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Abstract

The context of this work is the emergence of service Robotics, where robots will need
adaptive capabilities to interact with people in unforseen circumstances. More precisely,
this thesis is concerned with the design of adaptive model-based control methods for
redundant systems in the case where kinematics and/or dynamics are not precisely known
in advance or change along time. We present an adaptive control approach combining
model learning methods with the Resolved Motion Rate Control approach. The main
justification of that framework lies in the necessity of combining several tasks, ranked
by priority, controlling explicitly the redundancy of the robot. We learn the forward
kinematic model of a system and use standard algebraic methods to extract pseudo-
inverses and projectors from it. This combination endows the robot with the ability
to realize hierarchically organised tasks in parallel, using tasks null space projectors
built upon the learnt models. We illustrate the proposed method on several simulated
systems, highlighting the fact that the internal mobility can be controlled with learnt
models ensuring that the hierarchy is verified. We have also implemented our method
on the iCub humanoid robot, performing simple tasks such as dialling on a numeric
keyboard or drawing a circle. The second part of our framework is concerned with the
learning of inverse dynamics with state-of-the-art methods. Learning this model allows
to stress the versatility of our approach to external perturbations and thus to unknown
environment.

The experiments performed in the thesis illustrate the capability of the framework to
deal with several hierarchically organised tasks as well as to adapt to external perturba-
tions. They also reveal the limitations of the framework and of the learning algorithm
we used in terms of scalability and speed of adaptation.

Finally, we derive some lines of research that should be investigated to go further, such
as using vision sensors to learn models from exteroceptive data or dealing with systems
endowed with artificial muscles to benefit from the compliance of such actuators.S

This thesis tries to develop a framework in order to include adaptive capabilities in
the control loop of future service robots in interaction with people in an unstructured
and evolving environment.
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Introduction

Real-world Robotics applications are evolving from the industrial domain, where the
application is well-defined within a structured environment, to the service domain where
it is much harder to model the overall mission of a robot. The service Robotics domain
implicates robots in interaction with people, at home, at work or in medical institutions
for instance. In contrast with the former industrial Robotics domain, a service robot
cannot be designed for a single specific environment. Its interactions with people cannot
be predicted and its missions can be quite diverse and unforeseen. Thus service Robotics
induces complexity and uncertainty both in terms of the mission of the robot and in terms
of the nature of the environment where robots are supposed to move. In parallel to this
growing complexity and partly induced by it, the complexity of the robots themselves
increases too, both in terms of the number of sensors they are now equipped with and in
terms of number of degrees of freedom (e.g., mobile manipulators such as the humanoid
robot iCub [Metta et al., 2008] or the wheeled assistant PR21). Before examining the
impact of this growing complexity, we must stress that most robotic applications can be
modelled at two levels, the mission level and the task level, which are presented hereafter.

The mission level The mission of a robot can generally be decomposed into a set
of tasks that need to be scheduled appropriately so that the mission succeeds. The
mission is independent of the detailed execution of each task. For instance, the Mars
Exploration Rover Mission which consists in investigating an area on the surface of Mars
with wheeled robots [Crisp et al., 2003] may require to achieve a series of tasks such as
land on Mars, navigate, take picture, collect minerals, analyse minerals, etc.

At the mission level, most deterministic task scheduling methods can address very
complex mission in the case where everything can be envisioned in advance [Lee et al.,
1997]. But these methods have to be reconsidered in the service domain so as to incor-
porate uncertainty in their control mechanisms [Lussier et al., 2007] and benefit from
a richer external and contextual information from the sensors of the robot. This task
scheduling issue in the presence of uncertainty is the matter of an important research
effort that lies outside the scope of this thesis since we do not address this mission level.

The task level At the task level, the robot must reach a set of elementary goals by
performing adequate movements, using appropriate sensors and actuators into a control
loop. A task can be regarded as several goals that can be achieved by the robot, totally

1http://www.willowgarage.com/pages/robots/pr2-overview
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2 Introduction

or partially, simultaneously or not, using different effectors. Thus, the task level can be
seen either as a motion generation problem or as a control problem, depending on the
application and on the focus of the research. As a consequence, some robot architecture
distinguish a task level and a control level. In this thesis, we will consider the task level
and the control level as one unique level, but we will distinguish the motion generation
view and the control view of task achievement. In the context of service Robotics,
when the task achievement is seen as a pure motion-planning problem, motion planning
methods have to be reconsidered too. For instance, configuration space planning methods
[Latombe, 1991; Laumond, 1998] consist in building a path from an initial state to
a goal state in the so-called configuration space in such a way that it is guaranteed
that the robot can execute the trajectory without meeting any obstacle. Important
progress have been made recently with the intensive use of randomness in the path
or graph building process with families of methods called Rapidly exploring Random
Trees (rrt) [LaValle, 2006] and Probabilistic Road-Maps (prm) [Kavraki and Latombe,
1998]. But configuration space planning requires that the environment itself is perfectly
known before planning can take place, and the methods are very sensitive to unknown
environmental features. Thus, these methods can hardly be used in the broad context
of service Robotics outlined above.

When task achievement is rather seen as a control problem, different representations
and methods are used. It is first necessary to formalize the tasks, associated constraints
and evaluation criteria with languages that give birth to natural control methods. Such
languages are usually defined by calling upon specific spaces: the task space, the joint
space, the sensory space, the contact space, etc. The spaces of utmost importance,
for most task achievement problems, are the task space and the joint space. Indeed,
actuators of a robot generally act on joints, but the tasks or constraints associated to
a mission can seldom be described in the joint space in a natural way. The task space,
also called operational space, provides an alternative and more natural space, for such
a definition.

Then, once such spaces are defined, several control approaches can be distinguished:

• One may call upon motion planning methods in the task space and then upon
task space to joint space transformation to generate adequate joint controls. This
approach suffers from the same limitation as configuration space motion-planning
in terms of reactivity to uncertainties or unexpected events. Nevertheless, this
problem has been locally resolved with elastic strips/band planning [Quinlan and
Khatib, 1993; Brock and Khatib, 2002].

• One may call upon optimal control methods that define task-related criteria in
the task space and look for the joint controls that optimize those criteria. Here
again, such methods hardly take uncertainties or unmodelled effects into account.
Nevertheless, new methods such as Stochastic Optimal Feedback Control can in-
corporate some uncertainties modelled as Gaussian noise [Todorov, 2004; Li, 2006].
Above all, these methods are currently limited in terms of number of degrees of
freedom they can address (e.g. the ilqg algorithm can be used on a 2 degrees of
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freedom arm with 10 actuators).

• In contrast with such methods that need to envision the complete task execution in
advance and thus require knowledge that is often not available in service Robotics
contexts, reactive methods do not suffer from such a necessity. An instance of such
methods is the Resolved Motion Rate Control (rmrc) approach [Whitney, 1969].
Another purely reactive approach is the Sequential Quadratic Programming (sqp)
algorithm which is an optimization tool used to solve a problem with linear con-
straints minimizing some cost function. A new trend consists in combining the
reactive properties of the previous methods and the capability to optimize criteria
and constraints fulfilment over an horizon of optimal control methods through a
cascade of reactive optimization controllers. Such methods are instances of model
predictive control methods. Research on such hybrid methods is extremely ac-
tive within the context of humanoid Robotics at the moment [Kajita et al., 2003;
Wieber, 2006; Kanoun et al., 2009].

Combining tasks The opportunity to achieve several tasks simultaneously has in-
creased with the emergence of more and more complex robots and mastering this ca-
pability is mandatory in many service Robotics contexts. For instance, for hammering
a nail, the robot will need to hold the nail at the required position and to move the
hammer to hit the nail in the appropriate direction. A mathematical framework that
facilitates the definition and the unperturbed execution of a hierarchy of tasks in the
case of redundant robots was proposed by Liégeois [1977]. A robot is said redundant
relatively to a task if it is endowed with more degrees of freedom than necessary to
achieve this task. Some supernumerary degrees of freedom are available and can be used
to achieve supplementary tasks without perturbing the main task.

Identification versus learning

The motion controllers developed for service robots have to be either highly robust to
uncertainties in the model of the robot and its environment or adaptive, i.e., able to
build their own model on-line. All control methods cited above are model-based as they
need a model of the geometry, the kinematics and sometimes the dynamics of the system
they are controlling. A real knowledge in Mechanics and an hard work in modelling is
necessary to design these models, particularly in the case of complex poly-articulated
systems such as humanoid robots. If they are only extracted from physics equations,
those models are called deduced models. They rely on a theoretical modelling of a system
such as the CAD of the robot, and cannot represent precisely the material system.
In fact, due to physical differences such as friction, weights, misalignments, lengths or
backlashes, during the design, manufacture or the assembly of multiple robots considered
as identical, it is difficult to control them with a unique deduced model.

As engineers want to control real robots with models, they use deduced models melded
with parametric identification methods [Ljung, 1986]. Those models are called induced
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models as they are created from a great amount of data coming from the real system, in a
batch mode or incrementally. Parametric identification is usually performed off-line but
induced models can also be estimated along the life-time of the robot in a process called
Adaptive Control [Sastry and Bodson, 1989; Landau et al., 1998; Siciliano et al., 2008].
Instead of having an unchanging model, adaptive control adapts parameters of a model
to overcome difficulties in control that can appear if the system is modified. This method
allows to adapt to unmodelled perturbations or system modifications which occur during
an experiment such as an increasing friction due to a misalignment in some joint.

With parametric identification methods or adaptive control, omitting in the model of
the simulation some physical phenomena acting on the system may introduce a bias.
Unfortunately, when the structure of the model is fixed, if this structure does not match
the physical structure of the mechanical system, adjusting the parameters will not be
sufficient to correct the resulting model errors. Unstructured adaptive models, also
called non-parametric models, can deal with such problems. They may be obtained
using machine learning methods and included into classical robotic controllers. It can
be done using model-based controllers while using machine learning methods capable of
building models on-line.

Machine learning methods learn a model which does not depend on a predefined
structure but approximates a function based only on data received from the sensors
of the real system without making assumptions about their physical relationship. The
information used in machine learning is the size of the data which determines the number
of input/output dimensions of the model and the nature of the data which induces the
dependencies within the model. Learning algorithms provide a way to avoid introducing
a priori knowledge in the model. For example, if we give as input: joint position and as
output: operational position, the model learnt is a forward kinematic model. That model
does not explicitly depend on the dimensions of the robot while the lengths are learnt
in the model. Machine learning algorithms can also adapt to environmental changing
constraints or to modifications of the robot itself.

Applications of machine learning in Robotics

Machine learning methods outlined above are mandatory to address the future service
Robotics context. For instance, consider a general purpose robot equipped with a hand
and whose goal is to achieve a task that requires a tool, such as screw-driving, hammering
a nail or a similar task. When holding a tool, the end point effector is usually a functional
tip of the tool itself (e.g. the head of a hammer or the teeth of a fork).

If the tool is grasped by robotic hands rather than precisely set by an expert roboticist,
the grasping configuration may be unprecisely known. In that case, the control law will
have to be adaptive with respect to the geometry relating the end-point effector to the
configuration of the robot + tool system. One way to make the control law adaptive is
to learn this geometry on-line.

Furthermore, the robot may meet and grab in its environment some tools whose
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dynamical properties such as the global mass, inertia parameters, etc., are relevant for
their use but not known in advance. For instance, the force necessary for a hammering
gesture is highly dependent on the mass of the head of the hammer.

Learning both the geometry and the dynamics can also bring important advantages
in the emerging domain of compliant devices. Indeed, the geometry of a compliant arm
will change temporarily if it bends at the contact of some surface in its environment.
There might also be some complex relationship between the geometry and the dynamics
in the case of a very flexible body.

Finally, the emerging domain of modular Robotics can also benefit from learning such
mechanical models. Modular Robotics is a field where robots are composed of multiple
simple modules connected altogether. A modular robot can reconfigure itself depending
on its task. The reconfiguration induces a change in the morphology of the robot that
can perturb its control but also a change of the dynamics induced by the addition of
various segments that alter the inertia seen by actuators of the corresponding mechanical
chain. In the case of self-assembling modular robots, the connection of modules may
also be somewhat imprecise, giving rise to uncertainties in the geometry and dynamics
of the global system.

Goal of the thesis

The robotics context described above are research challenges for the future rather than
topics for current robotics industrial development. Thus, in this thesis, we do not pretend
to provide a ready-to-use solution for any of such challenges. Rather, our goal consists
in laying the foundations of a framework for addressing some aspects of such a challenge.
More precisely, we are trying to design adaptive model-based control methods for re-
dundant systems in the case where kinematics and/or dynamics are not precisely known
in advance or change in time. We propose a framework that addresses the control of
redundant robots in the operational space thanks to models learnt with non-parametric
representations. The main justification of that framework lies in the necessity of combin-
ing several tasks, ranked by priority, controlling explicitly the redundancy of the robot.
We have chosen to solve control problems of redundant robots at the task level using
the rmrc framework.

To design such a framework, we have to ensure two features.

• As the velocity kinematic level is sufficient to define and solve internal mobility,
our framework considers separately the kinematics and the dynamics. A side effect
of this explicit separation is that a sub-part of our framework can address velocity
controlled redundant systems, such as most of the humanoid robots, which do not
give access to control at the joint torque level.

• Both mechanical models of the system have to be learnt from experience by the
robot in any state so that those global models are always determined. Such a
property is particularly necessary when the task can be executed in an infinite
number of ways.
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This framework is not targeting any specific real-world application but rather trying
to design a general method. As a result, we do not hesitate to simplify the context of
our experiments when necessary. Of course, if these assumptions are reasonable given
the methodological nature of our goal, the spawn limitations will need to be overcome
to address real applications. For instance, in all chapter, we learn mechanical models
of systems whereas we know the analytical ones. Those models are useful as we can
simulate the system, perform random bootstrap or get any operational position without
considering practical considerations. It is clear that, in the case of a real robot, the
random initialization will be less easy and operational positions will have to be mea-
sured from exteroceptive sensors. This is the matter of an important discussion in the
conclusive chapter of this thesis.

The thesis is organised as follows.

• In Chapter 1, we describe different levels of forward and inverse mappings which
can be used to relate the joint space to the task space and vice versa. We also
present different contexts in which several tasks can be combined depending on
their compatibility. Then, we give some background information on hierarchical
control, a model-based control approach which provides a mathematical framework
allowing to control a robot in task space and to combine several tasks.

• In order to endow this framework with adaptive capabilities, one must develop
learning methods and associated representations fitting the needs of the corre-
sponding control techniques. In Chapter 2, we give an overview of the learning
methods that can be applied to learn these forward and inverse mappings. Learn-
ing models of the robot is achieved using specific representations such as Neural
Networks [Van der Smagt, 1994] or Radial Basis Function Networks [Sun and
Scassellati, 2004], Gaussian Processes [Shon et al., 2005] or [Nguyen-Tuong et al.,
2009], Gaussian Mixture Models [Calinon et al., 2007], Locally Weighted Regres-
sion methods [D’Souza et al., 2001; Natale et al., 2007; Peters and Schaal, 2008] or
Learning Classifier Systems [Butz and Wilson, 2000; Wilson, 2002] but the control
methods used in the corresponding works do not always take advantage of the state-
of-the-art techniques developed in recent Robotics research. We conclude from our
overview that no currently available combination of model learning method and
model-based control framework meets the requirement expressed above.

• In Chapter 3, we present our approach, explaining how we are able to learn the
mechanics of a poly-articulated system at the kinematic and dynamic levels with
two algorithms: lwpr and xcsf. First, we learn forward velocity kinematics
which is inverted to control the system in the task space, so that we can control
redundancy. Second, we describe how to learn the inverse dynamics which is used
to transform a desired joint velocity into torques that must be applied to the
system. We present the process used to learn the models as they differ depending
on the learning algorithm used.

• In Chapter 4, we introduce a series of simulations where we learn kinematic models
of simple systems. We evaluate our approach in the context of controlling the
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redundancy of simulated robots in different constrained cases.

• In Chapter 5, we present experiments performed on iCub, a 56 degrees of freedom
humanoid robot. Those experiments highlight the necessity of controlling the
redundancy of such robots and the limitations of our framework when applied
to a real velocity-controlled robot. We stress the necessity to use exteroceptive
sensor to learn models and close the control loops if we want to move from the
proof-of-concept context to real applications.

• In Chapter 6, we present further experimental work in the case where we learn
both the kinematics and the dynamics of a system to control it with torques.
Experiments are performed again with a simple simulated system. We underline
the necessity of learning both models to control explicitly the redundancy. We
show that learning the dynamics results also in the capability to adapt to external
perturbations such as a force applied to the end-effector.

• In Chapter 7, we draw the lessons from our experimental evaluations by high-
lighting the contributions and limitations of our work. In particular, we stress
the additional research that should be performed to start addressing real robotics
applications in the service domain. We conclude by suggesting some perspectives
that result from our research effort.
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This chapter presents a mathematical framework in which we can design mechanical
models to describe a large variety of robots. It first gives some background information
about the Mechanics of rigid bodies and introduces joint space to task space mappings
of poly-articulated systems at the kinematic, velocity kinematic and dynamic level. We
recall the general expression of minimum norm solutions in the redundant case and give
an overview of redundancy resolution schemes in control at the velocity level. We also
explain how control in the operational space may be integrated in a control loop with
an inverse dynamics model.

1.1 Mechanics of rigid bodies

The rigid body description used in this thesis is defined in this section. It is inspired by
the thesis of Duindam [2006] that is based on the works of Selig [2005] and Stramigioli
and Bruyninckx [2001]. It explains how to position a body in space which is necessary
to position the bodies of a poly-articulated system or to define a task.

9
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1.1.1 Configuration of a rigid body

The configuration of a rigid body Bi can be described by a coordinate frame1 Ψi attached
to this body. The pose of a coordinate frame is composed of a position, the position
of its origin, and an orientation usually defined by an orthonormal basis. A coordinate
frame is defined relatively to another coordinate frame, for example the reference frame
chosen arbitrarily.

A point p, defined relatively to a frame, can be positioned freely with three degrees
of freedom known as its coordinates

p =

 px
py
pz

 . (1.1)

We call degrees of freedom the independent displacements which specify the position
and the orientation of a body. The application which defines a position of a point in
space relatively to a frame belongs to the translation group called T (3). The application
which defines an orientation of a frame belongs to the 3 dimensional rotation group called
SO(3). The combination of those two groups is called SE(3), the Special Euclidean
group in three dimensions. Thus, a body owns a maximum of six degrees of freedom.
The pose of a coordinate frame defined relatively to a reference coordinate frame belongs
to SE(3) and can be described by a homogeneous matrix.

A homogeneous matrix H is a matrix of the form

H =
[
R p
0 1

]
∈ R4×4 (1.2)

with R a rotation matrix, i.e., R−1 = RT ∈ R3×3 where .T denotes the transpose of
the matrix and det(R) = 1. Besides p ∈ R3×1.

In contrast with other representations such as Roll, Pitch, Yaw angles or Euler an-
gles, homogeneous matrices are globally continuous and can be easily multiplied using
basic matrix products. Another globally continuous representation consists in using
quaternions which can also be easily combined.

1.1.2 Velocity of a rigid body

If Hab(t) is the homogeneous matrix representing the relative configuration of a rigid
body Bb relatively to a body Ba, we can describe the velocity of the rigid body Bb
relatively to the rigid body Ba in the coordinate frame Ψc by a matrix twist T cab(t)

1if it is not specified otherwise, all coordinate frames are right-handed
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which can be computed from Hab(t) as

T cab =
[

Ω̃c
ab νcab
0 0

]
= HcaḢabHbc =

[
Rca

(
ṘabRba

)
Rac Rcaṗab −RcaṘabpbc

0 0

]
(1.3)

where Ω̃ denotes the vectorial pre-product matrix associated with vector ω and t the
current time. Ω̃ is defined by

Ω̃ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ∀ ω =

 ωx
ωy
ωz

 ∈ R3. (1.4)

It can be written in a compact form

T cab =
[
ωcab
νcab

]
∈ R6 (1.5)

where ωcabdenotes the angular velocity of the body Bb relatively to the body Ba expressed
in the coordinate frame Ψc and νcab denotes its linear velocity.

It is also necessary to define the adjoint operator, used to express a twist in another
reference frame.

T dab = Ad(Hdc)T cab (1.6)

where Ad(H) =
[
R 0
p̃R R

]
with H =

[
R p
0 1

]
.

1.1.3 Configuration of a rigid poly-articulated system

Poly-articulated systems, also known as rigid mechanisms, are defined by a finite number
of rigid bodies interconnected by ideal joints. An ideal joint Eji is a kinematic relationship
between two rigid bodies Bi and Bj . This relationship can be described in ways such
that it either allows or constraints the possible movements between the two bodies it
links. It is named ideal if there is no backlash and no friction forces in the joint. Those
hypotheses are realistic from a kinematic point of view.

Degrees of freedom Identically to the free body definition, degrees of freedom are
the independent possible displacements of a rigid poly-articulated system. A rigid poly-
articulated system of nb bodies has a maximum of 6nb degrees of freedom which can be
described using 6nb parameters called primitive parameters and denoted p1, p2, . . . , p6nb .
Those 6nb possible movements can be constrained by joints, reducing the number of
degrees of freedom of a rigid poly-articulated system to n, with 0 ≤ n ≤ 6nb. In
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the holonomic2, open-chain3, minimum representation case, n = 6nb − nc where nc =∑nb
k=1(nc,k) with nc,k, the number of constrained movements at joint Ekk−1. In that case,

n is also the minimum number of independent parameters chosen to describe the robot
configuration.

Joint space The n independent parameters chosen to describe the configuration of a
robot along with the nc joint equations are sufficient to describe its configuration, i.e., the
pose of each body composing it. These parameters can be gathered to form the vector of
configuration parameters q also named generalized coordinates. The configuration of a
robot is thus defined on an n-dimensional space called joint space or configuration space.

Operational space While configuration parameters are often chosen in such a manner
that they can be intuitively related to the motion of the actuators of the system, it is
very difficult to use them to describe the tasks of a robot. In order to facilitate the
description of these tasks, an alternative space can be used which is often called task
space or operational space.

The unitary task considered consists in positioning a coordinate frame in space rela-
tively to a reference coordinate frame, i.e., defining the pose of a body. A task can be
less constrained, restraining only a few parameters of a pose such as positioning only
the origin of a coordinate frame in space. We have chosen to describe a task with a
maximum of six parameters gathered to form the desired task space parameters ξ† of
size md ≤ 6. Six parameters are sufficient to span SE(3) which is a six dimensional
space.

The operational space, or task space, is usually defined from the frame attached to the
end-effector(s) of the robot but can be defined from any frame of the robot. The end-
effector is the device designed to interact with the environment. While operational space
and task space denote the same space, we use the term operational space to describe
the space associated to the end-effector and the term task space to describe the task.
More generally, the operational space can be represented by any set of parameters of
interest which can be described as a function of q. We consider one task space for each
end-effector of the robot. The m degrees of freedom of an end-effector are defined as
the number of operational space parameters, named ξ, that can vary independently to
achieve a task. They are dependent of the configuration of the system. We have chosen
to describe the pose of an end-effector with six parameters to ensure the capability of
the end-effector to perform its associated task.

