary algo-
rithms. In this field, neuroevolution methods aim in par-
ticular at designing both structure and parameters of neu-
ral networks that make a robot exhibit a desired behavior.
While such methods have shown their efficiency to gener-
ate reactive behaviors, they hardly scale to more cognitive
behaviors. One of the reasons of such a limitation might
be in the properties of the encoding, i.e. the neural net-
work representation explored by the genetic operators. This
work considers EvoNeuro encoding, an encoding directly
inspired from computational neuroscience [1] and tests its
efficiency on a working memory task, namely the AX-CPT
task. Neural networks able to solve this task are generated
and compared to neural networks evolved with a simpler
direct encoding. The task is solved in both cases, but while
direct encodings tend to generate networks whose structure
is adapted to a particular instance of AX-CPT, networks
generated with EvoNeuro encoding are more versatile and
can adapt to the new task through a simple parameter op-
timization. Such versatile neural network encoding might
facilitate the evolution of robot controllers for tasks requir-
ing a working memory.
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1 Introduction

Evolutionary algorithms are stochastic algorithms based on
natural evolution. In the same way as nature uses the prin-
ciple of the “survival of the fittest” to improve the over-
all quality of the individuals in a population over a long
time, evolutionary algorithms explore a search space and
give solutions with the better fitness a higher probability to
survive and generate siblings [2]. While such algorithms
are frequently used to optimize parameters, neuroevolution
methods use them to synthetize artificial neural networks
that achieve a task described by a high level fitness func-
tion (fitness is the name of the function to optimize). It is

used in particular in Evolutionary Robotics to make real or
simulated robots exhibit a desired behavior [3].

Most evolutionary algorithms optimize a fixed size
genotype, whereas neuroevolution methods aim at explor-
ing in both parameter and structure space, in the search for
neural networks able to achieve a given task. Exploring
in the structure space requires to define an encoding, i.e. a
representation of a neural network with its dedicated search
operators. Typically, the mutation operator can individually
add or delete neurons or connections [4], but this leads to
networks with no particular regularity in their structure.

While Evolutionary Robotics up to now mainly deals
with reactive behaviors, in this work we use this method to
obtain working memory neural networks, that can be con-
sidered as a prerequisite to more cognitive behaviors. To
our knowledge, despite the fact that working memory is a
critical brain function, few works have used neuroevolution
method to build a working memory model and implement
this mechanism in a robotic agent [5].

Defined as “the ability to transiently hold and ma-
nipulate goal-related information to guide forthcoming ac-
tions” [6], working memory modeling is a central area of
research in computational neuroscience. Lots of models
have been built at different levels of abstraction, from low
level [7] to highly abstract connectionist models [8, 9].
Multiple tasks have been defined to test working mem-
ory abilities: Delayed-Response tasks (DR) [10], Delayed
Matching-to-Sample Tasks (DMS) [11], Ocular Delayed-
Response Tasks (ODR) [12], Vibrotactile Discrimination
Task [7], Stroop task [13] or AX-CPT [8, 14, 9]. This
last task has particularly caught our attention, because it
provides a relatively specific probe of goal representation,
maintenance and updating [15] and has been modeled with
highly abstract connectionist models [8, 9].

Despite computational neuroscience and neuroevolu-
tion both focus on neural networks, evolved neural net-
works present few similarities with models produced in
computational neuroscience. The main difference is based
on the fact that evolutionary methods mostly use individual
neurons, sometimes organized in modular fashion, whereas
neuroscience models rely on much more structured net-
works.

Noticing that biological systems are often based on



the repetition and combination of hierarchically organized
modules, several researchers proposed to define encodings
with some of these abilities [16, 17, 18]. The EvoNeuro
encoding [1], used in this work, directly draws inspiration
from computational neuroscience, and includes structure
primitives like neural maps, for instance. This encoding has
been tested to automatically generate neural networks ex-
hibiting the action-selection behavior of basal ganglia [1].
Results have shown that this encoding easily achieves this
task, while a basic encoding never solves it. These encour-
aging results lead us to consider other basic abilities of the
brain such as working memory.

Two main points are argued here:

• Neuroevolution can automatically generate neural net-
works with a working memory functionality;

• EvoNeuro encoding generates more versatile neural
networks than a simpler direct encoding.

2 AX-CPT task

AX-CPT task is a modified version of the classic Con-
tinuous Performance Test (CPT) [19]. Introduced by
Braver [8], this paradigm has become a standard bench-
mark to study syndroms thought to involve prefrontal cor-
tex dysfunction such as schizophrenia [14] or to evaluate
aging effect on performance [9].