Forward kinematics At the geometric level, the forward kinematics4 FK is a non-
linear function such as

ξ = FK (q) . (1.7)
2Holonomic joint equations are integrable and can be expressed as f (p1, p2, . . . , p6nb , t) = 0.
3An open-chain mechanism is such that the graph representation of its bodies and joints is acyclic.
4in french Modèle Géométrique Direct as it is independent of the movement (= kine)
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It relates the joint space to the operational space as illustrated in Figure 1.1.

Figure 1.1: Description of a three degrees of freedom planar robot. qi are the relative
angles between two consecutive bodies. ξi are the operational space parameters.

In some configurations, called singular configurations, poly-articulated systems can
lose degrees of freedom of the end-effector. This may occur for example when the axes of
two revolute joints become collinear (see Figure 1.2). Except when explicitly mentioned,
robots are considered to be in regular configurations in the remaining of this thesis.

Figure 1.2: Description of a three degrees of freedom robot in a random configuration
(left) and in a singular configuration (right).

Task space to joint space mapping Whereas a task is, by definition, easily described
in the operational space, it can rarely be described in the joint space in a natural way.
By contrast, control is generally expressed in the joint space. Thus, it is useful to have
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access to the operational space to joint space mapping. This mapping is the inverse of
the forward kinematics FK. We can split this mapping into three cases which differ
regarding the size of m and n.

Fully constrained case In the case where m is equal to n, the robot has exactly the
number of degrees of freedom to achieve the task. In that case, there is a finite number
of inverses to the forward kinematics relation FK (see Figure 1.3).

Figure 1.3: Description of a planar two degrees of freedom robot. There are exactly two
possible configurations for a desired end-effector position.

Over-constrained case If m > n, the mechanical device is said under-actuated rel-
atively to the task. It has less degrees of freedom than those necessary to achieve the
task. It can only partially fulfil the task with an approximate solution (see Figure 1.4).

Figure 1.4: Description of a planar one degree of freedom robot. There is a configuration
approximating the solution for the problem of positioning the end-effector, disk in blue
to the desired end-effector position, ring in red.

Under-constrained case Considering minimum representations for the joint and task
spaces, if m < n, the system is redundant relatively to the task. It means it has more
actuated degrees of freedom than those necessary to perform that task (see Figure 1.5).
The system has n−m degrees of redundancy. In that case, there is an infinite number of
possible inverses leading to an exact solution to the inversion of the forward kinematics
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relation FK. The problem is said ill-posed and thus, it is not possible to find a closed-
form solution to this non-linear problem. It is consequently impossible to span the set
of possible solutions at the geometric level.

Figure 1.5: Stroboscopic view of a planar three degrees of freedom robot. There is an
infinite number of configurations which solve the problem of positioning the end-effector
(disk in blue) to the desired end-effector position (ring in red). The robot maintains an
end-effector position and can still move.

1.1.4 Velocity of a rigid poly-articulated system

The generalized velocity, or joint space velocity, is described by the derivative of joint
space parameters q relatively to time noted q̇. The operational velocity of an end-effector

is described by a twist T cab =
[
ωcab
νcab

]
. The linear velocity νcab of the end-effector is the

derivative of the position of the end-effector parameters relatively to time. Concerning
the orientation, as mentioned in Selig [2005], there is no minimal representation at the
geometric level which continuously spans the SO(3) space. It is thus impossible to
compute the derivative of the forward kinematics on the whole space with a minimal
operational representation. The homogeneous matrix representation is a non-minimal
representation that allows to compute the forward velocity kinematics5

T 0
0i = J0,i(q)q̇ =

[
σ1
iAd (H00) J0,1

(
q1
)
· · ·σni Ad (H0n−1) Jn−1,n (qn)

]  q̇1

...
q̇n

 (1.8)

where J0,i is called the Jacobian matrix of body Bi expressed in coordinate frame Ψ0, and
where σi0 equals 1 if joint Eji is in the path from body Bi to body B0, for j ∈ {1, · · · , n}
and σi0 equals 0 otherwise. The joint Eji links the body Bi to the body Bj .

5in french Modèle Cinématique Direct
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It is useful to express the Jacobian matrix J0,i in another coordinate frame Ψl, fixed
in the world or not

Jl,i =
[
Rl,0 0

0 Rl,0

]
J0,i. (1.9)

It is of interest to consider only the position of the end-effector and not its orientation.
The derivative of the forward kinematics relatively to time is written

∂ξ

∂t
=
∂FK (q)

∂t
(1.10)

or also
dξ

dt
=
∂FK (q)
∂q

dq

dt
. (1.11)

It can be written
ν0

0,i = J0,i (q) q̇ (1.12)

where ν0
0,i, the operational velocity of the point ξ, is the linear velocity of the twist

T 0
0i. The Jacobian matrix J0,i (q) = ∂FK (q) /∂q is a m×n matrix, called the Jacobian

matrix of body Bi expressed in coordinate frame Ψ0.

Image and kernel A Jacobian matrix J is a linear application from joint space of size
n to operational space of size m. We define the image of J as

im(J) = {ν ∈ Rm, ∃ q̇ ∈ Rn : ν = J q̇} (1.13)

where im(J), the image of J , is the set of all velocities of the end-effector generated by
the set of all joint velocities. The dimension of the image of J is also named the rank of
J . The rank is useful to evaluate if a robot is in a singular position or not. If J is full
row rank, the robot is not in singularity.

Similarly, we define the kernel of J as

ker(J) = {q̇ ∈ Rn : J q̇ = 0} (1.14)

where ker(J) is the set of all joint velocities which do not generate velocities on the
end-effector.

A Jacobian matrix J can be related to a task. The kernel of J is not empty if a robot
is locally redundant relatively to that task.

1.1.5 Dynamics of a rigid poly-articulated system

Developing mechanical equations of a rigid poly-articulated system written in Newton-
Euler or Lagrange formalisms leads to:

τ = A (q) q̈ + n (q, q̇) + g (q) + ε (q, q̇)− τ ext (1.15)



1.2. Model-based control 17

where A (q), n (q, q̇), g (q), ε (q, q̇) and τ ext are respectively the n × n inertia matrix
of the system, the vector of the non-linear Coriolis and centrifugal effects, the vector of
gravity effects, the vector of unmodelled effects and the torques resulting from external
forces applied to the system. τ is the vector representing joint torques.

The inertia matrix A (q) is square, semi-definite, positive, and thus is easily invertible.

The unmodelled dynamical effects ε (q, q̇) come from viscous or static frictions or from
backlash induced by misalignments during the assembly of the robot. Many friction
models have been developed [Canudas de Wit et al., 1995] which depend on q and q̇.
We have chosen to merge all those parameters into the unmodelled effects.

The dimension of the torque vector τ equals the number of degrees of freedom n.

Equation (1.15) may be written

τ = A (q) q̈ + b (q, q̇)− τ ext (1.16)

where b (q, q̇) = n (q, q̇) + g (q) + ε (q, q̇) is the sum of all non-linear effects.

For a better understanding, Equation (1.15) is noted

τ = ID
(
q, q̇, q̈, τ ext

)
. (1.17)

For a fully-actuated system which does not contain redundant actuators, Equation
(1.17) represents a joint space to joint space mapping at the dynamics level with only
one solution.

For more details about inverse dynamics, interested readers can refer to Khalil and
Dombre [2002].

1.2 Model-based control

The robot being controlled at the joint level, the operational space control approach
requires the knowledge of the mapping between the joint space and the task space.
More specifically, it is the inverse mapping which is often of interest: given a task, what
are the actions required in the joint space to achieve it?

The inverse dynamics model relates forces and torques applied on a system to its
joint positions, velocities and accelerations. It is necessary to include dynamics in a
control law. It is of interest to control the dynamics to compensate for undesired effects.
For example, it is useful to compensate for gravity effects that modify the efficiency of
the controller, inducing a deviation of the controlled end-effector towards the gravity
direction. It is also useful to compensate for friction efforts in each joint to control them
identically. Controlling dynamics also allows to compensate for inertia and precisely
control the robot, avoiding overshoot. One way to include dynamics in a control law is
to separate kinematics and dynamics and to use the inverse of the models at both levels
to control the system.
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A hierarchical control loop, illustrated in Figure 1.6, is divided into three steps. A first
planning step consists in specifying a task ξ† and transforming it into an operational
acceleration. A second kinematic step transforms the operational desired acceleration
into a desired joint acceleration. A third step uses the inverse dynamics (cf. Section
1.1.5) to compute torques.

Inverse
Dynamics

Inverse
Kinematics

Planning

Figure 1.6: Classical control loop using planning, inverse velocity kinematics and inverse
dynamics.

1.2.1 Task controller

The task controller module specifies a trajectory which should be followed by an end-
effector in order to reach its associated task ξ†. A trajectory is defined by a composition
of a pose along time, a twist and an acceleration of a frame, linear and angular, or one of
these components. An example of such trajectory can be a circle where the end-effector
is maintained vertical. Another trajectory can just be defined by a straight line up to
the goal without controlling the orientation.

To follow such a trajectory, it is necessary to discretize it into small steps. Those small
steps can be considered as subtasks that are closer to the current position and that must
be reached in sequence.

A lower level controller transforms a goal to reach into an operational acceleration us-
ing a corrector based on the error between the goal and the current pose of the controlled
end-effector. This goal can be either a final desired position ξ† or a point evolving along
a discrete desired trajectory.

As described in Park and Ravani [1997], it is possible to transform that error in pose
into an equivalent twist that must be applied, as input control on the robot, to reach
the goal. It is also possible to compute an input control operational acceleration using
an error based on quaternions or Euler angles.

Low level controllers If we consider a goal ξ† as a final desired position to reach, and
not an orientation, the input control operational acceleration ν̇? can be computed using
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the task space parameters error

ν̇? = Kp

(
ξ† − ξ

)
, (1.18)

where Kp is a symmetric positive definite matrix and ξ† denotes the desired position of
the task space parameters. This corrector is called proportional. It can be seen as a
virtual spring of stiffness Kp acting between the goal and the end-effector.

Another controller is the Proportional Derivative (PD) controller which computes an
acceleration based on two terms: one is proportional to the error in position, the other
is proportional to the error in velocity

ν̇? = Kp

(
ξ† − ξ

)
+Kd

(
ν† − ν

)
, (1.19)

where Kd is a symmetric positive definite matrix and ν† denotes the velocity that should
be applied to fulfil the task. That controller can be seen as a spring between the goal
and the end-effector coupled with a damper with a Kd damp coefficient.

The Proportional Integral Derivative (PID) controller computes an acceleration based
on the sum of three terms: the first is proportional to the error in position, the second
is proportional to the error in velocity, the third is proportional to the integral of the
error in position along time.

ν̇? = Kp

(
ξ† − ξ

)
+Kd

(
ν† − ν

)
+Ki

∫ t

0

(
ξ† − ξ

)
dt, (1.20)

where Ki is a symmetric positive definite matrix and t denotes the current time. This
integral corrector compensates for static errors.

A more sophisticated input control computation can include a feed-forward term ν̇†

ν̇? = ν̇† +Kp

(
ξ† − ξ

)
+Kd

(
ν† − ν

)
+Ki

∫ t

0

(
ξ† − ξ

)
dt. (1.21)

This term anticipates the desired acceleration instead of being subjected to constantly
trying to cancel a position error.

1.2.2 Inverse kinematics

To control the task space velocity, we need to define the task space to joint space rela-
tionship

q = IK (ξ) . (1.22)

We have seen that a robot is redundant if it owns more degrees of freedom than those
necessary to perform a task. That redundancy cannot be controlled at the geometric
level. However, it is possible to span the set of all possible solutions at the velocity
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level as the relationship is linear with respect to joint space parameters. This section
describe how inverse velocity kinematic model, also named named Jacobian matrix, can
be inverted using linear algebra techniques.

Inverting velocity kinematics

In the fully constrained case, m is equal to n, the robot has exactly the number of
actuated joints necessary to perform the task and the Jacobian matrix is square. If J is
full row rank, the robot is not in singularity and the model is easily invertible

q̇ = Ji
−1 (q)ν0,i. (1.23)

For the sake of clarity, we delete the reference coordinate frame which can be arbitrarily
chosen according to necessities. It can for example be related to the ground or to the
visual referential.

The case where m > n describes an under-actuated robot which is out of the scope of
this thesis.

In the under-constrained case, m < n, the Jacobian matrix is not square and is not
classically invertible. The system has more degrees of freedom than the end-effector,
there is an infinite number of inverse mappings and the robot is said redundant with
respect to the task. In the non-singular case, i.e., rank (J (q)) = m, there is an infinite
number of generalised inverses of J (q) written J ] (q) (see Ben Israel and Greville [2003]
for details)

q̇ = Ji
] (q)ν0,i. (1.24)

Among these inverses, weighted pseudo-inverses [Doty et al., 1993; Park et al., 2001]
provide minimum norm solutions. If rank (J (q)) = m, they can be written as

Ji
W+ (q) = W−1Ji

T (q) [Ji (q)W−1Ji
T (q)]−1, (1.25)

where W is a symmetric and positive definite matrix of dimension n × n. The Moore-
Penrose inverse or pseudo-inverse Ji+ (q) corresponds to the case where W = In.

Singular Value Decomposition

It is possible to decompose J using the Singular Value Decomposition (svd) method
[Golub and Van Loan, 1996]. The svd of any Jacobian matrix J is given by

J = UDV T (1.26)

where U and V are orthogonal matrices of dimensions m ×m and n × n respectively.
D is an m× n diagonal matrix with a diagonal composed of the m singular values of J
in decreasing order. The singular values are the square roots of the eigenvalues of the



1.2. Model-based control 21

matrix JTJ in the case of redundant robots. The columns of V are the eigenvectors of
JTJ which correspond to the eigenvalues of D. They are called right singular vectors.

Using the svd formalism, Equation (1.12) can be rewritten

ν = UDV T q̇ (1.27)

Efficient computation of Ji+ (q) can be performed using the svd of J (q). Given this
decomposition, the pseudo-inverse of J can be computed as follows

J+ = V D+UT , (1.28)

where the computation of D+ is straightforward given its diagonal nature. A weighted
extension of the svd can be used in the case where W 6= In. Details about this extension
can be found in Ben Israel and Greville [2003].

It is also possible to decompose J using the nipals algorithm described in Appendix
A.3.

Control

Whitney [1969] calls Resolved Motion Rate Control (rmrc) the method which consists
in using the inverse velocity kinematics to control the end-effector of a mechanical de-
vice. Given a desired task velocity ν?0,i, the inverse mapping of Equation (1.12) which
minimises the Euclidean norm6 of the solution is given by

q̇? = Ji
+ (q)ν?0,i. (1.29)

Equation (1.29) gives the desired joint velocities necessary to perform a task described
by operational velocities ν?0,i.

1.2.3 Redundancy resolution schemes

When the robot has more degrees of freedom than those necessary to perform the task,
the supplementary degrees of freedom can be used to control the redundancy which
define the set of all the possible movements which do not interfere with the task. The
control of that redundancy can be useful to fulfil supplementary goals such as controlling
another end-effector, limiting torques, optimising an energy criterion or the distribution
of the efforts, avoiding geometrical singularities, avoiding obstacles, getting far from
limits [Nakamura, 1990]. To understand how to control that redundancy, we first define
the concept of orthogonal projector.

6
√
q̇T q̇, also noted ||q̇||.
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Projector

In the svd decomposition, the first m columns of V form an orthonormal basis for the
subspace of q̇ generating an end-effector velocity. The m + 1 to n columns of V form
an orthonormal basis for the null space of J (q), i.e., the subspace of q̇ which does not
generate any end-effector velocity. It is possible to define a projector PJ (q) as

PJ (q) = [vm+1 . . .vn] [vm+1 . . .vn]T , (1.30)

where vi is the ith column of V . This projector PJ (q) allows to span the null space of
the linear application defined by J . Another commonly used expression for PJ (q) is

PJ (q) =
(
In − J ] (q) J (q)

)
. (1.31)

This method is computationally more expensive than the one defined in Equation (1.30)
as it is necessary to compute the whole inverse of the Jacobian matrix using for exam-
ple the svd method. Moreover, as this method depends of the rank of J , it becomes
problematic if the system loses a degree of redundancy, e.g., in the singularity case. In
such cases, it is easy to consider this rank reduction by deleting corresponding vectors
in Equation (1.30).

Controlling redundancy

As Equation (1.24) is not the unique solution to the inverse mapping problem, it is of
interest to compute other solutions giving rise to internal motions that do not induce
any perturbation to the task. This particular subset of solutions corresponds to the null
space of J (q) and the general form of the minimum norm solutions to Equation (1.12)
can be written

q̇? = Ji
+ (q)ν?0,i + PJi (q) q̇?0, (1.32)

where PJi (q) is a projector on the null space of Ji (q) and q̇?0 is any vector of dimension
n. Equation (1.32) is the minimum norm solution that minimises ||q̇ − q̇0||.

Local Optimization

Different possible redundancy resolution schemes can be used in control, depending on
the compatibility of the tasks or constraints which have to be solved. It is possible to
optimize locally the configuration of the robot using the opposite of the gradient of a cost
function Q (q) with respect to q. The resulting solution leads to the local optimization of
the cost function as long as this secondary constraint does not induce any perturbation
on the first task. The general form of this solution is written

q̇ = J+
i (q)ν?0,i + αPJi∇Q (q) , (1.33)
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where α is a scalar used to tune the steepness of the gradient descent [Snyman, 2005]. It
can be viewed as a learning rate. When α > 0, the equation maximizes this optimization
term whereas when α < 0, it minimizes it.

This method is often used in the incompatible case, i.e., when it is known in advance
that the task will not be perfectly achieved but when only a global trend has to be
followed such as minimising the kinetic energy of the system, avoiding joint limits or
setting the robot to a referent configuration.

Realising multiple tasks

The redundancy resolution scheme presented above allows to perform simultaneously
different tasks with different end-effectors. It is possible to achieve all tasks only if the
robot has enough degrees of freedom to accomplish them. Let us consider two tasks
of respective dimensions ma and mb with associated Jacobian matrices Ja and Jb such
that rank (Ja (q)) = ma and ma ≤ n and rank (Jb (q)) = mb and mb ≤ n. These
two tasks are said compatible if Jext =

[
JTa JTb

]T is full row rank. This condition
is equivalent to saying that the mext parameters of the augmented task space are in
minimum number and that rank (Jext) ≤ n. Given this definition, one has to consider
the under-constrained (compatible, infinity of solutions), fully-constrained (compatible,
one solution) and over-constrained (incompatible, no exact solution) cases. In these three
cases, one can solve the inverse velocity kinematic problem using the solution proposed
initially by Maciejewski and Klein [1985]

q̇? = J+
a ν

?
0,a + (JbPJa)+

(
ν?0,b − JbJ+

a ν
?
0,a

)
. (1.34)

In the compatible case, the tasks a and b will be achieved perfectly. In the incompatible
case, task a will also be perfectly achieved whereas the error in the achievement of task
b will be minimised [Nakamura, 1990]. This solution can present singularities when
tasks are highly incompatible, i.e., when mext is much greater than n, but this can be
compensated for using a proper damped-least square regularization method [Chiaverini,
1997]. This task projection scheme can be extended to several tasks [Mansard and
Chaumette, 2007].

Another method, originally proposed in Baillieul [1985], consists in writing an ex-

tended Jacobian matrix Jext =
[
Ja
Jb

]
in order to reach the fully constrained case

(mext = n and rank(Jext) = mext) and thus to simplify the inversion problem to a
square, regular matrix inversion.

q̇ = J−1
ext

[
ν?0,a
ν?0,b

]
. (1.35)

If the tasks are compatible and the matrix is full rank, this is achieved automatically. If
the tasks are incompatible, some projections on the kernel of the first Jacobian matrix
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are necessary to ensure both a square Jacobian matrix and priorities between tasks

q̇ =
[
Ja
PJaJb

]−1 [
ν?0,a
ν?0,b

]
. (1.36)

1.2.4 Inverse dynamics in control

The third step of a hierarchical control loop is the control of the dynamics. In this
section, we describe two different control loop used in robotics: the decentralized control
and the dynamic decoupling.

Decentralized control

Controlling the dynamics means calculating the torques necessary to accelerate the sys-
tem in a desired way. This calculation, which depends on the current state of the system,
can be performed by a PID controller. With such a controller, this method, named de-
centralized control, can easily be applied to any system but requires to tune different
parameters [Voda and Landau, 1992, 1995] which are, most of the time, fixed on the
whole space to ensure stability. As those parameters do not depend on the configura-
tion, they are suboptimal.

Figure 1.7 illustrates a classical control loop using a PID controller as low level
controller on each joint.

Figure 1.7: Classical control loop using inverse velocity kinematics and PID controller
as inverse dynamics.

Decentralized control is used on many robots as low level controllers are usually already
developed for each motor. Those controllers are often considered to belong to the robot
and, in most cases, cannot be tuned. Such controllers are locally stable independently on
each articulation but cannot ensure a global stability for the whole robot. For complex
robots such as humanoid robots, the global stability can be enhanced by tuning each
controller on each joint independently and adequately to the tasks they are assigned to.
The controllers of the joints of a hand can be for example tuned smoother than the ones
controlling the ankle.



1.2. Model-based control 25

Dynamics decoupling

Dynamics decoupling, a more sophisticated dynamics controller, leads to invert the dy-
namics of the robot itself and includes it in the control loop. It can be understood as
imposing a desired acceleration through the inverse dynamics model to obtain torques
to apply at the joint level in order to reach the desired acceleration. Equation (1.17)
represents the inverse dynamics of a poly-articulated system. It is of interest to compute
this mapping since, in any given state (q, q̇), it gives the torques τ con to be applied by
the actuators of the robot to obtain the desired acceleration q̈? at the next step

τ con = ID
(
q, q̇, q̈?, τ ext

)
. (1.37)

For a fully-actuated system, the dimension of the actuation torque vector τ con equals
the number of degrees of freedom n.

Figure 1.8: Classical control loop using both inverse velocity kinematics and inverse
dynamics.

The inverse kinematics in acceleration comes from the derivation of Equation 1.29
relatively to time

q̈? = J+ (q)
(
ν̇? − J̇ (q) q̇

)
. (1.38)

The dynamic simulation can be summed up by Algorithm 1.

Algorithm 1 Simulation loop (acceleration)
ν̇? = Kp (ξ? − ξ) desired operational velocity

q̈? = J+ (q)
(
ν̇? − J̇ (q) q̇

)
desired joint velocity

τ con = ID
(
q, q̇, q̈?, τ ext

)
desired torques

q̈ ← D
(
q, q̇, τ con, τ ext

)
simulator integration
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1.2.5 Operational space control

An alternative formulation of inverse dynamics was first proposed by Khatib [1983] 7

which expresses the dynamics of the system in the task space

f = Λ (q) ν̇ + µ (q, q̇) + p (q) + ε̄ (q, q̇)− f ext (1.39)

where Λ = (JA−1J t)−1, µ = Λ(JA−1c − J̇ q̇) and p = ΛJA−1q. The terms Λ (q),
µ (q, q̇), p (q) and ε̄ (q, q̇) are the projection in the task space of the inertia matrix, the
Coriolis and centrifugal forces, the gravity forces and the unmodeled effects forces. f ext

is the vector of external forces applied to the system and expressed at the end-effector
level.

Equations (1.39) can be written in a more general manner as

f = IOD
(
q, q̇, ν̇,f ext

)
. (1.40)

Equation (1.39) relates the task space acceleration vector, of dimension smaller than
or equal to 6, to the joint torques vector, of dimension equal to the number of actuators
needed to accomplish the task.

It is possible to use the Jacobian matrix, defined in Equation (1.8), to compute the
torques acting on each articulation resulting from the application of a force to a poly-
articulated system.

τ con = J (q)T f (1.41)

Equations (1.39) and (1.41) can be summed in one

τ con = J (q)T
(
Λ (q) ν̇? + µ (q, q̇) + p (q) + ε̄ (q, q̇)− f ext

)
. (1.42)

Figure 1.9: Control loop including inverse operational dynamics.

In contrast with the control scheme illustrated in Figure 1.8, the one illustrated in

7Readers can refer to Sentis and Khatib [2005] for a detailed presentation and Nakanishi et al. [2008]
for a recent survey.



1.3. Conclusion 27

Figure 1.9 correlates the velocity kinematic level and the dynamics level. The control
loop is closed at the dynamics level in the operational space.

With this method, it is also possible to control redundancy with the inverse kinematic
methods presented in Section 1.2.3.

τ con = J (q)T f +
(
I − J (q)T

(
J (q)T

)])
τ 0 (1.43)

The difference resides in the expression of the dynamics. While the inverse dynamics
expressed in the joint space is unique for the robot, the inverse dynamics expressed in
the task space differs for each end-effector. It is thus necessary to compute an inverse
dynamics model for each task if we want to control the redundancy of the robot. More-
over, for each task, we have to determine its associated Jacobian matrix to compute the
control torques from the force expressed in task space.

1.3 Conclusion

In this chapter, we have presented the formalism used in the reminder of this thesis
to describe poly-articulated systems. We explained how to combine kinematics and
dynamics in a control loop, insisting on the difficulties raised by inverting kinematics to
control redundant systems. We have described how a system can be controlled in task
space by applying adequate torques. Different planning and inverse kinematics schemes
have been presented and compared, building the foundations for the approach proposed
in Chapter 3 of this thesis. Particularly, we have detailed how to control redundancy in
a realistic dynamic simulation loop.
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We have seen in Chapter 1 how models can be used to control redundant robotic
systems. This chapter presents the state of the art methods used to learn models neces-
sary to control robotic systems. In the first section, we briefly explain basic concepts of
supervised learning methods used to approximate non-linear functions. We start from
artificial neural networks approximating non-linear functions before presenting two more
recent statistical learning algorithms used in this thesis. Then, in the second part of this
chapter, we mention how supervised learning methods are used to learn mechanical mod-
els in the Robotics literature. We focus on the nature of the models which are learnt and
on the problems induced by choosing such or such formalism. We conclude this section
by showing that none of these works solve the constraints exposed in the introduction
which consist in controlling explicitly the redundancy of a poly-articulated system with
learnt models over all the reachable space of the robot.

2.1 Supervised learning methods

Supervised learning, a class of machine learning methods, is used when a supervisor
provides an input/output pair that can be used directly by some entity to learn a map-
ping between the corresponding training data. In supervised learning, the classification
problem consists in predicting the class of the presented input whereas the regression
problem consists in approximating linear and non-linear functions by predicting contin-
uous values.

29
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In this section, we present supervised learning methods such as multi-layer perceptrons
and radial basis function networks which help understanding locally weighted regression
methods such as lwpr [Vijayakumar and Schaal, 2000]. We also present xcsf, a method
that shares some similarities with lwpr though it comes from a very different lineage,
lwpr and xcsf being used in the second part of this thesis.

PROJECTION INCREMENTAL

[rosenblatt1958]

[cybenko1989][Atkeson, 1991]

[Schaal et al., 1998] [Schaal and Atkeson1997]

[Vijayakumar and Schaal2000]

[Holland 1975]

[Wilson1995]

[Wilson 2001]

Figure 2.1: Evolution of supervised learning algorithms of interest in this thesis.

2.1.1 Artificial neural networks

Artificial neural networks (ann) are a wide class of general function approximators.
They are declined under different forms.

A commonly used form of feed-forward ann is the Multi-Layer Perceptron (mlp)
[Rosenblatt, 1958] (see Figure 2.2) where the excitation level vi(x) of each neuron i is
calculated as

vi(x) =
nn∑
i=1

βixi

where nn is the number of neurons, xi is an input of the neuron i and βi is the associated
linear weight. The activation function yi = f(vi) uses the excitation level to determine
if the neuron fires or not. yi is the output of the neuron i. Classical activation functions
are yi = tanh(vi) or yi = (1 + e−vi)−1.

The weights may be updated through a back-propagation error method based on the
error δyi between the desired value and the real output of each neuron i.

δβij = −αδyi
∂f(vj)
∂vj

. (2.1)



2.1. Supervised learning methods 31

Figure 2.2: The ann algorithm may be split into two steps: a learning and a predicting
step. During the prediction step (black, plain lines), the network computes an excitation
level for each neuron depending on the input and applies an activation function on this
excitation level to determine if the neuron is active or not. During the learning period
(red, dashed lines), it computes an error of the global network output to update all
weighted connections.

where βij is the linear weight between the input xi and the neuron i, α is the learning
rate.

2.1.2 Radial basis function networks

Radial Basis Function Networks (rbfn), illustrated in Figure 2.3, are another type of
ann where weighted sum and activation functions are temporally inverted compared to
multi-layer perceptrons [Cybenko, 1989].

A Radial Basis Function (rbf) φ is a function whose output value y, also called
activation function, depends only on the distance r between its center c and the input
value x. The input value x is copied in a vector x as many times as necessary to compute
the error with the corresponding vector of centres c:

r = x− c.

A standard rbf is a Gaussian function defined as φ(ri) = e−Dir
2
i where Di, the

smoothing parameter, is a positive distance metric which determine the size and the
shapes of the Gaussian i. It is the inverse of the squared variance of the Gaussian. The
output of all functions are weighted and summed together to get the global network
output

ŷ =
nn∑
i=1

βiφ(ri) (2.2)

where nn is the number of neurons and the βi are the linear weights.
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(a) Schematic view of rbfn
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(b) Approximation (in doted orange) of a sinus
function (top in black) with an rbfn (bottom in
cyan).

Figure 2.3: The rbfn prediction algorithm may be split into three steps. First, apply
an activation function on the input to determine if the neuron is active or not. Second,
compute an output, also called excitation level, for each neuron depending on its weight
and activation. Third, sum the output of each neuron.

The learning process consists in computing an error of the global network output
to update all weighted connections. Weights are updated incrementally with different
methods such as gradient descent depending on the error between the output of the
network and the desired value as

δβi = −αδyi
∂φ(ri)
∂vi

(2.3)

where α is the learning rate and δyi = ŷi − yi.

ann are considered as black boxes because tuning some parameters such as Di, ci or
α is usually empirical and the relation between neurons has no understandable mean-
ing. rbfns could be treated as grey boxes as they have the advantage of generating
differentiable continuous approximations [Sun and Scassellati, 2004].

2.1.3 Locally weighted regression

Locally Weighted Regression (lwr) methods [Atkeson, 1991] combine the Gaussian va-
lidity of rbfns with regression1 (see Figure 2.4). This method requires to store relevant
data to compute a regression around an input vector x to approximate a scalar output y.
The relevant data are chosen among previous points

[
x1 · · ·xnp

]
where np is the number

of encountered points.

1More details on regression are presented in Appendix A
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Around each point x, the region of validity, also called receptive field, is computed with
a Gaussian function φk = e−

1
2
dk where dk = σ(xk − x)2 is the Mahalanobis distance

[Mahalanobis, 1936]. This distance depends on σ, the inverse of the variance of the
Gaussian functions and k = 1 · · ·np.

lwr globally approximates non-linear functions with local linear models. The compu-
tation of the linear models β is performed by a weighted pseudo-inverse using training
data

β = Xφ+y (2.4)

where X = [x1 · · ·xp], y = [y1 · · · yp] and φ = [φ1 · · ·φp]. See appendix B.5 for an
explanation on weighted pseudo-inverse. As presented in Appendix A, β can also be
computed recursively.

It is thus possible to predict an output ŷ with the model β

ŷ = βx. (2.5)

Figure 2.4: In lwr, x is the input of a function we want to approximate. A Gaussian,
centred in x, weights stored point with respect to their proximity to x. A regression is
then computed using the weighted points [Cohn et al., 1996].

Compared to ann or rbfn, lwr is a memory-based method as it retains training data
and uses them to create its models when needed. One limitation of lwr is that, when we
try to approximate a function in a large space, the number of retained points increases
with experience, spending more and more memory. Recent methods, described below,
tend to avoid this limitation by only keeping relevant points and creating local mod-
els around them. Those methods also use projection mechanisms to neglect irrelevant
dimensions and incremental statistical algorithms to minimize computational cost.

2.1.4 Locally weighted projection regression

As described in Schaal et al. [2002], lots of models have followed lwr, such as lwpls
[Schaal et al., 1998] which reduces the input dimensionality or rfwr [Schaal and Atkeson,
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1997] which transforms the algorithm into an incremental regression method, avoiding
to store data.

Locally Weighted Projection Regression (lwpr) [Vijayakumar and Schaal, 2000], illus-
trated Figure 2.5, is an algorithm which performs simultaneously incremental regression
like rfwr and input projection like lwpls. It is a function approximator providing
accurate approximations in large spaces while giving performance metric.
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(a) Non-linear function

−1 0 1
0

0.2

0.4

0.6

0.8

1

(b) Normalized Gaussian
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tive field
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(d) Approximated function

Figure 2.5: The lwpr algorithm approximates non-linear functions such as the one shown
in (a). The algorithm delimits the input space with Gaussians, also called receptive
fields. Gaussians are normalized (b) respectively to their capacity to approximate the
non-linear function. The sum of the active linear models, shown in (c), weighted by their
respective relative Gaussian performs an approximation of the non-linear function (d).

Like previous learning algorithms, lwpr uses Gaussian functions φi(x) as receptive
fields

φi(x) = e
−1

2
(x− ci)TDi(x− ci)

. (2.6)

where the positive distance metric Di of the Gaussian delimits a region which is updated
during learning to match the training data.
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Each receptive field has a corresponding linear model βi which is used to predict a
local scalar output yi relative to an input vector x as in Equation 2.5

ŷi(x) = βix. (2.7)

The approximation performed by lwpr is the sum of the linear models weighted by
their respective active surrounding relative Gaussian weights

ŷ(x) =
1

Φ (x)

nn∑
i=1

φi (x) ŷi (x) (2.8)

where Φ (x) =
nn∑
i=1

φi (x) and nn is the number of receptive fields. Later in this thesis,

we note
ŷ = lwprpredict([Mlwpr], [x])

the instantiation of Equation 2.8 which consists in predicting the output ŷ, providing
the input x and the modelMlwpr already learnt during the learning period symbolized
as

Mlwpr = lwprlearn([x], [y]).

A receptive field is considered active if it is trustworthy, i.e., if it has a model based on
sufficient data. A standard threshold to consider a receptive field trustworthy consists
in checking if it has received as many example as the double of the dimension of the
input x. It is also possible to consider as an active receptive field, one whose weight φi
is over a cut-off threshold.

The distance metric D allows creation or pruning of receptive fields in order to improve
the coverage of the input space. It is computed as D = MTM where M is a upper-
triangular matrix to ensure D to be positive. M is adapted recursively and individually
to regulate the size of the receptive fields with the update law

M = M − α ∂C
∂M

(2.9)

where α is a learning rate and C is a minimized cost function. This cost function,
given by Equation 2.10, is rather complex compared to the weighted mean square error
criterion of the lwr algorithm.

C =
1
Φ

p∑
i=1

r∑
k=1

φi‖yk,i − ŷk,i‖2(
1− φixTi Pxi

) + γ

nn∑
i,j=1

D2
ij (2.10)

where P =
(
XΦXT

)−1, X = [x1 · · ·xp] and γ is the regularization penalty term. The
cost function is computed for a first part, by a leave one out cross-validation method.
The second part is a penalty term that prevents lwpr to collapse. Larger values of γ
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enforce smaller distance metrics, corresponding to wider receptive fields which in turn
implies smoother functions.

The real implementation of lwpr uses statistics to update the models and is much
more complicated. Equation 2.10 is not used in practice since the incremental computa-
tion of the cost leads to a different formulation. In fact, lwpr inherits from the capacity
of lwpls to reduce the input dimensionality using the Partial Least Square algorithm
(pls) [Wold, 1975; Elden, 2004; Tenenhaus, 1998]. The dimensionality is reduced with
the projection made on the input vector to model high dimensional functions only on
their most relevant directions. We refer the reader to Schaal et al. [2002] or Vijayakumar
and Schaal [2000] for a presentation of the incremental version of the algorithm.

As a consequence of using the pls regression, we note here that it is possible to learn
one single model with a vectorial output instead of a scalar one. All output can be
projected onto all input at each pls projection step (see Appendix A.3). The chosen
direction for the projection is chosen as the mean projection among all projections of
each output. If output are decorrelated, the directions of all projections are not the
same and this approach is suboptimal. The lwpr algorithm is thus more precise in the
case where one model represents one output at a time.

Gradient of the approximated function

In many contexts such as the one presented in Chapter 3, it is useful to determine the
gradient of the function we are approximating. As the model learnt by lwpr is only
composed of linear models weighted and summed altogether, it is possible to differentiate
it with respect to the input. As the model is learnt incrementally, the gradient is also
provided through an incremental algorithm [Klanke et al., 2008].

Considering the global approximation provided by lwpr

ŷ =

nn∑
i=1

φi (x) yi (x)

Φ (x)
(2.11)

where Φ (x) =
nn∑
i=1

φi (x), it is possible to differentiate it with respect to the input

∂ŷ

∂x
=
∂

(∑nn
i=1 φi (x) yi (x)

Φ (x)

)
∂x

. (2.12)

and thus
∂ŷ

∂x
=

1
Φ

nn∑
i=1

(
∂φi
∂x

yi + φi
∂yi
∂x

)
− 1

Φ2

nn∑
i=1

φiyi

nn∑
k=1

∂φk
∂x

(2.13)
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where
∂yi
∂x

is the local gradient of each receptive field.

We note ([ŷ], [[
∂̂y

∂x
]) = lwprpredictJ([Mlwpr], [x]) the way lwpr predicts the gradient

of the output relatively to input.

2.1.5 Extended classifier system for function approximation

In this section, we present the eXtended Classifier System for Function approxima-
tion (xcsf) algorithm, another function approximator that shares some similarities with
lwpr but comes from Learning Classifier System (LCS), a family of adaptive rule-
based2 systems first proposed by Holland [1975] that combines reinforcement learning
mechanisms [Sutton and Barto, 1998] and genetic algorithms [Goldberg, 1989].

The immediate ancestor of xcsf is the eXtended Classifier System (xcs) [Wilson,
1995], an efficient accuracy-based LCS designed to solve discrete classification problems
and sequential decision problems. xcs finds accurate evolving solutions for a wide range
of problems with high probability in polynomial time [Butz et al., 2005]. For detailed
information, the interested reader is referred to the algorithmic description of xcs [Butz
and Wilson, 2000].

xcsf [Wilson, 2001, 2002] is an evolution of xcs towards function approximation.
Each classifier is composed of a condition part and a prediction part. It specifies in its
condition part its applicability i.e., the context in which the rule can be applied, and
in its prediction part its prediction using for example some learnt linear models. In our
case of interest, the prediction is linear with respect to the input. The classifiers in xcsf
form a population P that partitions the input space into a set of overlapping prediction
models. The resulting smoothed surface forms the function approximation surface.

We first introduce the global structure of the algorithm. Then we explain how xcsf
relies on update rules and evolutionary mechanisms to update parameters. Then we
explain the compaction rule.

Structure of the approximator

xcsf is a generic framework that can use different kinds of prediction models (linear,
quadratic, etc.) and can pave the input space with different families of receptive fields
(Gaussians, hyper-rectangles, etc.). In the context of this thesis, we will only consider
the case of linear prediction models and Gaussian receptive fields. In this case, the
structure of the function approximation built by xcsf is similar to the one built by
lwpr. Thus, in that case, xcsf is a local regression method in the same sense as lwpr.
However, a specificity of xcsf is that it distinguishes a prediction input space and a
condition space. The prediction input space, named X , corresponds to the input used
to compute the linear models with regression. The condition space, named Z, is paved

2In LCSs, a rule is called a classifier.
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with Gaussian classifiers, corresponding to the receptive fields of lwpr, which define a
domain φi(z) in the following way

φi(z) = e
−1

2
(z − ci)TDi(z − ci)

(2.14)

where ci and Di are respectively the center of the Gaussian i and a positive distance
metric, inverse of the squared variance of the Gaussian i. z ∈ Z, the input of the
condition space, defines the space where the Gaussian have an influence on the global
prediction. As described later, splitting the condition space and the prediction input
space is a feature which plays an important role in the context of learning mechanical
models.

Each classifier has a corresponding linear model βi which is used to predict a local
output vector yi relative to an input vector x as in Equation 2.5

ŷi(x) = βix+ β0. (2.15)

While Equation 2.15 is more generic with the β0 offset, it complicates the model if
the learnt mapping is linear and not affine. In the linear case, the learnt offset is null
and its presence unnecessarily complicates the learning process. Older versions of lwpr
used an offset β0 as well but this offset can be removed by enhancing the input x with
1 as xaug =

[
xT 1

]T . Equation 2.15 would be simpler using the augmented input trick.

xcsf uses only a subset of the classifiers to generate an approximation. Indeed, at
each learning iteration, xcsf generates a match set M that contains all reliable classifiers
in the population P which condition space Z match the input data z, i.e., for which
φi(z) is above a threshold φ0

3.

In xcsf the learning output ŷ is given for a (x, z) pair as the sum of the linear models
of each classifier i weighted by their respective fitness Fi

ŷ (x, z) =
1

F (z)

nM∑
i=1

Fi (z) ŷi (x) (2.16)

where F (z) =
nM∑
i=1

Fi (z) and nM is the number of classifiers in the match set M .

In the remainder of this thesis, we note

ŷ = xcsfpredict (Mxcsf, [z], [x]) (2.17)

the instantiation of Equation 2.16 and we note

Mxcsf = xcsflearn([z], [x], [y]) (2.18)

3This threshold, named θm in [Butz and Herbort, 2008]
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the model learnt by xcsf given a set of condition states [z] and a pair of input/output
prediction states [x], [y].

To update the βi, ci and Di parameters, xcsf relies on two interacting learning compo-
nents presented below: the update rules and the evolution mechanism. This interaction
is important as a good estimation of the classifier utility makes the evolution more
reliable and effective while avoiding misleading signals.

A global vision of the algorithm is illustrated in Figure 2.6. The execution order of
each step is symbolized by the numbers explained in Algorithm 2.1.5 where θGA is a
threshold that controls the number of time steps between each iteration.

Classifiers
- linear model beta
- Gaussian phi
- FitnessEvolutionary

component

2

4

5

6

7

crossing-over
and mutation

subsumption

generate
offspring

8

Environment

3 covering

1 Population

Match set

Figure 2.6: A schematic view of the xcs and xcsf algorithms.

Update rules

At each time step, each classifier i in the match set M makes an error δyi = y− ŷi used
to update its linear model, its prediction and its accuracy.

The linear model is updated using the rls algorithm (see Equation A.9 in Appendix A)

δβi = δyix
T
i α

where α is a learning rate.

The prediction error approximates the mean absolute deviation of its prediction using
the delta rule

δεi = η (|yi| − εi)

where η is a learning rate and εi the mean absolute error of the classifier i at the previous
time step.
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Algorithm 2 Pseudo-code of xcsf (see Figure 2.6)

[x], [y], [z]← environment 1 get problem instance
if φi(z) > φ0 then
M ← P, [z] 2 generate match set out of P using z
if M is empty then
M ← [z] 3 cover with a new classifier using z

end if
end if
M ←M, [z] update matching classifiers
if time− LastAverageT ime(M) < θGA then

Parents←M,Fitness 4 select two parents
Offspring ← Parents 5 generate the offspring
Offspring ← Offspring, Parents 6 crossover and mutation
Offspring ← Offspring, Parents,M 7 testing if subsumption
P ← Offspring 8 insertion in P . deletion if max is reached.

end if

The classifier accuracy is determined by the scaled inverse of the mean absolute er-
ror. Classifiers with a mean absolute error lower than a threshold ε0 are considered
trustworthy.

The fitness value is derived from the relative classifier accuracy and thus reflects the
quality of a classifier in comparison to all others in the match set M .

Evolutionary component

In xcsf, a classifier is created when there is no classifier in the match set corresponding
to an input. This covering mechanism creates a matching condition which corresponds
to that input with a random bounded condition space. Frequently, classifiers are not
generated by the covering mechanism but by an evolutionary component based on a
niching steady-state Genetic Algorithm (ga) Wilson [2002]. It encourages the recombi-
nation of efficient classifiers by crossing-over and mutations. A ga is performed if the
average time since the last ga occurrence exceeds a threshold θGA. The generalization
in xcsf is achieved by the reproduction of classifiers, performed within the match set M ,
and the deletion of inaccurate classifiers performed in the whole population P [Wilson,
1995; Butz et al., 2004]. Moreover, general classifiers are reproduced more often as they
match the input data more often than the others.

Recombination The ga selects, in a match set M , two classifiers regarding their
current fitness values, i.e., their relative predictive accuracy facing the other classifiers.
The ga uses a set-size-relative tournament selection as described in [Butz et al., 2003]
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to select two parents used to generate two offspring. To generate the new children
attributes, xcsf utilizes uniform crossover with a fixed probability µ, typically 0.5. New
centres cnewi are moved within an interval defined as ‖ci − cnewi ‖ ≤

√
−2Di lnφ0 where

φ0 is the same threshold used to generate the match set M . The shape of the ellipsoids,
defined by σi, the square-root of Di, are also randomly increased or decreased within a
limited interval.

The third part of the recombination phase is the subsumption process. When created,
each classifier owns a counter ncount fixed at one. This counter is the number of classifier
it has subsumed; if a classifier contains completely another classifier, the contained one
is destroyed while the containing one increments its counter and is now named a macro-
classifier. During all phases of the algorithm, a macro-classifier can be viewed as ncount
micro-classifiers.

Deletion Once, in the whole population P , the maximum number of classifiers nmaxP

is reached, classifiers may be deleted before inserting the offspring. Supernumerary
classifiers are deleted from P with a probability proportional to an estimate of the size
of the match sets that they occur in. If a classifier is sufficiently experienced and its
fitness F is significantly lower than the average fitness of classifiers in P , its deletion
probability is further increased [Kovacs, 1999].

In sum, the evolutionary mechanism is designed to evolve partitions in which lin-
ear approximations are maximally accurate. Indeed, xcsf strives to evolve complete,
maximally accurate, and maximally general function approximations represented in its
population of classifiers. This makes xcsf an iterative clustering mechanism that clus-
ters the condition space for the generation of maximally accurate predictions in the
input space. The mechanism also ensures complete coverage of the encountered prob-
lem space since overrepresented subspaces undergo more deletions, while reproduction
is occurrence-based [Butz and Goldberg, 2003].