The task is the following: during each AX-CPT trial,
participants are presented with a sequence of stimuli con-
taining a context cue (stimulus A or B) and a probe (X or
Y) on the computer screen. They have to respond to a tar-
get probe (X) with a manual response on the keyboard, the
target response key, but only when the target probe is im-
mediately preceded by a specific context cue (A). In every
other case, for example in AY, BX or BY sequences, they
have to respond to a probe with a nontarget response key.
AX trials occur very frequently during the experiment to
induce a strong tendency to make a target response to the
X-probe. A key aspect of the task is that in some trial con-
ditions (termed BX), the contextual information must be
used to inhibit a dominant response tendency, whereas in
other trials (termed AY) context serves an attentional bias-
ing function. This task requires a relatively simple form of
working memory, where the prior stimulus must be main-
tained over a delay until the next stimulus appears, so that
the subject can discriminate the target from non-target se-
quences.

Several high level computational models [8, 14, 9]
have been created to make novel and testable predictions
regarding the behavioral performance of the subjects.

The first model [8] is a simple model of the prefrontal
cortex based on two information processing roles for the
PFC: short-term active memory and inhibition. Following
models [14, 9] are trying to define a model of cognitive
control which simulates system interactions between PFC
and dopamine (DA).

On the other hand, Frank and O’Reilly [20, 21] pro-
pose a more biologically plausible model, the PBWM
(for Prefrontal-cortex, Basal-Ganglia Working memory
Model). It is based on the postulate that the basal ganglia
provides a selective dynamic gating mechanism for infor-
mation maintained via sustained activation in the PFC. A
wide variety of working memory tasks have been tested on
this model like the Stroop effect, the AX-CPT, the 1-2-AX
or the Wisconsin card sort task [20].

3 EvoNeuro encoding

The simplest encoding in neuroevolution is direct encod-
ing, in this case the genotype is the same as the phenotype.
Here we evolves a labeled graph which can be modified
structurally (add/remove a connection or a node) and para-
metrically (change of a label) with an evolutionary algo-
rithm. The graph is represented as a classic adjacency list
where cross-over is not used and mutation operators can:
(1) add a node on an existent connection, with random la-
bels; the connection is split in two and the two parts keep
the same labels; (2) remove a random node and its asso-
ciated connections; (3) add/remove a connection between
two random nodes. Nodes and connections can be labeled
by a list of real parameters that represent weights, thresh-
old, neuron type... These parameters are mutated using
polynomial mutation [22]. Each node describes a neuron
and the labels define then neuron parameters (time con-
stant, threshold, inhibitory status). The connections are la-
beled with a single real number interpreted as the synaptic
weight.

The Evoneuro encoding (figure 1) uses the same prin-
ciple and adds two building blocks taken from computa-
tional neuroscience models: (1) map of neurons, (2) con-
nection schemes between neural maps. Maps are defined
as spatially organized grids of identical neurons (same time
constant, same threshold, same inhibitory status). Connec-
tion schemes between maps are restricted to three cases:
(1) one to one connection with constant weights (neuron
i of map M1 is connected to neuron j of map M2, with
a positive weight identical for each connection), (2) one
to all connections with constant weights (neuron i of map
M1 is connected to each neuron of map M2, with identical
weights for all connections) and (3) one to all connections
with weights following a Gaussian distribution. As in [1],
we use a lPDS-based (locally Projected Dynamic System)
neuron model [23] which is a variant of the classic leaky
integrator with similar dynamics but which verifies the dy-
namic property of contraction [23]. See [1] for a detailled
description of EvoNeuro encoding.



Figure 1. Overview of the development process. From left to right: (1) the genotype is a labeled graph with evolvable labels;
(2) the labels are interpreted to a neuroscience-inspired description of the neural network; (3) for a given size of maps, this
neural network can be fully developed into a neural network (for instance to evaluate its fitness).

4 Experiments

4.1 AX-CPT

Here we have used the rules of classic AX-CPT task [8]
which consists of randomly cue/probe presentations with
the following constraints: (1) Target trials: A followed by
X occurs 70 % of the time (to probe the inhibitory function
of PFC); (2) A cue followed by a non-target probe letter
(A-Y) 10% of the time; (3) A non-cue followed by a target
probe letter (B-X) 10% of the time; (4) A non-cue followed
by a non-target probe letter (A-Y) 10% of the time;

A letter’s presentation corresponds to a number ran-
domly chosen in ]0.9, 1[ for the corresponding input and
zero on the other ones. The neural network has thus four
inputs, one per letter, and two outputs. The response of the
network is considered to be ”non-target” if the first output
is greater than the second and ”target” otherwise.

4.2 Fitness

In the remaining text, the following notations are used:

• x: a developed individual (a neural network);

• k: number of inputs; (k = 4, one for each letter);

• v: vector of input letters (v ∈ [0, 1]k);

• T : the maximum simulation duration (T = 1000);

• Tc: the end of the simulation;

• γ(x,v, t)i: activation level of the output neuron i (i ∈
{1, 2}) at time t (t ∈ [0, T ]);

• γc(x,v)i: activation level of the output neuron i (i ∈
{1, 2}) at the end of the simulation (i.e. t = Tc(x,v)).

For each individual, a sequence of N letters are pre-
sented, each letter’s presentation is simulated until its
output converges to a constant vector or until it reaches
the maximum number of time-steps (t = T ). From

a practical viewpoint, a neural network is considered to
have converged when S (with S randomly chosen in
{10, 20, · · · , 100}) successive outputs have a difference of
less than ε (in these experiments, ε = 10−6). S is variable,
because preliminary results have shown us that with a con-
stant S (i.e. S = 10), feed-forward networks tuned with
a high accuracy are generated most of the time. They re-
lied on neuron dynamics rather than recurrent connections
to fulfill the task, thus exhibiting a non-robust memory be-
havior specialized for a particular value of S.

To compute Tc, we first define the “convergence func-
tion” K(x, t,v):

K(x, t,v) =

 0 if
∣∣γ(x,v, t)i − γ(x,v, t− n)i

∣∣ < ε,
∀n ∈ {1, · · · , S},∀i ∈ {1, 2}

1 otherwise
(1)

Tc can now be defined as Tc(x,v) = t with K(x, t,v) = 0
and K(x, t′,v) = 1 for t′ < t.

The main objective function (fitness) aims at check-
ing that the network answers the correct response for any
given v. Furthermore, we are interested to have the biggest
contrast between the 2 outputs.

In our case, arbitrary γc(x,v)1 correspond to the non-
target response, whereas γc(x,v)2 is the target response.
Let define R(x,v) for the response of the network:

R(x,v) =
{

0 “Target” if (γc(x,v)2 − γc(x,v)1) > 0
1 “Non-Target” otherwise

(2)
Now we can compare the network response with the ex-
pected response:

E(x,v) =
{

0 if (R(x,v) = Q(x,v))
−1000 otherwise (3)

where Q(x,v) is the expected response and E(x,v) the
evaluation note. We test also the discrimination D(x,v)



Table 1. Parameters used in experiment 1 (with map-based
encoding and direct encoding).

Parameter /Genotype Map-based Direct enc.
min./max. nb. of nodes (rand.gen.) 1 / 5 4 / 20
min/max. nb. of links (rand. gen.) 1 / 5 4 / 20
prob. to add/remove a node 0.05 / 0.05 0.05 / 0.05
prob. to add/remove link 0.05 / 0.05 0.05 / 0.05
prob. to change each label 0.1 0.1
σ for gaussian mutation 0.05 0.05

between the two outputs:

D(x,v) =

 0 if (||γc(x,v)2 − γc(x,v)1|| > 0.8)
−1 if (||γc(x,v)2 − γc(x,v)1|| > 0.3)
−2 otherwise

(4)
Let I be a set of N letters vectors. So the fitness to max-
imise is:

F (x) =
∑
v∈I

(D(x,v) + E(x,v)) (5)

The maximum value is 0 which indicates that the network
has solved the problem without any error. In these exper-
iments, N was fixed to N = 1000 and the same vectors
were employed to evaluate all individuals.

The search is restricted to networks that converge dur-
ing the simulation time and where activation level on output
is positive. The first constraintC1(x) ensures that γc(x,v)i
is strictly positive:

C1(x) =
{

0 if γc(x,v)i > 0
1 otherwise (6)

The second constraint, C2(x) checks that the tested neural
network converges to a constant output vector before the
end of the experiment, for all the tests performed on the
neural network:

C2(x) =
∑
v∈I

(K(x, Tc,v)) (7)

These constraints are enforced with the penalty
method [22]: an arbitrary large penalty is added to
the fitness each time a constraint is violated. Instead of
maximizing F (x), we thus maximize Fc(x):

Fc(x) = −K(C1(x) + C2(x)) + F (x) (8)

where K is an arbitrary large constant (e.g.1010).

4.3 Experimental setup

Our goal is to obtain a versatile working memory neural
network. Although not included in this work, future work
will consider learning abilities to adapt the behavior of the
network online. For a neuroevolution method, it is not dif-
ficult to connect only the inputs corresponding to the inter-
esting letters while ignoring the others. For such a result,

changing the features of the task – for instance inverting
the role of the letters – implies structural changes and can’t
thus be done with an online learning algorithm. Likewise,
in an evolutionary setup, if the working memory module is
only a part of a more complex neural network controller,
the evolutionary search is expected to face more difficul-
ties when complex structural changes are required to adapt
memory module behavior.