Compaction

At the end of a learning process, the final population is composed of highly overlapping
classifiers. To reduce the size of the population, Butz and Herbort [2008] propose to use
a Closest Classifier Matching (ccm) algorithm to have a fixed size matching set M .

This compaction algorithm consists in spanning, by order of accuracy, the centres of
all classifiers in the whole population P . For each centre, a match set is created to select
all corresponding overlapping classifiers. Then the most accurate classifier subsumes all
classifiers in the match set. This compaction algorithm is simplified by the use of ccm
which forces to represent uncovered input regions.

A more complete description of xcsf can be found in Butz et al. [2004] or in Butz
and Herbort [2008].
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2.2 Learning Mechanics

Since supervised learning methods can approximate any function, they can be used to
approximate a mechanical model. As this process is only dependent upon data of the
mechanical system itself, it is often named self-supervised learning. In that context,
learning algorithms are used to approximate models to control robotic systems. This
section describes how kinematics and dynamics can be learnt as well as the learning
methods employed.

Our survey of the literature is focused on methods used in order to learn the model
of mechanical systems. There is another important set of works that call upon learning
methods to perform imitation learning. Some of these work use tools such as Gaussian
Mixture models or Gaussian Process Regression. As these works will not be treated here,
interested readers can refer to Calinon [2009] for an excellent survey. Note however that
some of these methods are starting to get used for learning mechanical model as well. For
instance, Nguyen-Tuong et al. [2008] compare Locally Weighted Projection Regression,
Gaussian Processes Regression and Support Vector Regression performances in learning
the inverse task space dynamics of a seven degrees of freedom Sarcos arm.

2.2.1 Learning inverse kinematics

We have seen in Section 1.2.2 that controlling systems in the operational space requires
the knowledge of inverse kinematics. It seems natural to learn directly that inverse
mapping to control a system. The end-effector/joint positions pairs, given by the laws of
Mechanics, can be used as input/output of a supervised learning method to approximate
inverse kinematics (see Figure 2.7).

Learn

Figure 2.7: Learning inverse kinematics with a learning algorithm. The model is learnt
providing as input an end-effector position and a configuration.
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In the case of non-redundant robots, this approach does not raise any specific issue. In-
deed, without considering singularities, when the dimension of the controlled end-effector
position is equal to the dimension of the joint position, the robot is fully constrained
and its inverse kinematics is unique. The mapping is thus a function that can be learnt.
Based on self-organising maps [Kohonen, 2001], Ritter et al. [1989] and Martinetz et al.
[1990b] learn a mapping between the three dimensional end-effector position measured
by two cameras and joint positions on a three degrees of freedom robot. The mapping
is made by a three dimensional self-organising map. Walter and Schulten [1993] learn
inverse kinematics on a 6 degrees of freedom industrial robot Puma 562. As its wrist is
rigid, the robot is non-redundant with respect to the task which consists in positioning
the end-effector in the Cartesian space.

By contrast, this approach raises problems in the redundant case. While forward kine-
matics of under-constrained redundant robots is injective, inverse kinematics is not. As
explained in Section 1.2.2, there exists an infinity of possible inverse kinematics corre-
sponding to the possible internal movements. The problem of identifying one particular
inverse kinematics among infinity of such mappings is ill-posed.

Predict

Figure 2.8: Reproducing inverse kinematics in approximating an output given the learnt
model and an input. Supervised learning methods provide only one configuration among
an infinity. Three different configurations are represented here.

Figure 2.8 implies that for predicting inverse kinematics, it is necessary to provide
an operational position and a learnt model. Different types of solutions are proposed
in the literature to learn the inverse kinematics of redundant systems. All the methods
presented below transform the ill-posed problem into a well-posed problem by adding
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constraints. Those added constraints can consist in augmenting the task to have a
full row rank Jacobian matrix or in solving an optimisation problem to minimize for
example an energy function. With the additional constraints, the inverse kinematic
model becomes unique and can then be learnt without loss of information. Using that
resolution scheme, those methods can control redundant robots by solving an equivalent
problem but without the possibility to control explicitly the redundancy.

Neural networks have been used to learn the inverse kinematics, solving an uncon-
strained optimisation problem formulated as an energy function. This energy function is
minimised during the gradient descent and weights are consequently updated. It is thus
possible to obtain a desired joint velocity corresponding to a minimum energy function
as

q̇∗ = arg min
q̇

(E (q̇))

where E is the energy function based on different errors.

Pourboghrat [1989] minimises an energy which leads to learn the Moore-Penrose in-
verse (as seen in Equation 1.25). Barhen et al. [1989] learn inverse kinematics and resolve
redundancy by minimizing different Lyapunov functions with goal attractors. Ahmad
and Guez [1990] optimise the manipulability criterion: H =

√
‖JJT ‖ in each configu-

ration. Lee and Kil [1990] learn the Jacobian matrix of a redundant robot, minimising
an energy function composed of two types of constraints: one is minimising the velocity
of the first joint and another is locating the joints in the middle of joint-limits. Brüwer
and Cruse [1990] learn, with a multi-layer perceptron, two kinematic models on a three
degrees of freedom planar arm. The first model positions the end-effector in a plane and
the second perceives this position by means of a retina-like input layer. The networks
are trained using data from a human subject and thus the redundancy is solved during
the learning period. Based on self-organising maps [Kohonen, 2001], Martinetz et al.
[1990a] learn a mapping between the end-effector position measured by two cameras and
joint positions on a three degrees of freedom robot. The mapping is build on a three
dimensional self-organising map. They resolve redundancy by minimising the variation
of the joint angles during the learning process. D’Souza et al. [2001] learn an inverse
kinematic model with lwpr (see Figure 2.9). The model is an inverse of the extended
Jacobian matrix learnt while performing the task with the input

(
q, ξ̇
)

and the output
(q̇)

IVKlwpr = lwprlearn

([
q, ξ̇
]
, [q̇]
)
.

The model is learnt along an operational trajectory, solving redundancy by minimising a
cost function dependent of the posture. Doing so, no inversion is involved and singularity
problems are avoided.

The results presented in Figure 2.9 correspond to the control of the atr robot where
the goal is to control the hand in the Cartesian space. The robot owns 26 actuated joints
among which only 4 are relevant for the learning algorithm. Thus, the dimension of the
input is: dim(ξ, q) = 29 and the dimension of the output is: dim(q̇) = 26 even though
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(a) Control scheme

(b) atr robot [Kawato, 1999]
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Figure 2.9: Learning inverse kinematics of the atr robot with lwpr [D’Souza et al.,
2001].

22 of these dimensions are irrelevant and probably not used.

As redundant problems have been solved by adding constraints, it is only possible to
control the robot considering those constraints. If the constraints change (the size of the
object, the position of an obstacle, etc.), those methods can adapt only by learning a
new model which corresponds to the new constraints.

2.2.2 Learning forward kinematics

In the case of redundant robots, in contrast with inverse kinematics, forward kinematic
and forward velocity kinematic models are unique. A model is unique if the dimension
of its output is lower than the dimension of the principal components of its input. In
that case, the model is a function that can be approximated without loss of information.

Learning forward kinematics consists in providing as input the joint positions and as
output the position of the end-effector we want to control (see Figure 2.10a).
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Learn

(a) Learning forward kinematics with a learning
algorithm.

Predict

(b) Reproducing forward kinematics in approxi-
mating an output providing the learnt model and
an input.

Figure 2.10: Learning forward kinematics providing joint positions and end-effector po-
sitions along time. With some methods, it is possible to approximate the derivative of
the learnt model.

After a learning period, the learning algorithm can estimate the position of the end-
effector by providing it with any joint configuration (see Figure 2.10b). It is important
to notice that, as described in Section 2.1.4, learnt models can be derived. In fact,
some supervised learning methods such as rbfns or lwpr are using a weighted sum of
derivable functions to perform a mapping. The global derived model is consequently a
combination of the derived functions. In the case of the forward kinematics, the global
first order derivative relatively to input q is the Jacobian matrix also named forward
velocity kinematics.

Few research works try to learn forward models of serial redundant robots as they
can easily be computed analytically when the geometry of the robot is know accurately.
Nevertheless, learning kinematics of those robots does not raise particular conceptual
problems because this application is injective and thus unique.

Learning kinematics is advantageous when the model changes over time or when the
geometry is not known in advance, as highlighted in the introduction.

A few authors have used multi-layer perceptrons networks or self-organising maps to
learn the forward kinematics model of various simple systems [Nguyen et al., 1990; Wang
and Zilouchian, 1997]. The evaluation is based on the accuracy of the model itself rather
than on its control capabilities. Boudreau et al. [1998], Sadjadian and Taghirad [2004]
and Sang and Han [1999] learn the forward models of parallel robots which involves
highly coupled non-linear equations that are difficult to model analytically.

Very close to our approach, Sun and Scassellati [2004, 2005] learn forward kinematics
with a rbfn. They derive each basis functions to obtain a Jacobian matrix, using rmrc
as a basis for their incremental trajectory generation algorithm (itga). However, they
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note that their algorithm can be adapted to any extension of rmrc. They use both
cameras of a humanoid robot to obtain the operational position used in their controller.

Also close to our approach, Butz et al. [2007]; Butz and Herbort [2008]; Butz et al.
[2009]; Stalph et al. [2009] learn the forward kinematic model of a four degrees of freedom
human-like arm using xcsf in order to model motor adaptation in arm reaching exper-
iments. They inverse the model with classical analytical methods in order to control
an end-effector in three dimension while controlling the redundancy. They have chosen
three different secondary tasks in the joint space which consist in minimizing angular
velocities, avoiding joint limits or specifying a global posture. The method employed is
well described in the next chapters as it is the one we use when we learn mechanical
models with xcsf.

2.2.3 Learning inverse dynamics

We have seen in Section 1.2.4 that it is possible to include inverse dynamics in a control
loop. The inverse dynamics allows to impose a desired acceleration, in any given state
(q, q̇), with torques, applied at the joint level. For a fully-actuated system, the dimension
of the actuation torque vector τ con equals the number of degrees of freedom n. The
mapping is unique if there are no redundant actuators, i.e., if there is only one actuator
on each joint. In that case, it is possible to learn the inverse mapping as described in
Figure 2.11a.

Predict

(a) Using inverse dynamics to obtain a torque
given a current state, the learnt model and a de-
sired joint space acceleration.

Learn

(b) Learning inverse dynamics with a learning
algorithm.

Figure 2.11: Learning and reproducing inverse dynamics with a learning algorithm.

As in learning kinematics schemes, the physics is still the supervisor of the supervised
learning algorithm. To learn inverse dynamics as described in Figure 2.11b, it is neces-
sary to have access to joint positions and velocities for a given task space, the control
torques applied, and the resulting acceleration at the next time step. Thus the input is
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(q (t) , q̇ (t) , q̈ (t+ dt)) and output is τ con (t). The application is a function from R3n to
Rn where n is the dimension of the joint space. If the complexity of the poly-articulated
system increases, n increases too and it becomes more and more difficult to learn this
mapping.

When we learn dynamics in such a way, it is important to notice that the learning
algorithm needs to access to the acceleration of the next time step q̈ (t+ dt). Thus,
the learning iteration has to be performed at the next time step. Nevertheless, while
kinematics depends exclusively of the configuration of the system, it is conceptually
different to learn dynamics as it depends on the duration of the time step. This may
raise problems in different situations such as changing the time step from a simulation
to another, using a simulator with a non-fixed time step integration scheme or being
subject to delays when shifting from a simulation to a real robot.

Learning inverse dynamics on whole spaces

It is possible to learn inverse dynamics in any configuration, for every possible joint ve-
locity and joint acceleration. Narendra and Parthasarathy [1990] learn inverse dynamics
of artificial systems in state space with neural networks to show that it is possible to use
learnt models in control. Jordan and Rumelhart [1992] provide a good review on how to
learn forward and inverse dynamics and how to use them in control. Lin and Goldenberg
[2001] learn an inverse dynamics model of a 4 degrees of freedom manipulator in three
dimensions with an rbfn using Lyapunov functions.

More recently, Mitrovic et al. [2008] learn inverse dynamics of a two degrees of freedom
arm in the whole planar space with lwpr. The input is (q (t),q̇ (t),u (t)) and the output
is (q̇ (t),q̈ (t+ dt)). The actuation controls are named u instead of τ as the actuators are
two artificial muscles (see Figure 2.12a) for each joint with two more artificial muscles
to couple the joints. Thus the control is not a torque but a force. The dimension of the
input is dim(q (t),q̇ (t),u (t)) = 10 and the output dimension is dim(q̇ (t),q̈ (t+ dt)) = 4.

The direct dynamics learnt is redundant with respect to its actuation. They use an
optimal feedback control loop (see Figure 2.13) based on the ilqg algorithm [Li, 2006]
to find the optimal forces and to control the system. After a learning period containing
1.2 106 training data points, the model is composed of 852 receptive fields and succeeds
in reaching three different targets as shown in Figure 2.12b.

Learning inverse dynamics along a trajectory

It becomes more and more difficult to learn inverse dynamics as the dimension of the
joint space increases. Given the larger size of the joint space, one may think of only
approximating sub-spaces of interest, for instance along a given joint space trajectory or
in a domain corresponding to the minimisation of a cost function.
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Figure 2.12: Learning inverse dynamics on whole space using iterative Linear Quadratic
Gaussian controller [Mitrovic et al., 2008]. Figure 2.12a represent the human-like arm
actuated with models of artificial muscles. Figure 2.12b illustrate initial followed trajec-
tories.
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Figure 2.13: Learning inverse dynamics on whole space using iterative Linear Quadratic
Gaussian controller [Mitrovic et al., 2008].

Figure 2.14: Model-based control in task space using learnt inverse dynamics.

Figure 2.14 describes how Vijayakumar and Schaal [1997], Vijayakumar and Schaal
[2000], Schaal et al. [2002] and Vijayakumar et al. [2005] learn an inverse dynamics with
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lwpr along an operational trajectory. The trajectory is followed with a PD controller,
described in Figure 1.7 page 24, and an additional noise to learn, around the trajectory,
an envelope of possible configurations. A limitation of this approach is that, if we learn
a model only along the trajectory and use it in a control loop and if the model is not
precise enough, the trajectory will not be followed exactly. The robot may then reach a
configuration unknown to the model which thus may return an inadequate torque. They
use their algorithm on an anthropomorphic Sarcos robotic arm composed of 7 degrees
of freedom. The input of the learning algorithm is (q (t),q̇ (t),q̈ (t+ dt)) of dimension
21 and the output is τ (t) of dimension 7. They use 5 104 training data points and 260
receptive fields to obtain a model.

Vijayakumar et al. [2005] also use the same approach to learn dynamics on the atr hu-
manoid robot [Kawato, 1999]. The input of the learning algorithm is (q (t),q̇ (t),q̈ (t+ dt))
of dimension 90 and the output is (τ̇ (t)) of dimension 30. They use 7.5 106 training
data points and 2200 receptive fields to obtain a model. To our knowledge, this is the
largest space in which a function has been learnt with lwpr, but the function is learnt
along a trajectory in a much smaller subspace than the input space.

(a) atr humanoid robot. (b) Followed trajectory.

Figure 2.15: Learning inverse dynamics along a trajectory with lwpr. Controlled robot
and results.

As the learning of 30 parallel lwpr models would be computationally expensive, they
choose to learn one single model with 30 dimensional output projected, thanks to the
pls algorithm, onto the input data. As we have seen, this approach is suboptimal but
computationally less expensive.
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Learning inverse dynamics in task space

Learning an inverse dynamic model in the task space is a smaller learning problem than
learning it in the joint space. Indeed, inverse dynamics in task space is a mapping from
R2n + Rm to Rm whereas inverse dynamics in joint space is a mapping from R3n to Rn

where n is the dimension of the joint space and m is the dimension of the task space.
Poly-articulated systems have a task space dimension which is usually smaller4 or equal
to the dimension of the joint space, thus, it can be of interest to learn inverse dynamics
in the task space. Nevertheless, learning inverse dynamics in the task space implies
learning one dynamical model for each controlled end-effector whereas a unique inverse
dynamic model in the joint space is sufficient for every task.

In both cases, it is necessary to compute the kinematics even to compute the joint
velocities from operational velocities or, in the case of inverse dynamics in the task space,
to compute the control torques from operational forces.

Figure 2.16: Peters and Schaal [2008] learn inverse dynamics in the operational space.

As described in Figure 2.16, Peters and Schaal [2008] use lwpr to learn inverse dy-
namics in task space (see Section 1.2.5). They use their control law, based on the learnt
dynamic model, on the Anthropomorphic Sarcos arm (see Figure 2.17a) and on the Mit-
subishi PA-10 robot (see Figure 2.18a). For both systems, the dimension of the input
equals dim(q + q̇ + ν) = 17 and the dimension of the output equals dim(τ ) = 7.

Those dimensions have to be compared to the size of two separate models which can
be learnt independently: one inverse kinematic model which links a 3 dimensional space
to a 7 dimensional space and an inverse dynamic model which links a 21 dimensional
space to a 7 dimensional space. If we only compare the dimensions of the learnt inverse
dynamic model, we can see that the dimension is lower in the operational space without
considering that, in the other case, the inverse kinematics has to be learnt.

4The maximum dimension of the task space is 6 and the dimension of the joint torques space equals
approximately 30 for a standard humanoid robot.
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(a) Anthropomorphic Sarcos arm. (b) Target trajectory.

Figure 2.17: Learning inverse dynamics in the task space with lwpr. Anthropomorphic
7 degrees of freedom Sarcos arm and the well followed target trajectory.

(a) Mitsubishi PA-10 robot. (b) Target trajectory.

Figure 2.18: Learning inverse dynamics in task space with lwpr. Mitsubishi PA-10 and
the well followed target trajectory.

2.3 Conclusion

In this chapter, we have presented a family of supervised learning methods that are used
to learn some models of mechanical systems, then we have presented how these methods
are used in practice to control the corresponding robots. One result of this survey of
the literature is that some state-of-the-art learning methods seem efficient enough to
learn some models of relatively complex mechanical systems. However, it turns out
that most works in the domain are focused on directly learning the inverse kinematics
[DeMers and Kreutz-Delgado, 1997; D’Souza et al., 2001; Ruiz de Angulo and Torras,
2002] of the robot, which raises specific difficulties in the case of redundant systems.
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Though some of these methods can control redundant robots, none of them can explicitly
control redundancy because they solve an equivalent non-redundant problem during the
learning period and not during control. Very few systems learn their forward kinematics
or velocity kinematics -Sun and Scassellati [2005] and Butz and Herbort [2008] being an
exception- though it seems necessary to call upon the forward velocity kinematic model
to solve redundancy in a way that makes the robot capable of combining several tasks
properly.

It is important to note that for most of the supervised learning algorithms, the dimen-
sion of the output is not a limiting factor space as they learn each output separately.
The correlation are only made between all input and one output. Thus the complexity
of the created model depends mostly on the dimension of the input.

More importantly, the very few authors who propose a method giving rise to the
possibility to control redundant robots do so in a context where the dynamics is given, or
learnt only along specific trajectories [Vijayakumar et al., 2005]. Thus, to our knowledge,
there is no model today capable of combining several tasks while learning the dynamics
of the system on the whole joint space.

Finally, we must note that the papers cited in this chapter are all concerned with
learning the model of a mechanical system without distinguishing if the modelled entity
is the robot itself or a more complex system composed of the robot and interacting
elements in its environment. There is now a significant shift of the literature towards
more complex questions such as learning an explicit model of the interaction between
a robot and an unknown grabbed object [Petkos et al., 2006; Petkos and Vijayakumar,
2007] or reconstructing, from the data, the constraints that hold in a task [Howard and
Vijayakumar, 2007] in order to control a redundant robot.
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In previous chapters, we have presented methods for controlling redundant robots as
well as supervised learning methods used to approximate non-linear functions. We have
described various control architectures using learnt models to control robotic systems,
stressing in particular the problems that arise in the case of redundant robots. We have
highlighted that none of these architectures is able to control redundancy explicitly with
learnt models.

In this chapter, we introduce a method which can combine learning techniques and con-
trol in operational space in such a way that we can hierarchically deal with several tasks
and constraints when the robot is redundant with respect to its tasks. Our approach is
largely based on frameworks presented in the previous chapters and we frequently refer
to them. In particular, our approach consists in learning a forward kinematic model
using the rmrc formalism (see Section 1.2) in our control scheme. We show how we can
inverse the mapping at the velocity level and use the projectors which are necessary to
combine several tasks.

The chapter is organized as follows. In Section 3.1, we detail how we learn forward
kinematics and inverse it to control redundancy. We explain in detail our methodology
to learn the kinematic models, focusing on the difficulties that must be addressed to
combine several tasks hierarchically. Then, we detail how to learn kinematics with both
lwpr and xcsf algorithms. In Section 3.2, we explain how to integrate a learnt inverse
dynamics in our control scheme, again with lwpr and xcsf. In Section 3.3, we present
the methods employed to evaluate the quality of the prediction.

One must note that there is no redundancy in the dynamics model thus the model is
unique and we can learn its inverse directly without loss of information, in contrast with
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the velocity kinematic level. It is also important to stress that the learning of the inverse
dynamics in operational space is out of the scope of the work presented here, interested
readers can refer to [Peters and Schaal, 2008] and [Nguyen-Tuong et al., 2008].

3.1 Learning forward kinematic models to control
redundancy

The main specificity of our control and learning architecture results from the fact that
we want to combine several tasks with our system in controlling its redundancy. This
design goal generates the following constraints.

• While it is possible to learn directly an inverse velocity kinematic model such as
q̇ = IVK (q,ν), it is necessary to learn the forward velocity kinematics and inverse
it afterwards in order to control the redundancy. To control that redundancy, the
inversion can be conveniently done at the velocity level whereas at the geometric
level, the relation is not linear relatively to joint velocities (see Chapter 1) and
cannot be easily inverted. Indeed, to invert a model easily, we need to represent
it explicitly under a linear form. Learning the forward velocity kinematics such as
ν = FVK (q, q̇) is conceptually very different from learning the Jacobian matrix
J(q) such that ν = J(q)q̇. While the second is invertible analytically and used
to control the robot, the first one may only be used to estimate an operational
velocity given the state of the robot.

• If we want to control the redundancy of a system, our claim is that it is necessary
to get joint velocity kinematics in the whole joint space. Furthermore, as the sys-
tem we control spans an infinity of possible configurations using its redundancy,
we have to learn an inverse dynamics model spanning a significant set of those
configurations. Even if learning on a large input space is computationally expen-
sive, it seems impossible to control redundancy with models learnt only along joint
trajectories. This leads to bigger models (or less precise ones) but it is the only
way to control the internal mobility everywhere.

In our approach, we restrain our operational space parameters to linear velocities
without considering angular velocities1 to decrease the number of dimensions of the
learning problem.

The constraint to get the forward velocity kinematics under a matrix form results
in two different learning approaches depending on the algorithm we use. Indeed, as
we detail in the following subsections, the way to deal with this problem is different
depending on whether we use lwpr or xcsf.