Our objective is then twoflold: (1) obtain a network
topology able to perform an AX-CPT task; (2) test this
topology on a different instance of this task with synaptic
weights changes only to check its versatility. The fitness
function of the first step may take into account the versa-
tility, but this would require a complex evaluation process.
We have then chosen to test a posteriori the versatility.

For (1) we use EvoNeuro encoding to evolve network
structures and parameters. As a control experiment, neu-
ral networks are evolved with a simple direct encoding in
which mutation directly adds, removes neurons or connec-
tions or changes weights, as in [1]. 10 independent evo-
lutionary runs, with a budget of 400,000 evaluations each
(2000 generations with a population of 200), have been per-
formed for each experimental setup. In a second step, we
test the stability of the networks obtained. In these exper-
iments, a network is considered to stably converge to an
equilibrium state when 200 successive outputs (instead of
S = 10 previously) have a difference of less than ε (here,
ε = 10−6).

For (2) the best evolved networks of experiment (1)
are kept and their weights only are evolved with BY as a
target sequence instead of AX. One run is performed for
each evolved structure, there are then 10 parameter opti-
mization runs with networks generated by EvoNeuro en-
coding and 10 more optimization runs with networks gen-
erated by the direct encoding. We have chosen to use the
same evolutionary algorithm with a constant structure and
a fixed number of parameters, but the parameters may have
been optimized by other optimization algorithms.

The same evolutionary algorithm, the same fitness
and the same model of neurons were employed in all
experiments; only the genotype/phenotype mapping was
changed. The chosen evolutionary algorithm is a single-
objective implementation of NSGA-2 [22], an elitist
tournament-based evolutionary algorithm. The framework
used to run all these experiments is Sferes2 [24]. Parame-
ters are provided in table 2 and the source code is available
at: http://www.isir.fr/evorob_db.

5 Results

For experiment (1), with direct encoding, 9 of 10 runs find
an optimal solution with an average of 656 generations
(131,200 evalutions). For step 2, when we check neural
network stability, results shows that only 4 of 10 networks
have a constant output after 200 steps.

The EvoNeuro encoding finds an optimal solution for
8 of 10 runs, within 1016 generations on average (203,200
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Figure 2. (a) Example of a module obtained with map-based neuroevolution. In this case, each map is composed of 4 neu-
rons. 1-1 represents one to one connections between maps, 1-all, one to all connections, gauss., weights following a gaussian
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Figure 3. Minimalist neural network obtained by direct en-
coding. In this case, each circle represents one neuron.

evaluations). 5 of 10 networks perform the stability test.
The two setups show then similar results..

But surprisingly unlike direct encodings (figure 3),
some generated networks present interesting features. As
shown in figure 2(a), the evolved network shares some sim-
ilarities with existing models of cognitive control. We can
identify a topology close to the simple canonical model
proposed by Braver and represented in figure 2(b) [9]. 3
key computational principles of context processing mech-
anism are defined: (1) active memory through recurrent
connections; (2) top-down bias through feedback connec-
tions ; and (3) regulated access of contextual input through
modulatory gating connections. We can find the same ac-
tive memory through recurrent connections in our model
(map 1), the feedback connection between PFC and poste-
rior cortex could be seen in the connections between map 1
and map 2. The reward prediction is not present in our net-
work, indeed in Braver’s model the timing of gating signals
is learned through a reward prediction learning mechanism,
whereas in our model no learning mechanism is included
(and the fitness function doesn’t enforce learning).

For experiment (2), we have tested every networks
which has performed experiment (1) (4 with direct-
encodings, 5 with map-based encoding). With classic
direct-encoding, none of the 4 networks can be adapted to
the new target sequence with connection weights changes
only, whereas with Evoneuro encoding 4 of 5 networks
are able to perform the task after an optimization of the
weights (with an average of 462 generations). These re-
sults confirm our hypothesis that neural networks evolved
with EvoNeuro encoding, are more versatile than neural
networks obtained with a simple direct encoding.

6 Conclusions and future work

Our experiments have shown that with the help of several
computational neuroscience building blocks (leaky integra-
tor neurons, map of neurons, projection schemes), neu-
roevolution can build simple working memory models. In-
deed our generated networks have successfully performed a
simple, but very common in human behavior studies, work-
ing memory task: AX-CPT. In the second step we have
proved that our map-based generated networks are more
versatile than those generated by a simpler neuroevolution
method (with direct encoding)

Our future work will be to test the framework on
different and more complex working memory tasks like
12-AX task which is an extension of the AX-CPT task
[20, 21], or the Stroop task [13] to simulate multiple work-
ing memory tasks in a single model like the PBWM model
[20, 21] then test such models in the context of robot be-
havior design. An other objective will be to implement a
learning mechanism on evolved neural networks to solve
different tasks with keeping the same topology.
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