1It seems that there is no conceptual problem in learning a Jacobian matrix to control the orientation.
This can be done by using as input the joint position q and as output the orientation part of the
operational space parameters ξ represented with quaternions.
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3.1.1 Learning forward velocity kinematics with LWPR

A solution that satisfies the constraints expressed above consists in learning a forward
kinematic model with lwpr and using the capability of the algorithm to provide the
first order derivative of the output relatively to the input under a matrix form (see
Section 2.1.4). To use lwpr, we need to learn an initial model based on random data from
the analytical model. We compute, for each random datum, the operational position
depending on the analytical kinematics as ξ = FK (q) in order to feed the learning
algorithm with the corresponding (q, ξ) pairs. When the input is the joint position
q and the output is the operational space parameters ξ, the derivative of the output
relatively to the input corresponds to the Jacobian matrix linking linear velocities

FKlwpr = lwprlearn([q], [ξ])

where FKlwpr is the forward kinematics learnt with lwpr. It is important to stress here
that there is one lwpr model for each dimension of ξ which are all independent.

Those data are chosen randomly between joint limits in order to span a large variety
of input values qlimit = [0, 2π]. As we reduce the learning space to an interval, it
may induce continuity problems for the learnt models which should be continuous. For
instance, if the joint position oscillate around 2πrad, the used part of the model will
switch from 0 to 2π.

Thus, it is possible to use the learnt model to compute the prediction[
ξ̂, Ĵ

]
= lwprpredict ([FKlwpr], [q])

3.1.2 Learning forward velocity kinematics with XCSF

As explained in Section 2.1.5, xcsf distinguishes between a prediction space and a con-
dition space. To illustrate the possibility it opens, we recall the kinematic Equation 1.12
ν = J (q) q̇ where the Jacobian matrix J relates ν to q̇ and is only dependent on the
joint parameters q.

We can get such a representation using Equation 2.18 applied to forward velocity
kinematics

FVKxcsf = xcsflearn([q], [q̇], [ν]) (3.1)

where q defines the condition space, i.e., the space specifying the explicit dependency
of the model, the space where the model is learnt, whereas the [q̇], [ν] pair defines
the prediction space used to compute the errors and create the model. The model
FVKxcsf represents the model of xcsf which includes all classifiers with their respective
parameters. It has to be distinguished from the estimated Jacobian Ĵ (q).

Each classifier in the xcsf population P contains a local matrix. But the domain of
these rules overlap. Thus, extracting the Jacobian matrix of a particular q from the
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model involves some weighted combination

Ĵ (q) =
nM∑
i=1

φi (q)βi. (3.2)

where nM is the number of classifier in the match set. As the match set is computed
at each time step, the selection made among all classifiers may vary from a time step to
another. Thus, the estimated Jacobian matrix may not be continuous.

Equation 3.2 will be noted

Ĵ (q) = xcsfpredictJ ([FVKxcsf], [q]) (3.3)

when the model is only used to predict a Jacobian matrix.

3.1.3 Combining tasks

We want to combine several tasks hierarchically so that the lesser priority tasks do not
perturb the higher priority tasks. As described in Figure 3.1 and in Figure 3.2, we use
both model learning schemes within the rmrc formalism detailed in Section 1.2. If we
want to control the dynamics of the system, the architecture presented in Section 1.2
needs to be enhanced. We have stated that, in order to control dynamics, it is necessary
to have access to the desired joint accelerations to compute the associated torques. How-
ever, an alternative control loop, illustrated in both figures, consists in approximating
the desired acceleration by the velocity as : q̈? = (q̇? − q̇) /dt. This approach has the
advantage of avoiding to compute the derivative of the Jacobian matrix.

In order to do so, we must first learn the models necessary to achieve these tasks
separately with lwpr as [

ξ̂1, Ĵ1

]
= lwprpredict([FK1lwpr], [q])

and [
ξ̂2, Ĵ2

]
= lwprpredict([FK2lwpr], [q])

and with xcsf as

Ĵ1 (q) = xcsfpredictJ ([FVK1xcsf], [q]) (3.4)

and
Ĵ2 (q) = xcsfpredictJ ([FVK2xcsf], [q]) . (3.5)

Each desired operational velocity ν?i is computed using the task space parameters
error

ν?i = Kpi

(
ξ†i − ξi

)
(3.6)
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Figure 3.1: Our control architecture using lwpr where we derive learnt forward kine-
matic models and invert them to control two end-effectors with different tasks. The
learnt parts are hashed coloured boxes.

Figure 3.2: Our control architecture using xcsf to learn two forward velocity kinematic
models and invert them to control two end-effectors with different tasks. The learnt
parts are hashed coloured boxes.

whereKpi is a symmetric positive definite matrix and ξ†i denotes the final desired position
to reach.

We have shown in Section 1.2.3 that, in the case of complex missions where the tasks
and constraints constantly evolve, one cannot ensure compatibility between tasks at all
times. Thus, the solution chosen to invert the kinematics while combining multiple tasks
in a hierarchical manner is the one of [Maciejewski and Klein, 1985] (see Equation 1.34)

q̇? = Ĵ+
1 ν

?
1 +

(
Ĵ2PĴ1

)+ (
ν?2 − Ĵ2Ĵ

+
1 ν

?
1

)
(3.7)

where Ĵ1 and Ĵ2 are the Jacobian matrices estimated by a learning algorithm. PĴ1
and

pseudo-inverses of Ĵ1 and Ĵ2PJ1 are computed using their svd as presented in Section
1.2.2.

In the projection method case, the simulation can be summed up by Algorithm 3.

This projection method is more versatile than the extended Jacobian matrix method
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Algorithm 3 Simulation loop with projection method

ν?1 (t) = Kp

(
ξ†1 (t)− ξ1 (t)

)
desired operational velocity

ν?2 (t) = Kp

(
ξ†2 (t)− ξ2 (t)

)
desired operational velocity

q̇? (t) = Ĵ+
1 ν

?
1 (t) +

(
Ĵ2PĴ1

)+ (
ν?2 (t)− Ĵ2Ĵ

+
1 ν

?
1 (t)

)
desired joint velocity

q̈? (t) = (q̇? (t)− q̇ (t)) /dt desired joint acceleration
τ con = ID (q (t) , q̇ (t) , q̈? (t)) desired torques
q̇ (t+ dt)← D (q (t) , q̇ (t) , τ con) simulator integration

as tasks do not have to always be compatible. Nevertheless, to compare the approaches,
we also implement the extended Jacobian matrix method that can be written

q̇? =
[
Ĵ1

Ĵ2

]−1 [
ν?1
ν?2

]
. (3.8)

When using this approach, we do not learn the inverse mapping as in D’Souza et al.
[2001] but rather the forward mapping which we inverse.

The simulation using the extended Jacobian matrix method can be summed up by
Algorithm 4.

Algorithm 4 Simulation loop with the extended Jacobian matrix method

ν?1 (t) = Kp

(
ξ†1 (t)− ξ1 (t)

)
desired operational velocity

ν?2 (t) = Kp

(
ξ†2 (t)− ξ2 (t)

)
desired operational velocity

q̇? (t) =
[
Ĵ1

Ĵ2

]−1 [
ν?1 (t)
ν?2 (t)

]
desired joint velocity

q̈? (t) = (q̇? (t)− q̇ (t)) /dt desired joint acceleration
τ con = ID (q (t) , q̇ (t) , q̈? (t)) desired torques
q̇ (t+ dt)← D (q (t) , q̇ (t) , τ con) simulator integration

In the case of velocity controlled robots, q̇ obtained from Equation 3.7 or from Equa-
tion 3.8 can be used as the control input of the robot.

An additional motivation for learning explicitly the Jacobian matrix rather than learn-
ing the inverse velocity kinematic mapping is the dimension of the input. The explicit
Jacobian matrix can be learnt using the derivative of the forward kinematics. From
one side, to learn the forward velocity kinematic model, the input is the vector of joint
position q and the output is the vector of operational position ξ. From the other side,
to learn the inverse velocity kinematic mapping, we need to provide q and ν as input
and q̇ as output. The dimension of the input is thus bigger when we learn the forward
velocity kinematic mapping instead of the Jacobian matrix.

In this approach, we propose to learn the forward velocity kinematics giving as input
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qa which is the remainder of the division of q by 2π.

What we have described so far is enough to control a robot that would be perfectly
servoed in position and velocity. We describe in Chapter 4 and Chapter 5 the results
that we obtained within diverse contexts where simulated system or robots are controlled
in position and velocity.

3.2 Learning inverse dynamics

We may learn inverse dynamics along a trajectory, however the control of redundancy
in a non-static manner in the case of tasks combination or constraints switching may
lead to the exploration of unexpected parts of the state space where the model of the
system is not learnt. So, for the same reason as for the kinematic case, controlling the
redundancy implies to learn the inverse dynamics over the whole state space and for all
possible values of joint space acceleration.

It is also possible to learn inverse dynamics expressed in operational space (see Sec-
tion 2.2.3). In task space, the dimension of each inverse dynamic model is lower than
in joint space but it is necessary to have one dynamical model for each controlled end-
effector. Thus, as learning dynamics in task space increases the complexity of the global
architecture, we have chosen to learn it in the joint space.

The dynamic simulation, similar to the one presented in the previous section, can be
summed up by Algorithm 5.

Algorithm 5 Simulation loop learning dynamics

ν?1 (t) = Kp1

(
ξ†1 (t)− ξ1 (t)

)
desired operational velocity

ν?2 (t) = Kp2

(
ξ†2 (t)− ξ2 (t)

)
desired operational velocity

q̇? (t) = Ĵ+
1 ν

?
1 (t) +

(
Ĵ2PĴ1

)+ (
ν?2 (t)− Ĵ2Ĵ

+
1 ν

?
1 (t)

)
desired joint velocity

q̈? (t) = (q̇? (t)− q̇ (t)) /dt desired joint acceleration
τ con = ÎD (q (t) , q̇ (t) , q̈? (t)) desired torques
q̇ (t+ dt)← D (q (t) , q̇ (t) , τ con) simulator integration

It is important to note here that, unlike some other approaches in the literature, the
dynamics model being first learnt on the whole spaces (joint positions, velocities and
accelerations), if a new task has to be executed, the kinematic model corresponding to
this new task must be learnt whereas the inverse dynamics model is already known. The
learnt model is global and can be adapted for every task.

3.2.1 Learning inverse dynamics with LWPR

lwpr allows us to approximate the inverse dynamics as a relation/mapping between the
input [q (t) , q̇ (t) , q̈ (t+ dt)] and the output [τ con (t)].
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IDlwpr = lwprlearn ([q (t) , q̇ (t) , q̈ (t+ dt)] , [τ con (t)])

Figure 3.3: Our control architecture, deriving learnt forward kinematics, inverting it and
using learnt inverse dynamics to compute control torques. The learnt parts are hashed
coloured boxes.

It is then possible to control our system with the learnt inverse dynamics replacing
our previous controller with

τ con (t) = lwprpredict (IDlwpr, [q (t) , q̇ (t) , q̈? (t+ dt)])

where q̈? (t+ dt) =
q̇? (t+ dt)− q̇ (t)

dt
is the desired acceleration (see Figure 3.3).

3.2.2 Learning inverse dynamics with XCSF

In order to highlight the way xcsf can learn the inverse dynamics in contrast with lwpr,
one has to come back to the Equation 1.16 of the dynamics of a poly-articulated without
perturbations forces

τ con = A (q) q̈ + b (q, q̇) . (3.9)

This equation can be viewed as a linear relation between q̈ and τ con with dependencies
on q (t) and q̇ (t)

τ con =
[
A (q) b (q, q̇)

] [ q̈
1

]
. (3.10)

In this context, b (q, q̇) can be seen as an offset.

Thus, similarly to the velocity kinematic case described in the previous section, one
can learn an inverse dynamic model by providing at each time step a state (q (t) , q̇ (t)) as
condition parameters and a ([q̈ (t+ dt)] , [τ con (t)]) pair as input of the prediction space.

IDxcsf = xcsflearn ([q (t) , q̇ (t)] , [q̈ (t+ dt)] , [τ con (t)]) (3.11)
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As xcsf distinguishes between a prediction space and a condition space, this approach
is much less expensive in terms of dimensionality than the one used in lwpr. Indeed,
one needs to span (q, q̇) instead of (q, q̇, q̈) to learn the model. As a result, the space is
1/3 smaller.

As illustrated in Figure 3.4, the control torque is computed as

τ con = xcsfpredict (IDxcsf, [q, q̇] , [q̈]) . (3.12)

Figure 3.4: Our control architecture, deriving learnt forward kinematics, inverting it and
using learnt inverse dynamics to compute control torques. The learnt parts are hashed
coloured boxes.

3.3 Evaluation of the prediction quality

To evaluate the quality of the prediction of the learning algorithms, we can use different
types of prediction errors.

The Mean Square Error (mse), also named Residual Sum of Squares divided by the
number of data, is a standard evaluation of the quality of the prediction of a learning
algorithm on a fixed number of data. It measures the average of the square of the error
between a real value and its estimate

mse =
1
np

np∑
i

(yi − ŷi)2

where np is the number of points used to compute this error, yi is the ith value of the
data obtained by the analytical model of the robot and ŷi is the ith predicted value of
the learnt model.

The Root Mean Square Error (rmse) is the square root of the mse. This prediction
quality is appreciated as it performs an estimation which has the same dimension and
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the same unit as yi

rmse =

√√√√ 1
np

np∑
i

(yi − ŷi)2.

The Mean Absolute Error (mae), an estimator which has also the same dimension
and unit as yi, is computed as

mae =
1
np

np∑
i=1

‖yi − ŷi‖.

Every evaluation of the prediction is computed on a one dimensional input. The error
of each dimension may be normalized to be compared with each other and dealing with
the case where each dimension has different ranges; for example to compare two joint
torques with strongly different strengths. The normalization is used to be performed
by either the variance or the difference between the maximum and the minimum of the
presented data.

In this thesis, we use the nmse to compare our results with those of the literature.

Thus we use the Normalized Mean Square Error(nmse) computed as

nmse =
1
σ2

1
np

np∑
i

(yi − ŷi)2

where σ2 is the sample variance of y: σ2 = 1
np

∑np
k=1 (yk − yk)

2.

To evaluate the prediction, we also use the Normalised Mean Absolute Error (nmae)
computed as

nmae =
1

np (max(yi)−min(yi))

np∑
i=1

‖ŷi − yi‖

where max(yi) and min(yi) are respectively the maximum and the minimum of the data
values and np is the number of points used to compute the error. This error seems more
appropriate as it is the only one which computes, at each time step, an error of the same
dimension and the same scale as the estimated data.

3.4 Discussion

Using our approach, we can notice that errors of kinematic and dynamic models are not
cumulative as they are expressed in different spaces. With both learning algorithms,
the system is controlled with a loop closed kinematically in the operational space. Con-
sequently, an approximation error in the kinematics results necessarily in an end-point
position error as the controlled point is perceived at another position. However smaller
errors made by the approximation of the inverse dynamic model can be rejected. In
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fact, the inverse dynamic model can be view as a PID controller whose gains depends
on the configuration. A small error in a gain may lead to a worse decoupling but not to
a positioning error.

In the redundant case, learning forward kinematic models does not lead to a loss of
information about the system. In our method, one can choose to add any secondary
task independently from the first one and any weighting matrix Wq can be used2 when
performing the inverse of the Jacobian matrix. That is not the case when inverse models
are learnt directly since this corresponds to a specific choice of inverse.

The only way to get a Jacobian matrix with lwpr is to learn the forward kinematic and
to derive each local model. The error used to compute the model is thus computed with
operational positions whereas we want to predict operational velocities. Conceptually,
this method is thus necessarily worse than the learning scheme used with xcsf. In fact,
with xcsf, the learnt model directly reflects the ξ̇ = J(q)q̇ equation as it generates
model in joint space, making the relation between operational and joint velocities. The
learning error is thus directly computed with operational velocities. Conceptually, using
xcsf as learning algorithm in our control scheme seems more adapted and more natural
to learn a Jacobian matrix.

2The use of a proper weighting matrix different from the Identity can be crucial in the dynamic case,
see [Khatib, 1987].
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In this chapter, we focus on learning and controlling the velocity kinematics, consid-
ering that the inverse dynamics is known. We present simple simulations of a three
degrees of freedom planar arm designed to compare different tasks, over-constrained or
not, using learnt models.

We compare our approach to the one of D’Souza et al. [2001] where the inversion
problem that arises in the redundant case is solved, in a less generic manner, during
learning and not during control (see Section 3.1). The corresponding results have been
published in [Salaün et al., 2009a, 2010]. Preliminary results were published in [Salaün
et al., 2009b]. This comparison is drawn using models learn both with lwpr. We also
compare the performance and applicability of both lwpr and xcsf.

In this chapter, we consider, when we learn a model from random data, that it is
possible to determine, at each moment, the operational position corresponding to any
configuration. This raises no difficulty in simulation where we can successively com-
pute the analytical forward kinematics of different random joint positions, whereas this
becomes difficult using a real robot.

67
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4.1 A rigid body dynamics simulator with contacts: Arboris

To simulate our robots, we use Arboris, a dynamic simulator which was first imple-
mented in matlab [Barthélemy and Micaelli, 2008] and which is now recoded in python1.
Based on the algorithms described in [Murray et al., 1994], [Liu and Wang, 2005] and
[Park, 2005], the resulting simulator can be regarded as an implementation of the work
of Duindam [2006]. To simulate dynamics of rigid bodies, it uses the Boltzmann-Hamel
equation

A(t)q̈ (t+ dt) + b(t)q̇(t+ dt) = 0. (4.1)

where A and b are respectively the mass matrix and the non-linear effects matrix which
includes the viscosity. This equation, similar to Equation 1.6, updates the dynamics
without involving contacts, actuation or gravity.

Arboris calls upon a method which includes the actuation forces applied to a robot
and a resolution of additional constraints such as contacts and kinematic loops based
on the Gauss-Seidel algorithm. Thus, it uses time stepping and a semi-implicit Euler
integration scheme to update the joint positions [Liu and Wang, 2005].

The simulator integrates different types of robot such as the human36 robot copied
from the simulator HuMAnS [Wieber, 2006], the humanoid robot iCub which model is
based on the CAD of the RobotCub website2, few classic architectures such as Puma
or Scara and some simpler robots (2 or 3 degrees of freedom planar arms) designed to
test algorithms.

We have chosen to set the integration time step of the simulator to 10 milliseconds in
all simulations.

We have chosen to evaluate the compared approaches on a 3 degrees of freedom planar
system, shown in Figure 4.1. Sticks lengths are 0.50m, 0.40m and 0.20m with respective
masses of 1kg, 0.8kg and 0.2kg.

4.2 Initializing an inverse kinematic model with LWPR

To learn our models, we use the lwpr algorithm implementation from the Institute
of Perception, Action and Behaviour by the Statistical Machine Learning and Motor
Control Group3 of the University of Edinburgh.

Unlike xcsf, lwpr has a more complicated initialization and tuning. Thus we learn
an initial model based on random data from the analytical model while tuning different
parameters. Each parameter has an influence on the prediction quality. In this section,
we detail the influence of the parameters used in lwpr using the errors estimation of
the quality of the prediction described in Section 3.3.

1http://github.com/sbarthelemy/arboris-python
2http://www.robotcub.org
3http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/

http://github.com/sbarthelemy/arboris-python
http://www.robotcub.org
http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/
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Figure 4.1: Schematic view of our simulated system.

4.2.1 Tuning parameters of LWPR

lwpr is difficult to tune. As it comes with some parameters that need to be initialised, we
perform this tuning as proposed by Klanke et al. [2008]. Each parameter is successively
tuned experimentally from a set of random data obtained from the system. The data
are joint positions chosen randomly and their corresponding operational positions.

We have seen in Equation 2.6 that the D parameter is proportional to the inverse of
the variance of each receptive field. Thus, D is responsible for the size of the Gaussians.
Small D induce wide receptive fields. As those models evolve statistically in function
of the input and output, the D parameter has to be initialized. The initD coefficient
corresponds to the initial size of all receptive fields. This coefficient significantly affects
the convergence time of lwpr.

Another important parameter for our simulations is wgen. It is a threshold responsible
for the creation of a new local model. Higher is its value, more it facilitate the creation
of new receptive fields. It is thus responsible for the global complexity of the model.
Equation 2.6 computes the weight of each Receptive field for a given input and, if no
weight is high enough, i.e., if φi < wgen for all i ∈ [1, nn], then a new model is created
with the previously tuned initD parameter and with the current input as center.

Finally, from our first experiments on fixed models, updating D is not so important
once the initialisation is well done but we still keep this option as it improves the precision
of the model.

The regularization penalty coefficient γ is critical to the evolution of the size of recep-
tive fields (see Equation 2.10). As it penalizes the sum of all D squared in the minimized
cost function, a small penalty term increases precision but decreases the smoothness of
the model.

The α parameter is the distance metric learning rate for gradient descent during the
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computation of the D parameter (see Equation 2.9 page 35). The initα which correspond
to the initialization of the parameters α. A too large learning rate may induce instability
in convergence while a too small one induces a slow convergence. Thus we have activated
meta learning to alleviate the tuning of α while having a good precision.

To summarize, all parameters are grouped in Table 4.1.

Parameters normin initD updateD initα wgen γ

Values 2π 20 1 10000 0.5 1e−6

Table 4.1: Parameters used to learn an inverse dynamic model with lwpr

4.2.2 Prediction quality using LWPR

As we control our robot with the Jacobian matrix, we compute the error on operational
velocities and not on operational positions. The operational velocities are computed
from the analytical Jacobian matrix multiplied by joint velocities, arbitrarily fixed to
1.00 rad.s−1. The approximated operational velocities are computed from the estimated
Jacobian matrix multiplied by the same arbitrarily fixed joint velocities.
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Figure 4.2: Evolution of the nmse of the task space velocity prediction (blue, plain line,
scale left) and of the number of receptive fields for one output (red, dashed line, scale
right) using lwpr (average over 40 trials). The 50000 joint configurations are chosen
randomly.

As can be seen on Figure 4.2, the nmse of the predicted velocity decreases during the
random bootstrap. A bootstrap phase with 5000 samples is, in this case, sufficient for
lwpr to cover roughly the joint space, having an output, even bad, in each configura-
tions, and to predict a Jacobian matrix.
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At the end of each experiment, the number of receptive fields varies between 2000 and
8000 for each output depending on the duration of the bootstrap stage.

The relatively large number of receptive fields generated in these experiments is due
to two factors. The first one is the precision of the required prediction which is related
to our choice of parameters for the lwpr algorithm. The second factor is more specific
to the redundancy of the robot that we are exploiting. This redundancy induces possible
internal motions from secondary tasks which cannot be predicted a priori. Thus, a good
coverage of the joint space is necessary in addition to learning along specific trajectory.

4.3 Combining tasks with LWPR as learning algorithm

In this section, we detail three different constrained cases and associated tasks in order
to study the robustness of our control scheme.

While, during the bootstrap, the presented results were averaged over 40 trials, the
results presented below are just representative trials.

4.3.1 Under-constrained case

The first studied task is a simple reaching task using our control scheme (see Figure 3.3).
From an initial end-effector position ξi1 = [0.10 1.00]T m, the end-effector of the robot
has to reach a target ξ†1 = [0.20 0.50]T m with a specified precision of 0.01 meter. There
is no reference trajectory but just a goal to reach. Once the task is achieved, the end-
effector is sent back to its initial position using the same task controller Kp = 5s−1. This
point to point movement is repeated until the end of the simulation.

For this simple reaching task, the task space dimension is 2, thus the Jacobian matrix
of the end-effector is redundant relatively to the task and there are an infinity of ways
to reach the goal. In this experiment, the system is controlled as Equation 3.7 without
any secondary task; the internal mobility is not controlled.

In this experiment, in order to highlight model adaptation during the control phase, we
only make bootstrap using 2000 samples. Figure 4.3(a) represents the first two seconds of
simulation. The model of the robot is still quite approximative and the rmrc method is
too dependent of the model to compensate for its inaccuracies. Figures 4.3(b) (between
2s and 4s) and 4.3(c) (between 6s and 8s) show the evolution of the trajectories. It
can be noticed that the learnt model is still adapting during the control phase. Also,
the precision requirements (errors smaller than 0.01m) in terms of target reaching are
met. After 20s (see Figure 4.3(d)), the precision is improved and the trajectory of the
robot trajectory is almost linear as one would expect when using a resolved motion rate
controller.
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Figure 4.3: Evolution of operational trajectories while learning a Jacobian matrix real-
ising an under-constrained task. Each figure represents two seconds of simulation.(a):
0s to 2s.(b): 2s to 4s.(c): 6s to 8s.(d): 20s to 22s.

4.3.2 Fully constrained case

The second experiment consists in reaching ξ†1 = [0.20 0.50]T m with an end-effector
parametrized by ξ1 and keeping the end-effector in this position while realising a sec-
ond task. This second task consists in alternatively reaching, with another end-effector
parametrized by ξ2, the goals 0.10 m and 0.30 m along the x0 axis. The first task is a
two dimensional task whereas the second one is one dimensional. As those goals can be
reached simultaneously, the system is said fully constrained with respect to the tasks.

For these two tasks, we have solved the redundancy using two different algorithms:
the extended Jacobian matrix [Baillieul, 1985] and the projection method [Nakamura,
1990]. In the case of the projection method, the second task is projected in the null
space of the first one according to Equation 3.7. In the case of the extended Jacobian
matrix method, Jext is chosen as Equation 3.8 in order to simplify the inversion problem
to a square, regular matrix inversion
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q̇ = J−1
ext

[
ν?1
ν?2

]
. (4.2)

Figure 4.4: Stroboscopic view of the robot realising two prioritised tasks in the fully
constrained case. The first task consists in maintaining the end-effector position ξ1 on a
two degrees of freedom goal ξ†1 (a point in 2D). The second task consists in positioning
a second end-effector defined by ξ2 on a one degree of freedom goal ξ†2 (a line in 2D).

In the fully constrained case, the precision requirements (0.01m) are also met for both
tasks which respectively constrain the position of the end-effector ξ1 and the position
along the x0 axis (see Figure 4.4) of the wrist of the robot ξ2.

This is illustrated in Figure 4.5 for the first task. It is shown that there is no major
difference in the precision obtained when controlling redundancy using an extended
Jacobian matrix or using the projector approach. From 0 to 1s, the reference task point
is not reached yet, which explains the large error (the initial error, not shown in the
figure, is 0.65m). After 1s, the required precision is obtained and errors are due to the
cyclic change of reference point for the second task. These errors decrease with time
thanks to the on-line improvement of the learnt model.

These errors are due to the fact that a learnt model is used as well as to the fact that
learning errors are propagated when computing the inverse velocity kinematics mapping
from the forward one. Using the extended Jacobian matrix approach or ours, if the
Jacobian matrices are not accurately predicted, errors disturb the higher priority task.
Similarly, when specifically using the projection method, an error in the prediction of
the first task Jacobian matrix induces an error in the computation of the associated
projector leading to disturbances induced by the second task on the first one.

Despite these error propagation effects, the achieved performances are satisfactory.
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Figure 4.5: Norm of the end-effector error induced by a second compatible task for two
different controllers.

4.3.3 Over-constrained case

The last experiment is similar to the previous one. The first task is identical whereas
the second one is a two dimensional task for the end-effector parametrized by ξ2 which
has to reach ξ†2 = [0.45 0.25]T m. This second task is not compatible with the first one.
The system is over-constrained.

Regarding this experiment, the projection method is the only one that is tested since
the extended Jacobian matrix method would require the same projection in order to
obtain a square Jacobian matrix Jext as

q̇ =
[
Jξ1
PJξ1Jξ2

]−1 [
ν?1
ν?2

]
. (4.3)

The results obtained from the last experiment illustrate the effectiveness of the pro-
jection method. The controller maintains the distance between the end-effector point
ξ1 and the desired reference point ξ†1 under 0.01m. At the same time, the second task
is partially achieved as expected from the chosen redundancy resolution scheme. It is
achieved with the minimum possible error and without inducing any disturbance on the
first task: the task hierarchy is respected.

These results are illustrated in Figure 4.6 where the final configuration of the system is
shown as well as intermediate configurations, illustrating the convergence of the second
task toward the best possible result.

Figure 4.7 gives a view of the positioning errors for both tasks. Similarly to the last
experiment, error propagation effects are present but once again the end-effector error
in position is very low. We can see that between the second and the third second of
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Figure 4.6: Stroboscopic view of the robot realising two prioritised tasks in the incom-
patible case. The task hierarchy is respected as the end-effector ξ1 stays fixed on ξ†1
while the distance between ξ2 and ξ†2 is minimum.

simulation, the error of the second task is lower than the steady state error. It can
happen only because the end-effector have not reach yet its final position.

Figure 4.7: Reaching errors for the first (blue, plain line) and second (red, dashed line)
tasks in the incompatible case after learning.
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4.4 Learning velocity kinematics with XCSF

We use the xcsf implementation from the COgnitive BOdy Spaces: Learning And
Behavior (coboslab) of the University of Würzburg4.

In comparison to lwpr, xcsf is easier to tune. The parameters which have to be
tuned are by order of importance:

• the threshold for the error, set to 0.1, under which the system stops adding new
classifiers but tries instead to generalize,

• the maximum number of micro-classifiers which has been set to 350,

• the maximum number of iterations set to 150000,

• the number of iterations where we condensate the model to have a better general-
ization, set to 100000,

• the number of runs, set to 20 to ensure a global stability of the model.

All other parameters are set to their default value, as specified in xcsf configuration
file. In contrast with lwpr, xcsf does not require a random bootstrap stage for conver-
gence. Thus we directly study one of the reaching task presented in the previous section
to provide a preliminary performance comparison.

As in Section 4.3.1, the studied task is a simple reaching task. From an initial con-
figuration chosen randomly, the end-effector of the robot has to reach a random target
ξ†1 with a specified precision of 0.01 meter. The task is chosen to be in the reachable
operational space. The task is not defined as a target trajectory but just as a goal to
reach. Once the task is achieved, a new random task is specified if the reachable space
with the same required precision. Kp equals 5s−1. This point to point movement is
repeated until the end of the simulation.

For this simple reaching task, the task space dimension is 2, thus the Jacobian matrix
is redundant and there is an infinity of ways to reach the goal.

Figure 4.8 illustrates the evolution of the mae, as a function of the number of it-
erations. The curve is an average over 20 runs. The variance between those runs is
represented on the figure. It highlights the model adaptation from scratch during the
control phase as there is no bootstrap stage before controlling the system. We note that
the error decreases with a large variance. We can see in the same figure the evolution
of the number of micro- and macro-classifiers. Once the maximum number of micro-
classifiers is reached, the number of macro-classifiers drastically decreases during the
compaction stage. Both desired performance and stability are reached after compaction
(see Section 2.1.5).

In contrast with the experiments presented in Section 4.3.1, when a task is reached,
the new task is chosen randomly in order to drive the system to explore the whole space.
This contributes to explaining that the variance is still high just before compaction since
the system may be driven to areas where the model is not learnt yet.

4http://medal.cs.umsl.edu/files/XCSF Ellipsoids Java.zip
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MAE
Micro-classifiers
Macro-classifiers

Figure 4.8: mae (blue, plain line) for the prediction along the x axis xcsf. Number of
Classifiers (red, dashed lines).

Nevertheless, one can see that after compaction, the prediction error gets very low.
Figure 4.9 illustrates the operational space error between the end-effector and the task
to reach using a learnt model after compaction. The system go straight to all new goals
with different operational gain values.

Figure 4.9: Evolution of operational trajectories while learning a Jacobian matrix with
xcsf realising an under-constrained task. Each line represents a different proportional
operational controller.

In order to compare those results to those presented in Section 4.3.1, we have repro-
duced the point to point experiments (see Figure 4.10). In the contrast with lwpr-based
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Figure 4.10: Evolution of operational trajectories while learning the forward velocity
kinematics realising an under-constrained task with xcsf. Each figure represents 4
seconds of simulation.(a): 0s to 4s.(b): 4s to 8s.(c): 12s to 16s.(d): 36s to 40s.

learning scheme, there is no bootstrap here and the adaptation is made on-line. After
40 seconds, the trajectories gets straight.

4.5 Discussion

The results of the simulations for the under-constrained case show that after some ran-
dom bootstrap with lwpr, or directly with xcsf, our method is able to improve the
model of the system while controlling it so that a reaching task is achieved with a pre-
scribed precision. The end-effector trajectory converges to what would be expected in
the case of resolved motion rate control. A similar result has already been obtained by
D’Souza et al. [2001], using the extended Jacobian matrix approach and learning directly
the inverse velocity kinematics mapping on a trajectory.

One may argue that inverting a learnt mapping will lead to the amplification of learn-
ing errors. This is true. However, the results presented in this chapter demonstrate that
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this approach actually provides good enough results when combined with a closed-loop
controller.

The fully constrained case conveys more original results. To our knowledge, the only
prior work which learns the forward kinematic model, derives it and uses it in a control
loop is the work of Sun and Scassellati [2005]. Our approach is original in the sense that
we use this learnt model to compute a projector allowing to combine several learnt tasks
and thus to control redundancy. We show that this method induces error compared
to an analytical model but the performance of the controller remains satisfactory. Still
in that context and in parallel to our work, Butz and Herbort [2008] have solved an
under-constrained case by adding a constraint at each time step and thus by solving a
fully constrained case.

The simulation of the over-constrained case reinforces the results of the fully con-
strained case by showing that several learnt tasks can be combined in a hierarchical
manner in the case where those tasks are not compatible. This has been a state-of-the-
art result for a while in model-based control in Robotics [Nakamura, 1991]. However, to
the best of our knowledge, this is the first time that such results are achieved in the case
of learnt models [Salaün et al., 2009a]. The retained redundancy resolution scheme in
that last case is the projection method which leads to the optimal solution for both tasks.
In fact, in the over-constrained case, the only effective redundancy resolution scheme is
the projection method. The extended Jacobian matrix approach can be applied in that
case but in a way that requires projections similar to the one used in our approach.

The extended Jacobian matrix approach is not satisfactory in the case where models
have to be learnt. Combining two tasks in a single one in order to simplify inversion leads
to unnecessary constraints on the learning problem to be solved whereas it is simpler to
learn elementary tasks separately. Furthermore, tasks combination is easier when the
tasks are learnt separately. In the extended Jacobian matrix method, the learnt inverse
velocity kinematic model depends on the supplementary task. The whole model has
to be learnt again if this task changes whereas learning separately different Jacobian
matrices leave them independent and changing one of them does not impact the others.
Thus, the projection method is shown to be more versatile than the extended Jacobian
matrix approach.

Most of the experimental work achieved in the context of this thesis was performed
using lwpr as learning tool. xcsf was discovered lately, so the experiments performed
with this second tool are preliminary and the insights we draw from them are only
indicative. Furthermore, a direct comparison of the performance of lwpr and xcsf is
difficult for several reasons.

• The performance of both algorithms is sensitive to the parameter set-up, thus
the performance comparison is sensitive to the relative effort put in tuning the
algorithm.

• To work properly, lwpr requires a random bootstrap stage with data spanning
the input/output space, whereas xcsf, without such a stage, can quickly provide
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a model used in a controller. Thus, the performance comparison is also sensitive
to the effort put in the pre-tuning of lwpr.

• The errors of both algorithms are computed in different spaces. The kinematics
learnt with lwpr is computed from a Cartesian position error whereas the velocity
kinematics learnt with xcsf depends on an operational velocity error.

Nevertheless, some general comparative insights can be extracted from the preliminary
experiments we performed.

• First, the fact that xcsf does not require a random bootstrap is an important fea-
ture of this algorithm with respect to lwpr, because performing this initialization
onto the whole input/output spaces with a real robot is difficult to achieve, due to
joint limits, auto-collision, initialization duration, admissible torques, etc.

• Second, the capability of xcsf to distinguish a condition space and a prediction
space leads to a very elegant representation of the problem consisting in directly
learning the Jacobian matrix of a robot which depends on joint position while
providing as input/output a joint and operational velocity.

• Third, our preliminary simulations with xcsf tend to show that the algorithm
performs very well and requires less tuning effort than lwpr to reach the same
satisfactory level of precision.

• However, one must note that the performance of xcsf is much less steady than the
performance of lwpr. This can be explained easily by the fact that the pre-tuning
stage with lwpr guarantees a good coverage of the input/output spaces thus less
sensitivity to the variation of the function to be approximated, whereas xcsf must
update the model each time it reaches a subspace that was not sampled before.
However, we have seen after reaching random goals and after compaction that the
control with the model learnt by xcsf is more versatile and that the learnt model
may be exploited with different operational gains.

• Finally, lwpr is much appreciated for its capability to learn local models in high
dimensional spaces along trajectories. So far, whereas we did not measure the
sensitivity of xcsf computational efficiency in the context of spaces with many
dimensions. The scalability of the approach to systems with a higher number of
degrees of freedom is still a matter for discussion. When using lwpr, the main
bottleneck is the possibility to tune the parameters and to initialise the model with
an initializing with bootstrapping stage that must be longer as the dimensionality
of the system grows.
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In this chapter, we show results of the application of the approach presented in Chap-
ter 3 using lwpr to the iCub humanoid robot. We show how this approach, applied on
a 3 degrees of freedom mechanical system in 2 dimensions, can be extended to a more
complex system with 4 degrees of freedom in 3 dimensions. We first present results
obtained on a simulator of the robot, then on the robot itself. This study reveals the
limitations of the framework when applied on a real robot.

Learning a model in simulation raises no difficulty as we can successively compute the
analytical forward kinematics of different random joint positions. As it becomes difficult
to do it using a real robot, our bootstrap will always be performed in the iCub simulator.

In the following section, we briefly describe the iCub humanoid robot. Then we
explain how we tune lwpr to finally present three experiments chosen to study the
transfer from simulation to the real robot.

5.1 Description of ICUB

iCub is a 53 degrees of freedom robot mostly actuated with DC brushless motors. It was
designed in the context of the RobotCub project1 [Metta et al., 2008] and is present
in several research laboratories in Europe. The iCub software architecture is based on
Yarp [Fitzpatrick et al., 2008]. Yarp provides a powerful abstraction layer allowing to
test most of the codes in simulation before actually executing them on the real robot.
This is made possible with the use of the iCub rigid body dynamics simulator [Tikhanoff

1www.robotcub.org
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(a) Front view of iCub. (b) iCub left arm front view.

Figure 5.1: The iCub humanoid robot and its left arm. The shoulder and elbow con-
trolled axis are represented as well as the reference frame.

et al., 2008] based on ODE2. This simulator is also using Yarp and its software interface
is thus similar to the one of the robot.

In the following experiments, we use the left arm of iCub in different contexts. The
shoulder is a 3 degrees of freedom joint with some coupling between degrees of freedom.
The decoupling is done with a low level controller. The elbow is a one degree of freedom
joint. Each motor is deported and the transmission is made using cables and pulleys.

5.2 Initializing an inverse kinematic model with LWPR on ICUB

We use lwpr to learn, on the whole joint space, forward kinematic models of two op-
erational end-effectors which are the hand and the elbow. As described in the previous
section, we provide q as input and ξ1 or ξ2 as output depending on whether we want to
learn the hand to joint mapping or the elbow to joint mapping respectively.

If we want to learn forward kinematics on a real robot, the method described in
Section 4.2 is not directly applicable. While it is easy to compute the model of the robot

2www.ode.org

file:www.ode.org


5.3. Combining two incompatible tasks on iCub 83

in simulation, it is harder to do it in the real platform. In fact, in simulation, every
configuration is reachable at any moment. Any operational position is easily computed
from any random configuration. On a real robot, it is impossible to reach instantaneously
a random position. If we want however to reach a random position, we can do it with a
low level controller such as PD joint controller while checking, at each time step, that
the system is not in self-collision. For those reasons, we cannot use directly random
data to learn on the real system. Besides, the output operational positions have to be
estimated from exteroceptive sensors such as vision. In our experiments on a real robot,
joints positions are measured whereas operational positions are for now, and for the sake
of simplicity, computed from a model computed with the Kinematic Dynamics Library
(kdl) from the Orocos Project3 [Smits et al., 2008]. In all experiments, we compare the
kdl model to the model learnt with lwpr. Unfortunately, the lwpr model is generated
with data coming from the kdl model, thus it cannot be more precise than that model.

The models used on iCub are thus first learnt in simulation and then refined on
the real robot with joint positions measured from its sensors and operational positions
reconstructed from the kdl model.

In order to use lwpr with sufficient precision, some parameters need to be initialised
differently from the method proposed in Chapter 4. The first parameter is the input
normalisation normin which controls the span of the data in all dimensions. As the
input are the joint positions of the robot, the normin parameter is set to the range of
motion of each joint (measured in degrees): normin = [105.5, 160.8, 117, 111.5]. initD
is tuned experimentally from comparing the performance over a set of bootstrap phases
to find the best value corresponding to the minimal prediction error which corresponds
to initD = 150. While evaluating different initD values, the updateD parameter, which
drives receptive fields adaptation, must be null to avoid interferences. The last parameter
to be tuned is wgen that we initialise to 0.2.

We consider being precise enough in the prediction with 5.104 training samples for the
hand kinematic model and 3.104 training samples for the elbow kinematic model.

5.3 Combining two incompatible tasks on ICUB

In Chapter 4, we presented some simulation experiments where either compatible or
incompatible tasks were combined on a 3 degrees of freedom planar robot. Here, to
examine how our framework scales up, we perform an experiment with two incompatible
tasks with the arm of iCub both with the simulator and with the real robot. The first
goal ξ†1, associated to the fingertip, has the highest priority and should be fully fulfilled.
Some errors may appears due to uncertainties in the learnt model. The second goal ξ†2,
associated to the elbow, is a secondary task performed with minimum error and without
introducing any perturbation on the realisation of the first task. We set ξ†1 in absolute
coordinates to [0.00,−0.05, 0.03] meters on each axis x, y and z respectively and ξ†2 to

3http://www.orocos.org

http://www.orocos.org
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[0.00,−0.05, 0.03] meters. The tasks are incompatible as we want to control 6 parameters
with only 4 degrees of freedom. However, in some cases, they can be compatible if the
distance between ξ†1 and ξ†2 is greater than the distance between the corresponding points
on the mechanical chain of the robot. When defining ξ†1 and ξ†2, we ensure that it is not
the case.

ν? is computed using a proportional controller such as ξ? = Kp

(
ξ† − ξ

)
. We choose

Kp to be diagonal and we set Kp11 and Kp22 respectively to 3.0s−1 and 0.2s−1.

Given the selected lwpr parameters, we approximate one forward kinematic model
for each task computed with the same initialization parameters.
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Figure 5.2: Evolution of the operational error relative to task 1 and task 2 over learning
in simulation (a) and on the iCub robot (b). ε1S is the error in position between the
end-effector ξ1 and the task ξ†1 in simulation. ε2S is the error relative to the second task
in simulation.ε1R and ε2R are the errors relative to both tasks on the real robot.

Figure 5.2 shows the evolution of the operational error for both tasks, ξ†1 and ξ†2,
using the simulated robot and the real robot, indexed with an S and an R respectively.
The first task in the hierarchy converges sooner than the second one. In simulation,
the achievement of the second task induces a transient error in the first task. This
comes from the fact that, the learnt model of the tasks being imperfect, the projector
of the second task into the null-space of the first task is slightly wrong, inducing some
perturbation from the second task on the first task. As a result of the perturbation of
the first task, the second task can be temporarily achieved with less error than it could
if the first task was always perfectly performed.

The evolution of the operational error for both tasks using the real robot are ap-
proximately equivalent in the simulated case. In order to obtain such a similarity, the
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operational controller gains have to be lowered for the real robot. This difference in op-
erational gains explains the much smaller perturbations induced by the second task on
the first task in the case of the real robot experiments: high gains amplify the coupling
more than low gains. This difference in gains is due to the fact that, in the simulator,
the joint level controllers are based on torque PID controllers whereas on iCub they
are PID controllers based on velocity, leading to different low level controllers dynam-
ics. The structure and/or gains of the low level controllers of the simulator should be
improved and/or tuned in order to improve the similarity of the simulation with respect
to the reality and minimize additional tuning when transferring to the real robot.

As a general lesson from this experiment, the transfer from the simulation to the
real robot is far from immediate and requires some tuning that is not addressed by our
learning framework.

5.3.1 The numpad experiment

To illustrate a reaching task corresponding to a potential real world application, we have
implemented a sequential task which consists in pressing different keys on a represen-
tation of a numpad drawn on a white board. The positions of the keys are known, the
organisation of the corresponding numbers can be seen in Figure 5.3. A key is considered
as pressed when the end-effector is less than 0.01 meters away from the center along the
x and z axes and less than 0.001 meters away along the y axis. There is no feedback
sent to the robot to validate if a key is pressed or not: the operational positions are
computed with kdl. The sequence that we have chosen to implement is 1− 5− 9− 3.

Figure 5.3: The numpad experiment.

Figure 5.4 shows the operational trajectories obtained when controlling the robot with
the model learnt with lwpr (after convergence, i.e., several trials).

As one can see, on the real platform, the sequence is well performed with the model
learnt in simulation but the obtained trajectories are still far from the straight lines that
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Figure 5.4: Trajectory of the end-effector in the numpad experiment with the model
learnt with lwpr in simulation and with iCub.

one would expect from an optimal control as we get in simulation. The global movement
is however the same.

In the literature, Vijayakumar et al. [2005] have shown that providing a learning al-
gorithm with real data increases the noise and facilitates the excitation and thus the
prediction of the learning process. In our case, learning with joint positions coming from
the real robot have not increased the precision of the learnt model. This is probably
due to the fact that our approach is dependent of the precision of the kdl model be-
cause lwpr learns a model from data originally from that model. The lesson from that
experiment is that, even though lwpr succeeds in learning the kdl model accurately,
this velocity kinematic model is not sufficient to accurately control the robot. That
insufficiency is independent of the learning process that seems to provide an accurate
prediction and can be imputed to the fact that the robot is controlled in velocity, with
local joint PID controller and without any dynamic model.

5.3.2 Drawing a circle with ICUB

In this experiment, the robot holds a pen in its hand and draw a circle on a white board
that is in front of it. Technically, this consists in tracking a point ξ† (t) moving along a
circle in the plane of the board.

The quality of the tracking depends on the proportional operational gain Kp which
can be considered as the stiffness of a spring between the end-effector and the tracked
point. The quality of the tracking also depends on the joint level velocity controllers as
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Figure 5.5: The circle drawing experiment.

well as on the velocity of the tracked point. We use the default tuning of the iCub joint
level controllers, we choose Kp as 3.0s−1 and we choose a velocity of 2.0rad.s−1 in the
xz plane to track the moving reference point.
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Figure 5.6: Trajectory of the end-effector in the circle drawing experiment in simulation
(red plain line) and on the iCub robot (blue dashed line) in the (x0, z0) plane.

Figure 5.6 shows the trajectory of the tip of the pen in the (x0, z0) plane, i.e., at the
surface of the board. Both results in simulation and with the real iCub robot are shown.
As one can see, in simulation we get a nearly perfect circle whereas the circle obtained
with the robot is noisy.
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Figure 5.7: Trajectory of the end-effector in the circle drawing experiment in simulation
(a) and on the iCub robot (b) in the (x0, z0) plane.

Figure 5.7 shows the same trajectories in the sagittal plane, i.e., the plane orthogonal
to the board around the z axis. While in simulation the depth is still perfectly controlled,
in the case of the robot the contact between the pen and the board is also noisy. However,
in Figure 5.7, the scale of the error is in centimetres in the (x0, z0) plane whereas it is
in millimetres in the (x0, z0) plane. Thus the error is quite reasonable.

Our analysis of this experiment is as follows. The fact that the circle is perfectly
reproduced in simulation indicates that the learnt velocity kinematic model is accurate.
A further inquiry in the results obtained on the iCub robot based both on the kdl model
and the learnt model reveals that there is some discrepancy between the desired velocity
that is transmitted to the actuators and the observed velocity actually measured on the
robot.

Regarding the control of depth, the real robots experiments induce a contact of the
effector with the board which effects are only accommodated by the on-line learning
process. Adding a contact or a force sensor would greatly improve the tracking perfor-
mance.

5.4 Discussion

The first experiments on iCub after experiments with its simulator have revealed that
the transfer from simulation to the robot is not immediate. There are some differences
in the structure and the tuning of the joint level controllers between the simulator and
the real robot.
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We can conclude that lwpr is able to learn a model that is close to the kdl model
provided with the iCub robot. The accuracy of the learnt model after enough learning
experiments gets similar to the accuracy of the kdl model. However, using a velocity
kinematic model learnt from that kdl model does not result in accurate control of the
robot.

To go beyond this limitation, it would be necessary to use sensors such as vision to
determine the actual kinematics and velocity kinematics of the robot from data measured
during experiments. Closing the control loop with such external sensors and learning the
corresponding models relating the sensory space to the actuation layer is an important
matter for future work. Also, closing the control loop at the task level using exteroceptive
sensor information results in the possibility to compensate for model uncertainties. It
should improve both the quality of the learnt model and the resulting control. We
highlight those points further in Chapter 7 of this thesis.

Finally, despite the promises of the model learning approach, the accuracy of the low
level controllers remains a key requirement for accurate control, as well as an access to
motor current intensity and, potentially, to torque based control. To stress that point
further, as presented in Section 5.3.2, given the nature of the errors that we observe in
the experiments, a good model of the velocity kinematics used for model-based velocity
control is not enough to accurately control a robot unless the low-level actuation layer
is extremely stiff. In the case of fixed based robots with a limited number of degrees
of freedom, this can be achieved using very powerful actuators coupled with an inverse
dynamic model or even stiff joint level PID controllers. This combination endows the
robot with the capability to reject most of the perturbations due to gravity or dynamics
coupling effects. This is not the case of most humanoid robots and particularly of
the developmental robot iCub. The weight of the overall structure has to be limited
for obvious reasons and the available space for actuators is also limited. This induces
the use of less powerful actuators and low level PID controllers cannot be made stiff
enough to properly reject perturbations due to gravity and dynamics coupling effects
and explains the strong limitations observed in the control performances obtained with
iCub.

Accurate decentralized control requires stiff controllers, high gains and usually con-
siders interaction with the environment as perturbations that must be rejected. In the
context of service robotics, it is necessary to interact with the environment and par-
ticularly with human users (lifting objects, etc.). In that context, the control must be
sensitive to perturbation rather than attempting to reject them. The system must be
compliant, relying on low gains, and thus must be based on the dynamics of the robot.
For the moment, our implementation in iCub only focuses on learning kinematics and
thus cannot modify the already implemented low-level controllers. In the next chapter,
we present preliminary experiments towards learning the dynamics of a mechanical sys-
tem as we consider this domain as of crucial strategic relevance for the future of service
robotics.
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We have seen in previous chapters the limitations that arise when one does not control
the dynamics of a robot. In the case of service Robotics, a lot of tasks will imply
some interactions with the environment where the resulting contact forces should not
be seen as perturbations and rejected. Thus, the goal of this chapter is to explain how
our control framework, based on learnt models, can be extended to the case of torque
control where the model of the dynamics is learnt too. Moreover, we study the case where
forward kinematics and inverse dynamics are learnt and combined to control a robot. The
experiment presented here are just a proof-of-concept performed in simulation. Learning
these two models separately is achieved in parallel within two distinct processes. In
practice, to learn our models with lwpr, we make a bootstrap stage which consists in
learning imprecise forward velocity kinematic and inverse dynamic models with random
data.

In the first section, we describe how to learn an inverse dynamic model on the whole
joint position, velocity and acceleration spaces of a robot. The method is illustrated
on a simulated three degrees of freedom planar arm. The second section describes how
perturbations, such as an applied distal force, can be compensated for with our control
scheme. We also detail how, when learning a dynamic model of a robot subjected to a
perturbation, this may induce some undesired effects named after-effects.

6.1 Learning inverse dynamics

In this section, we first describe how to learn the inverse dynamics of a three degrees of
freedom planar arm. We describe how to tune parameters and how our random bootstrap
stage with the lwpr algorithm is made. We also describe how to learn dynamics with
xcsf, highlighting the fact that the learnt model can be quickly used in a control loop.

91
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The three degrees of freedom planar robot used is the one used in Chapter 4 and
described in Figure 4.1, page 69.

6.1.1 Learning inverse dynamics with LWPR

We use lwpr with parameters initialized in the same way as described in Section 4.2.1.
As the input are the joint positions, velocities and accelerations, the normin parameter
is set to the range of motion of each joint, its velocity range and its acceleration range.
First simulations with analytical models have allowed us to determine approximately
the range of each input. It is not necessary but recommended to facilitate the learning
algorithm. In the case of real robots, the normalization can be made using the technical
characteristics of the system.

Joint positions are still limited between 0 and 2π rad. Joint velocities are signed as
they rotate positively or negatively around an axis. They are normalized by 10 which is
approximatively the biggest attained value. Joint accelerations are normalized by 200.
Even if it is an approximation, we have normalized identically each joint to simplify our
learning procedure. Having a specific normalization for each joint could yield better
results. However, we recall that this normalization is just here to provide normalized
input to the learning algorithm, i.e., input in the same interval [0, 1]. It is not critical
if the input appears to be upper than the normalization factor. For instance, if a joint
velocity appears to be 11 rad/sec, it will be divided by 10 and the conditioning of the
input will be worse as the resulting value 1.1 will not be in the [0, 1.1] interval. However,
the normalization frontier is not strict and the learning algorithm will still be able to
approximate it.

To summarise, all parameters are given in Table 6.1.

Parameters normin initD updateD initα wgen γ

Values [2π, 10, 200] 0.1 1 10000 0.5 1e−6

Table 6.1: Parameters used to learn an inverse dynamic model with lwpr

We change the initD parameter because learning dynamics is different from learning
kinematics. Lowering this parameter increases the initial size of the receptive fields. It
results in a rougher and simpler model. We changed this parameter because, if it is too
high, the number of receptive fields increases quickly over several thousands and learning
gets too slow.

We first initialize a model providing the learning algorithm with random data chosen
between the estimated ranges: qlimit = [0, 2π], q̇limit = [−10, 10], q̈limit = [−200, 200].
We provide as second output the torques computed from the analytical dynamics as
τ con = ID (q (t) , q̇ (t) , q̈ (t+ dt)) . In real world applications, this torque would have to
be obtained either from torque sensors at the joints level (usually strain gauges) or from
electrical current measurements on the actuators.
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The learning process is thus implemented as

IDlwpr = lwprlearn ([q (t) , q̇ (t) , q̈ (t+ dt)] , [τ con (t)]) . (6.1)

Initializing an inverse dynamics model with LWPR

The results of the bootstrapping stage are shown in Figure 6.1, where we illustrate the
evolution of the inverse dynamics model approximation while learning with random data
chosen among all possible random states.
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Figure 6.1: Evolution of the nmae of the predicted torque for the first axis and the
number of receptive fields in function of the sampled data.

Every 50 samples, to evaluate the effectiveness of the prediction, we use the Normalized
Mean Absolute Error (nmae) computed as

nmae =
1

np‖τ̂ conmax‖

np∑
i=1

‖τ̂ con − τ con‖

where τ̂ conmax is the maximum predicted torque and np = 1000 is the number of points
used to compute the error.

Given the selected parameters, the approximated model is stabilized both in terms of
prediction error and in term of number of receptive fields after 3.104 training samples.

One can see that the normalized error is stabilized approximatively to 0.4. This is
explained by our parameter set-up that prevents the number of receptive fields to grow
above 2300. Our choice is to obtain a smaller approximated model at the expense of
precision. This choice should facilitate the scaling of our framework to higher dimension
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systems since we could, if necessary, increase the number of receptive fields while keeping
the same precision.

Bootstrapping the model along a desired trajectory

Preliminary experiments (not described here) show that the initialization described
above is enough to bootstrap a successful learning of the inverse dynamics of a two
degrees of freedom planar robot, but it is not enough to bootstrap the process for a
three degrees of freedom robot. As a consequence, to get the results described below, we
further train the model performing the required trajectory using an analytical model of
the dynamics.

Figure 6.2: Controlling the robot along a straight line to refine the model.

As described in Figure 6.2, the robot performs a quasi-straight line, the small error
being due to the fact that the tasks are defined as goals to reach and not as trajectories
to follow. At the beginning of each reaching task movement, the error between the
current position and the goal is equal to the distance between the previous goal and
the current one. The error is multiplied at each time step by the Jacobian matrix of
the current state to obtain joint velocities. Since the Jacobian matrix is the first order
approximation of the system around a configuration, it may induce a deviation. As
proof, taking a smaller time step decreases the deviation. As a consequence, increasing
the proportional operational coefficient Kp increases the operational velocity error and
thus increases the deviation too.

During this refining period, the initD parameter has been set to 5. Thus, the learnt
model has been refined along the trajectory with smaller receptive fields. After few for-
ward and backward movements, it becomes possible to control the system as accurately
as with the analytical model.
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Learning inverse dynamics realising two compatible tasks

To highlight how several tasks can be learnt and combined within our framework, we
simulate our system with two hierarchical goals ξ†1 and ξ†2. ξ†1 is fixed to 0.00m on the
x0 axis and to 0.50m on the y0 axis. ξ†2 is alternatively set to −0.15m and 0.15m along
the x0 axis. The switch between goals occurs when the task is achieved with a position
error arbitrarily chosen to be less than or equal to 0.001m. Kp1 and Kp2 are chosen to
be respectively 40s−1 and 0.5s−1.

To address this combination of tasks, we use the control scheme described in Chapter 3
where kinematic and dynamic models are both learnt with lwpr. We first learn the
kinematics using the parametrization and the process described in Chapter 4. The
forward velocity kinematic models of both tasks are learnt on the whole joint space:
∀i, 0 ≤ qi ≤ 2π. After validating our kinematic model in simulation, realising both
hierarchical tasks, we then learn the inverse dynamics. To do this, we use the same
process described in the previous section, learning first a global rough model refined
along the desired trajectory. Learning is still active during evaluation, resulting in
further refinements of the model around the trajectory. The simulation is described in
Algorithm 5 page 61.
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Figure 6.3: Stroboscopic view of the robot which end-effector ξ1 is fixed and whose
second task is to go from x0 = 0.15m to x0 = −0.15m with the second effector ξ2.

Figure 6.3 shows the evolution of the configuration of the robot realising tasks ξ†1 and
ξ†2 which are compatible and both fully achieved.

Figure 6.4 shows the distance between the end-effector and its target with three con-
ditions: with analytical kinematics and dynamics, with an analytical kinematics and a
learnt inverse dynamics, and in the case where both models are learnt. One can see that
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there is no significant difference between the results obtained when only learning the
inverse dynamics model or when learning both kinematics and dynamics models. The
errors, inferior to 0.015m, are due to the limited precision of the dynamics model and
not due to the kinematic one. Each peak of maximum error corresponds to the times
where the goal is changing.
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Figure 6.4: Error on the position of the end-effector of the robot realising two compatible
tasks.

6.1.2 Learning inverse dynamics with XCSF

We use xcsf to learn the inverse dynamics of the same simulated three degrees of freedom
planar system with the method described in Section 3.2.2. In this section, we do not
learn any kinematic model.

We provide as condition parameters a state [q, q̇] normalized by its maximum values
chosen identically to the input normalization of lwpr. We provide as prediction out-
put the controlled torques τ con computed with the analytical dynamic model and as
prediction input the resulting acceleration at the next time step

IDxcsf = xcsflearn ([q (t) , q̇ (t)] , [q̈ (t+ dt)] , [τ con (t)]) . (6.2)

The parameters have been tuned, for a majority, as for the kinematic experiments
presented in Chapter 4. The only modifications are :

• the maximum number of micro-classifiers is set to 1000,

• the minimum size of the classifiers at creation is set to 0.250 in each dimension
instead of 0.005 by default,
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• there is no compaction,

• the closest classifier matching is always activated.

All the other parameters are set to their default value.

We have tried to perform a compaction stage but it only resulted in the deletion of
useful models without generalization. The model was just forgetting previous spanned
regions, thus compaction was disruptive.

MAE
Micro-classifiers
Macro-classifiers

Figure 6.5: Evolution of the mae of the predicted torque and the number of classifiers
in function of the sampled data using an inverse dynamic model learnt with xcsf. The
error is computed on the first joint; errors of the other axis are similar.

Figure 6.5 illustrates the mae of the predicted torques. This error is computed while
performing random reaching as described in Section 4.4. The number of micro-classifiers
increases until it stabilizes at its maximum value. Since there is no compaction, the
number of macro-classifiers also increases until it stabilizes.

Oppositely to lwpr, we used xcsf with only one population of classifiers to predict
every output. The number of classifiers represented in Figure 6.5 is thus the same for
each axis. The learning process is thus based on the average error of each dimension.

Learning inverse dynamics with XCSF performing an under-constrained task

This section detail how an inverse dynamic model learnt with xcsf can be used in the
control law of Figure 3.4 without learning the kinematics. It illustrates the evolution
of the trajectories while performing this point to point movement. The targets are still
positioned at [0.20 0.50]T m and [0.10 1.00]T m and are reached with a precision of 0.01
meter. Kp equals 5s−1.
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Torques are computed with the learnt model as

τ con = xcsfpredict (IDxcsf, [q, q̇] , [q̈]) . (6.3)

in meters

i
n
 
m
e
t
e
r
s

in meters

i
n
 
m
e
t
e
r
s

(a) (b)

in meters

i
n
 
m
e
t
e
r
s

in meters

i
n
 
m
e
t
e
r
s

(c) (d)

Figure 6.6: Evolution of operational trajectories while learning the inverse dynamics
realising an under-constrained task. Each figure represents 4 seconds of simulation.(a):
0s to 4s.(b): 24s to 28s.(c): 52s to 56s.(d): 76s to 80s.

The performed trajectory evolves until reaching a quasi-straight line.

6.2 Dealing with perturbations

The goal of this section is to demonstrate the capability of our control scheme to a
learnt inverse dynamic model as described in the previous section. We first show how
the system can adapt to unknown perturbation with lwpr. Then, we describe how
learnt dynamic models are subject to after-effects when using a model that has been
learnt in the perturbed case when the perturbation is removed. The simulated robot
used is a two degrees of freedom robot composed of the first two segments of the three
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degrees of freedom robot previously used.

6.2.1 Adapting to perturbations with LWPR

In order to show that a system controlled by our framework can adapt to external
perturbations, we define a unique task ξ†1 which consists in reaching alternatively two
goals along the x0 axis while applying a constant 30N vertical force f at the distal point
of the robot that strongly affects the dynamics of the system. In order to simulate the
application of such a force in Arboris, a disturbance torque τ perturb = JTf is applied
at the joint level. The goal changes alternatively from x = −0.40m to x = 0.40m. The
switch between goals occurs when the task is achieved with an arbitrary precision error
equal to 0.05m.

There are two ways to compensate for the perturbation f . The first one consists
in learning directly the perturbation from a force sensor positioned where the force is
applied, position which is unlikely to be known a priori. Even if research in the design of
synthetic skins for robots [Someya et al., 2004; Cannata et al., 2008; Lamy et al., 2009]
has recently made great progress in measuring force in any part of the robot, it is still
unprecise and difficult to use in practice. With common robots, we cannot access easily
this perturbation force. We only access the state of the system and the controls applied
to it. This means that we have access, during a time step, to the torques from a controller
while the perturbation is not yet perceived. We can have a model of the perturbation
only through the state of the system after the torques τ con have been applied.

The inverse dynamics learning is thus learnt as before

IDperturblwpr = lwprlearn ([q (t) , q̇ (t) , q̈ (t+ dt)] , [τ con (t)]) .

The difference between this experiment and the previous one without perturbations,
is that the acceleration computed at the next time step now depends on the applied
force. The learnt inverse dynamics is thus

τ con = A (q (t)) q̈ (t+ dt) + b (q (t) , q̇ (t)) + g (q (t)) + ε (q (t) , q̇ (t))− τ perturb (6.4)

The τ con torques computed with the learnt inverse dynamics now depends on the
constant unknown applied force

τ con = lwprpredict

(
IDperturblwpr , [q (t) , q̇ (t) , q̈?]

)
To obtain a better adaptation to the perturbation, we have change the parameter

wprune to 0.9. This parameter allows to delete obsolete receptive fields and makes the
learning process more sensitive to newer input.

The control approach is summarised by Algorithm 6.
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Algorithm 6 Simulation loop with unknown force applied.

ν?1 (t) = Kp1

(
ξ†1 (t)− ξ1 (t)

)
desired operational velocity

q̇? (t) = Ĵ+
1 ν

?
1 (t) desired joint velocity

q̈? (t) = (q̇? (t)− q̇ (t)) /dt desired joint acceleration
τ con = ÎD (q (t) , q̇ (t) , q̈? (t)) desired torques
(q (t+ dt) , q̇ (t+ dt) , ξ (t+ dt))← D

(
q (t) , q̇ (t) , τ con + τ perturb

)
integration

Figure 6.7: Evolution of the operational position while applying an unpredicted force,
starting from x = −0.40m and going to x = 0.40m (the way back is not shown). An
inverse dynamics learnt with lwpr allow to adapt the trajectory according to the applied
force in order to perform a straight line. The applied force is f = 30 Newton and the
task space proportional controller Kp = 2s−1. The control law is the same as the one
described in Figure 3.4.

Figure 6.7 represents the vertical deviation of the end-effector induced by the applica-
tion of the 30N vertical force. The deviation is visible since the system is reaching a goal
and not tracking a trajectory. When the learning algorithm is off, the deviation is not
compensated for. However, when learning is active, the dynamics model is incrementally
updated and, after a short time, the learnt model is adapted to the new encountered
force and compensates for it. The five different curves in Figure 6.7 illustrate this adap-
tation along time and this experience demonstrates that any unmodelled force (such as
external perturbations) can be compensated for just by adapting the dynamics model.

However, adaptation induces after-effects when the perturbation is removed, as de-
scribed below.
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6.2.2 After-effects

As for every inverse dynamic model including the compensation for a force, if that
perturbation is removed, the model-based controller will continue to compensate for
that force thus the trajectory will be deviated. This effect, present in human control, is
called after-effect and has been illustrated in [Shadmehr and Mussa-Ivaldi, 1994].

As our control scheme is based on an adaptive inverse dynamic model, the deviation
is present until the model re-adapts to the new unperturbed dynamics.

0.3

0.35

Figure 6.8: Evolution of the after-effect using a learnt model based on a dynamic perturb
by a force. From the left goal to the right one.

Figure 6.8 illustrates the evolution of the trajectory using the inverse dynamics learnt
during the perturbation stage. We can see that the trajectory is very perturbed at
the beginning of the experiment. Time after time, the model re-adapts to the new
unperturbed dynamics. The end-effector takes an average of 0.4s to go from a point to
another and it takes approximately 20 seconds to get back to a straight trajectory.

First results on xcsf, not presented here, let show a possibility of adaptation quite
similar to lwpr. However, xcsf requires more time to perform an adaptation in com-
parison to lwpr. The fact that lwpr owns a forgetting parameter clearly plays an
important role.
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6.3 Discussion

The experiments presented in this chapter are designed to show that, in order to make
profit of the redundancy of a mechanical system in the context of adaptation to per-
turbations or when realizing a combination of tasks, it is necessary to separately learn
a direct velocity kinematic model and a dynamics model, either direct or inverse. As
discussed in Section 2.2.3, the alternative approach that consists in directly learning the
task space velocity to torques mapping is appealing because the learnt model is smaller,
but with such an approach, one model for each task is necessary. Thus, even if learning
separately an inverse dynamics and a kinematic model is more difficult than learning
only an inverse mapping relating operational velocities to torques, we have shown in
this chapter that state-of-the-art statistical learning methods such as lwpr or xcsf are
efficient enough to solve this more difficult problem on moderately complex systems.

Moreover, the proposed work also demonstrates the advantages of separately learn-
ing models at the kinematic and dynamic levels instead of directly learning an inverse
mapping from task space velocities to joint torques.

• The first advantage of learning separated models lies in the fact that adaptation
to unpredicted force perturbation does not require a new learning process of both
models but only requires the adaptation of the dynamics level.

• Secondly, when a new task has to be learnt (and, as a consequence, a new forward
velocity kinematic model), the dynamics model does not need to be adapted as it
has already been learnt on the whole space.

• Finally, we have seen that using lwpr to learn a model in task space is smaller than
learning it in joint space as the maximum dimension of the task space is 6 whereas
n, the joint space input dimension, is usually higher (see Section 2.2.3). However,
using xcsf, both model have the same condition input space; the difference resides
only in the size of the prediction space that seems to be less important.

One may note that, even if we learn the kinematic model before the dynamics, learning
simultaneously both models should be possible as they are defined on different spaces,
the errors in the velocity kinematic model should not interfere with the errors in the
inverse dynamic model and vice-versa. The only reason why it may fail would be due to
some interactions between the explorations of both spaces, since errors in one model may
drive the system in inadequate regions for learning the second type of model. However,
active exploration and testing this possibility of simultaneous learning is a matter of
future work that is beyond the scope of the work performed here.

While it seems likely that the approach consisting in learning a unique inverse mapping
from task space velocities to joint torques can scale up reasonably well, one may wonder
if this is the case with the approach we presented, when facing Robotics systems with
numerous degrees of freedom. This question is a strong incentive for future research,
either towards more efficient model learning tools as investigated in Nguyen-Tuong et al.
[2008] or towards learning and combining several smaller weakly coupled sub-models.
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At last, one may compare the complexity of both algorithm. While lwpr uses 2300
receptive fields to learn an inverse dynamic model for each of the three dimensions, and
thus 6900 receptive fields, xcsf only uses 1000 classifiers to learn simultaneously the
three dimensions of the same model. Without considering the slower adaptation of the
xcsf algorithm, it seems more appropriate to learn mechanical models.
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In this chapter, we first detail our contributions and the limitations of our approach.
Then we present some perspectives by introducing the future work that could be devel-
oped on our work.

7.1 Contributions

Service robots evolve in interaction with people. Those interactions are rarely well
modelled and the encountered situations are often diverse and unforeseen. Moreover,
those robots are more and more complex either by their sophisticated sensors or by
their numerous degrees of freedom. This thesis tried to develop a framework in order to
include adaptive capabilities in the control loop of such robots. As a solution, we have
chosen to learn mechanical models of robots to control them.

More precisely, we have used two state-of-the-art function approximation techniques,
lwpr and xcsf, to learn the forward kinematics, the forward velocity kinematics and the
inverse dynamics of multiple robotic systems. Even if the experiments performed here
were corresponding to a simple proof-of-concept, we had applications to unstructured
and evolving environments in mind.
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7.1.1 Conceptual contributions

At the conceptual level, we have shown how a model learning processes could be com-
bined with state-of-the-art operational space control techniques to control a robot. In
particular, we demonstrated that we can benefit from the hierarchical combination ca-
pabilities of the operational space control framework to achieve several learnt tasks in
parallel even when those tasks are not fully compatible. This was made possible by
learning the unique forward mapping for each task and then inverse it instead of directly
learning an inverse mapping. More precisely, our contributions are the following.

• We explained how one can obtain the forward velocity kinematics under a matrix
form using two different learning schemes. The first one, using lwpr, is based
on learning the forward kinematics and using the derivative of the learnt function
to get the forward velocity kinematics. The second scheme, using xcsf, learns
directly the forward velocity kinematics as a set of overlapping linear models.

• We have highlighted the advantages of our framework with respect to alternatives
such as the extended Jacobian matrix approach when one wants to combine several
tasks hierarchically. We have shown that, if we want to combine unforeseen tasks,
it is necessary to learn the models in the whole reachable space of the robot rather
than along some local trajectories.

• We have stressed the interest of separating the kinematic level from the dynamic
level. Despite a higher computational learning cost in some cases, this framework
seems to be the most adapted to control explicitly the redundancy as we do not
need to learn an inverse dynamic model for each end-effector.

7.1.2 Experimental contributions

At the experimental level, we have validated our approach with different systems so as
to study different properties:

• a torque controlled 3 degrees of freedom planar arm with a known dynamics, that
helps illustrating the phenomena resulting from the combination of tasks, when
they are compatible or not,

• a complex velocity-controlled humanoid robot named iCub, that allowed to eval-
uate the empirical applicability of our method to state-of-the-art, complex, and
mechanically not-so-accurate robots,

• a torque controlled version of a 3 degrees of freedom planar arm where an inverse
dynamic model is learnt with lwpr or xcsf,

• a torque controlled version of a 2 degrees of freedom planar arm that helps il-
lustrating the dynamic phenomena resulting from the occurrence of a dynamic
perturbation.

In chapter 6, we have illustrated the fact that it was possible to learn a model in
a non-stationary environment, adapting an inverse dynamic model to perturbations.
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To summarize, we have reached the goal expressed in the introduction that consists
in proposing a general framework to endow robots with adaptive capabilities when we
want to combine several tasks in diverse areas of the reachable space while adapting to
unforeseen perturbations.

Finally, we have gained a lot of experimental insights about the way to use learning
algorithms within our control loop, about the way to tune these algorithms and about the
current limitations of their capabilities. Indeed, our experiments have revealed difficulties
using these learning algorithms in practice as well as some limitations of our framework.

7.2 Limitations

In this section, we describe the work that should be done to conclude more firmly on
our work.

7.2.1 Further study of XCSF versus LWPR

We already stated in Chapter 4 that our use of xcsf as learning tool is preliminary,
though it seems to be very efficient for learning mechanical models of robots. A lot of
experiments would have been required to better evaluate xcsf capabilities with respect
to the ones of lwpr.

• We have not compared the performance of xcsf with a random bootstrap equiv-
alent to the one used with lwpr. Though the capability of xcsf to learn without
random bootstrap is a nice feature for robotics application and opens the way to
experiments with more complex systems, such a comparison would have allowed us
to draw firmer conclusions about the relative stability of both algorithms, specially
using real robots such as the iCub humanoid robot.

• As stated in Section 6.2.2, we have performed the adaptation to perturbation and
after-effect experiments with lwpr. Preliminary trials with the xcsf algorithm
studying those tasks seem to reveal that, xcsf being slower, its adaptation capa-
bilities are weaker than the ones of lwpr. One obvious and immediate perspective
for the work presented in this thesis consists in pushing further the comparison be-
tween xcsf and lwpr, reproducing the experiments performed so far with lwpr,
using xcsf instead.

• Most importantly, we have not compared seriously the approach consisting in learn-
ing the kinematic model and then deriving it to get a matrix from Jacobian and
learning the velocity kinematic model directly. Even though the latter seems more
natural, a problem may appear when learning such model on a real robot from ex-
ternal sensors. Indeed, when we learn the kinematics, the learning error depends
on operational positions that are easier to get from sensors such as vision. Using
velocity kinematic data, the learnt model depends on operational velocities which
can only be reconstructed from the operational positions using the derivative of
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a position sensor signal. Thus, it induces a dependency to the time step into the
learning process and increases the complexity.

7.2.2 Scalability issues

With respect to the long standing challenges expressed in the introduction of this thesis,
we are still far from proposing the versatile learning algorithm that would learn from
scratch the whole body model of a complex humanoid robot to achieve any combination
of tasks in interaction with an unmodelled environment. But the limitations result more
from computational limitations of the algorithms than from fundamental flaws in the
framework.

First, lwpr is limited by the necessity of performing a bootstrap stage using random
data. This is quite simple to do when working in simulation. However, preliminary
experiments on a real humanoid robot (see Section 5) have convinced us that random
bootstrapping is a complex task both in terms of safe implementation and of intrinsic
complexity when dealing with systems such as humanoid robots. Thus, a balance has to
be found between a wide exploration of the state space and a realistic implementation
on real robots. Developing active exploration capabilities (e.g. Robbel [2005]) may be
a way to provide this balance. Indeed, active exploration is probably a more general
way to reduce the learning complexity and consequently to facilitate the scaling of our
approach to higher dimensions.

We have seen that machine learning models are, for the moment, not as precise as an-
alytical models. They usually use probabilistic algorithms to allow incremental learning
which may induce errors in the model. However, the adaptability of machine learning
to unforeseen environments or interactive robots make them promising tools for future
works. Indeed, learnt models are conceptually closer to real robots than fixed analytical
models as they can adapt to modification of the modelled system.

Nevertheless, as for analytical or learnt models, the source of the data is still prob-
lematic. While we can easily imagine learning algorithms with computationally great
capabilities such as learning the model of a complete human like robotic system, the
precision of the sensors is still a limitation that seems conceptually difficult to overcome.

Finally, given the preliminary nature of our empirical studies with xcsf, we cannot
conclude precisely on how many degrees of freedom such a method can deal with when
learning the kinematics and the inverse dynamic model of a robot. However, prelimi-
nary investigations tend to indicate that going beyond 10 degrees of freedom, within a
reasonable amount of time, is still out of reach with the current methods.

To go further, one can first think about combining efficient mechanism from lwpr and
xcsf to design an even more efficient algorithm in terms of input/output dimensions
and/or in terms of precision. For example, trying to split each output with its own
population may also split the complexity of the learnt model. In the same line, one
may think of using the pls within xcsf to keep only the convenient information. In the
discussion of Chapter 6, we also mentioned the work of [Nguyen-Tuong et al., 2008] in
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that direction. Second, a different approach to even more complex system mentioned in
Chapter 4 consists in learning local models of sub-part of systems and finding a way to
represent how these smaller models are coupled together. This approach is clearly an
important matter of future work.

7.2.3 Vision for measuring operational positions

As noted in Chapter 5, one of the main limitations of our results so far, when trying
to learn a model on a real robot, is that we do not have access to operational space
parameters by any other way than using a given joint space to operational space mapping,
which is exactly what we are trying to learn.

An obvious way to overcome this limitation consists in using external sensors such as
cameras to estimate the operational space parameters directly [Natale et al., 2007]. In
the case of iCub, the robot has been designed as a developmental robot with natural
human-robot interactions in mind. Consequently, it possesses two cameras representing
its eyes. Like in human vision, it is possible to reconstruct a Cartesian position of an
end-effector using triangulation methods.

However, this approach raises several issues

• The estimated position of the end-effector can be melded with information coming
from exteroceptive sensors such as vision in order to be more precise. Data from
exteroceptive or proprioceptive models depend on sensors. Joint sensors of the
robot provide accurate estimates of the joint position, velocity or accelerations.
By contrast, operational space positions would be estimated from noisy sensors
with delays induced by image processing.

• Taking into account the estimated nature of the operational state information
provided by sensors implies that we call upon specific state estimation tools such
as Kalman filters.

Vision

+
-

Figure 7.1: Locate end-effectors using binocular vision, geometric detection and multi-
sensors state estimation.

Figure 7.1 illustrates a possible short-term perspective control loop using the cameras
of iCub to learn a vision-based kinematic model.
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7.3 Perspectives

The previous section was mostly dedicated to work that should have been performed to
draw conclusion from our work. In this section, we rather present new research lines
that should result from the contributions of this thesis.

7.3.1 Trajectory optimization

We have focused on redundancy in kinematics but not in trajectory generation and
planning. As we explained in Chapter 1, the rmrc framework is a reactive method that
drives the system toward its goal in a linear way. However, as described in Figure 7.2,
there is an infinity of ways to go from a position ξ to a goal ξ†, even if a via point ξ? is
defined, and different trajectories may correspond to a different cost.

Figure 7.2: Representation of two possible ways to go from an operational position ξ to
a goal ξ† passing through the via point ξ?. Figure inspired by [Kawato, 1993].

As stated in the introduction, defining a strategy to reach a goal is a topic in itself.
When one wishes to plan a path in a cluttered space, this is usually accomplished with
configuration space planning methods [Latombe, 1991; Laumond, 1998]. It consists in
building a path in such a way that it is guaranteed that the robot can perform the
trajectory without meeting any obstacle. But configuration space planning requires
that the environment itself is known perfectly before planning can take place, and the
methods are very sensitive to uncertainties in the knowledge of the environment. Thus,
these methods can hardly be used in the broad context of service Robotics. Learning
a model of the environment to choose an optimal solution, an optimal goal and/or an
optimal strategy seems to be a promising approach.

A lot of optimal control and or optimization methods can be used here. One of the
most promising approch would consists in using the Sequential Quadratic Programming
methods using learnt models to generate an optimal trajectory. Besides, of particular
interest in the context of our research is the possibility to learn optimal trajectories
using a reinforcement learning approach. A general review of such methods is in [Peters
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et al., 2009] and a new promising recent algorithm, PoWER, is developed in [Kober
and Peters, 2008].

7.3.2 Active learning and artificial curiosity

Learning a model of the whole environment and finding an optimal trajectory in the
corresponding space is extremely costly. If one wants to get a not-too-bad behaviour
quickly, one needs to drive the exploration of the reachable space towards interesting
areas. Artificial curiosity [Oudeyer and Kaplan, 2004] is a recent research domain fo-
cusing in creating goals and action strategies maximizing the learning progress of robots
through neither too predictable nor too unpredictable situations. The corresponding
intrinsic motivation mechanism is a source of self-development for the robot that only
tries to learn what is ”learnable” while avoiding already known or too difficult situations
(see Figure 7.3).

Artificial
curiosity

Planning

Figure 7.3: Artificial curiosity and planning methods as future works to our control
schemes.

More generally, active learning [Robbel, 2005] takes into account the fact that the
robot does not have to learn a model everywhere but only where it needs to. The
performance of a learning control system can be improved with an efficient exploration
strategy which consists in exploring an area of high uncertainty. Active learning is
superior in the sense that it focuses the learning effort in the most useful space. Such
methods may be useful using algorithms such as lwpr, where a random bootstrap is
necessary to cover the entire space in a homogeneous manner while the robot will only
use a subspace of its reachable domain.

7.3.3 Inverse dynamics, actuator models and muscles

In the introduction of this thesis, we explained that, in the service Robotics context,
robots would have to deal with many contacts with their environment, both when inter-
acting with human users and when using objects or tools. However, in most experiments
presented in this thesis, we learn models while the robot is moving freely in an empty
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space. The only case of interaction that we modelled is the case of a perturbation with
a constant force, which does not summarise all the kinds of interactions a robot may
meet in a service Robotics context.

Artificial muscles is a promising approach to endow a robot with the compliance prop-
erties that will be necessary to deal with more general interaction contexts. In particular,
artificial muscles seem to be an easy way to control the impedance of mechanical sys-
tems as they are physically less rigid than motors. The co-contraction of two antagonist
muscles can be tuned dynamically, giving rise to changes in the compliance of the system
required by the context. However, the control of such device is difficult as the mechanics
of such systems is extremely non-linear and a model is thus difficult to obtain. One can
think about using machine learning methods presented in this thesis to control artificial
muscles such as pneumatic actuators presented in Figure 7.4. The function that results
from phenomena such as friction and undesired couplings is highly dependent on exter-
nal parameters such as temperature and humidity of the environment that cannot be
controlled and that are difficult to model. One should think about learning the dynam-
ics of a single muscle using its physical input/output. For example, it seems possible
to learn a mapping between the current of an electro-valve actioning a muscle and the
resulting generated force. It may then be possible to use this model, or an inverse of it,
to control this non-linear system.

Figure 7.4: Festo arm with pneumatic actuation.



A Linear regression

Linear regression is used to model a linear relationship between a vector input x named
regressor and a scalar output y named regressand. The objective is thus to find a model
named A, which link those variables.

In this appendix, the number of input data is considered to be sufficient and linearly
independent to have an invertible matrix XnpX

T
np .

A.1 Least squares

Linear regression can easily be computed using the least squares algorithm. This algo-
rithm consists in computing a linear model Anp from a huge amount of data stored along
time such as

Ynp = AnpXnp (A.1)

where np is the number of encountered points, Xnp = [x1 x2 ... xnp ] the stored vectorial
input of dimension n and Ynp = [y1 y2 ... ynp ] the stored vectorial output of dimension
m. Thus, Anp is a matrix of dimension [m× n]

Figure A.1: Least squares method

Multiplying Equation A.1 from both side by XT
np(XnpX

T
np)
−1, we obtain

YnpX
T
np(XnpX

T
np)
−1 = AnpXnpX

T
np(XnpX

T
np)
−1 (A.2)

which can be rewritten

Anp = YnpX
+
np (A.3)
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where X+
np = XT

np(XnpX
T
np)
−1 is called the pseudo-inverse of Xnp

1

This model Anp can be used to predict any ynp corresponding to the input xnp such
that

ŷnp = Anpxnp . (A.4)

The matrix Anp is the model minimising the sum of squared errors between the esti-
mated output ŷ and the measured output y.

Two main problems appear using this method. The first one is the fact that we need
to store all points to compute the model. The second problem is the computational cost.
Inverting the matrix (XnpX

T
np) of Equation A.2 is computationally expensive and the

computational cost increases with the number of stored data.

A.2 Recursive least squares

The least squares can be transformed into an incremental version as follows

Anp+1 = f(Anp ,xnp ,ynp) (A.5)

Thus, Anp can be viewed as the memory of all np previous presented data.

Multiplied on both side of the equality by XT
np , Equation A.1 becomes

Enp = AnpFnp

where Enp = YnpX
T
np and Fnp = XnpX

T
np .

By definition,
Enp = YnpX

T
np = Ynp−1X

T
np−1 + ynpx

T
np

thus
Enp = Enp−1 + ynpx

T
np . (A.6)

Replacing Enp−1 by Anp−1Fnp−1 in Equation A.6 we obtain

Enp = Anp−1Fnp−1 + ynpx
T
np . (A.7)

By adding and subtracting the term Anp−1xnpx
T
np from Equation A.7, we obtain

Enp = Anp−1Fnp−1 + ynpx
T
np +Anp−1xnpx

T
np −Anp−1xnpx

T
np

and thus
Enp = Anp−1

(
Fnp−1 + xnpx

T
np

)
+ ynpx

T
np −Anp−1xnpx

T
np

1It can be noticed that the pseudo-inverse can be computed with the svd algorithm, one can thus
avoid the standard inversion problem.
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which can be rewritten

Enp = Anp−1Fnp +
(
ynp −Anp−1xnp

)
xTnp .

Consequently we can write

EnpF
−1
np = Anp−1 +

(
ynp −Anp−1xnp

)
xTnpF

−1
np

and thus the expected recursive equation

Anp = Anp−1 +
(
ynp −Anp−1xnp

)
xTnpF

−1
np . (A.8)

Equation A.8 is the recursive equation used to update the linear model A at each
time-step.

The computation of F−1
np is expensive and, while it is possible to compute it recursively,

people use to replace F−1
np in Equation A.8 by a learning rate α to obtain

Anp = Anp−1 +
(
ynp −Anp−1xnp

)
xTnpα. (A.9)

The higher is α, the more the current modelling error affects the update of the linear
model A. In this formulation, one can forget previous data that can be considered wrong.
A contrario, one can also evolve the model slowly by decreasing α.

Figure A.2: Recursive least square

While Equation A.8 is mathematically identical to the least squares algorithm pre-
sented in Equation A.3, numerical errors can appear by providing the same point many
times when using Equation A.9.

The resulting degeneracy phenomena are relevant on adaptive control because, when
the trajectory of a learning system converges, it always samples the same data.
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A.3 Partial least squares

The assumption made by using pls is that the considered system is dependent upon data
which dimension are lower than the dimension of the input data. Partial least squares
is the same algorithm as recursive least squares but with a projection performed on the
input to keep only convenient data named latent vectors.

Figure A.3: Partial least square

The goal of pls is to estimate an output y while having an inner relation between x
and y.

X = TV T

Y = UW T

The simplest relation between the two vectors x and y consists in relating both score
matrices with a linear regression coefficient Ai, projecting ui onto ti

ui ← Ait
T
i (A.10)

where Ai = (uTi ti)/(t
T
i ti)

The inner relation between the two vectors x and y can be improved by exchanging
both score matrices in an incremental loop until convergence equivalent to the nipals
algorithm.

Concerning the input X, the error of the pls algorithm is thus computed as

errorX = X −
rank(X)∑
i=1

TiV
T
i .

Concerning the output, the error is computed as

errorY = Y −
rank(X)∑
i=1

UiW
T
i .
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Algorithm 7 The pls algorithm
E1 ← X
F1 ← Y
for i = 1 to r do
t← rand(size(X, 1), 1) first arbitrary random score vector t
u← rand(size(Y, 1), 1) first arbitrary random score vector u
v ← (uTEi)/(uTu) project Ei onto u to create a first v
w ← (tTFi)/(tT t) project Fi onto t to create a first w
errorv = 10 first arbitrary error
errorw = 10 second arbitrary error
while errorv > errormax & errorw > errormax do
vold ← v save the loading vector v
wold ← w save the loading vector w
v ← (uTEi)/(uTu) project Ei onto u, exchanging scores
w ← (tTFi)/(tT t) project Fi onto t, exchanging scores
v ← v/‖v‖ normalize the loading vector v
w ← w/‖w‖ normalize the loading vector w
t← (Eiv)/(vT v) project the matrix X onto v
u← (Fiw)/(wTw) project the matrix Y onto w
errorv ← ‖vold − v‖ error between the previous and current scores
errorw ← ‖wold − w‖ error between the previous and current scores

end while
Ei+1 = Ei − tpT remove principal component from previous residual
Fi+1 = Fi − uqT remove principal component from previous residual
Ti ← t store the score vector t
Vi ← v store the loading vector v
Ui ← u store the score vector u
Wi ← w store the loading vector w

end for
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It is possible to replace ui using EquationA.10 to obtain

errorY = Y −
rank(X)∑
i=1

Ast
T
sW

T
s

Since the rank of Y is not decreased by one at each iteration, the outer loop can process
until the last eigenvalue of X. We can notice here that iterating over all eigenvalue is
not necessary as the last eigenvalue are not convenient to estimate Y . Some processes
estimate the improvement of adding a projection component before applying it really or
not.



B Linear systems and pseudo-inverses

Given a matrix A ∈ Rm×n of rank r and two vectors x ∈ Rn and y ∈ Rm, a problem
consists in finding a vector x which satisfy the equation

y = Ax. (B.1)

The input vector x is also named regressor or sample vector and the output y is named
regressand. We can notice here that any problem which can be written y = Ax + b,
where b is an offset, can be expressed as Equation B.1 by augmenting x with a one as

y = [A b]
[
x
1

]
. (B.2)

B.1 Null Space

Also named kernel, the null space of the m× n matrix A is the subset N (A) such as

N (A) = {x ∈ Rn|Ax = 0}.

B.2 Generalized pseudo-inverse

In the case m = n, the matrix A is square. If A is full row rank, i.e., r = m = n, a
solution of that problem exists and is given using the inverse of the matrix A as

x = A−1y. (B.3)

The case where m > n describes a non-square matrix with no exact solution which
does not interest us.

In the case m < n, the matrix A is not square and is not classically invertible. There
is an infinite number of inverses for A which are solution to Equation B.1. In the non-
singular case, i.e., rank (A) = m, there is an infinite number of generalised inverses of A
written A] (see Ben Israel and Greville [2003] for details)

x = A]y (B.4)
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Among these inverses, weighted pseudo-inverses [Doty et al., 1993; Park et al., 2001]
provide minimum norm solutions. If rank (A) = m, they can be written as

AW+ = W−1AT [AW−1AT ]−1, (B.5)

where W is a symmetric and positive definite matrix of dimension n × n. The Moore-
Penrose inverse or pseudo-inverse A+ corresponds to the case where W = In. Then

x = A+y (B.6)

is a least squares solution to y = Ax.

B.3 Eigen-decomposition

The bilinear decomposition (see [Abdi and Williams, 2010]) of a matrix A is written as
a product of two matrices, an orthogonal loading matrix C and an orthonormal matrix
of factor scores matrix T

A = TV T .

The score matrix T represents distance from the origin of the projection of the sample
vector x along the principal component direction relative to the eigenvalue i.

V is composed of the eigenvectors of ATA arranged in columns. This matrix is also
named projection matrix as the eigenvectors form a basis of the kernel of the linear
application A.

The nipals algorithm can be used to generate that bilinear decomposition. This
algorithm does not compute all the principal components at once. It first computes the
principal component from the first score and loading vectors t1 and v1. Then t1vT1 is
subtracted from A to compute the residual E1. The residual is then used to compute the
second score and loading vectors t2 and v2. This process is iterated until the rank of A
equals 0 or once the precision of the product [t1 · · · ti] [v1 · · ·vi]T is sufficient to predict
A.

B.4 Singular Value Decomposition

It is possible to decompose the matrix A using the Singular Value Decomposition (svd)
method [Golub and Van Loan, 1996], a generalization of the eigen-decomposition. The
svd decomposes any rectangular matrix A into three simple matrices as

A = UDV T (B.7)

where U and V are orthogonal matrices of dimensions m ×m and n × n respectively.
D is an m × n diagonal matrix with a diagonal composed of the m singular values of
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Algorithm 8 The nipals algorithm
E1 ← A
for i = 1 to r do
t← rand(m, 1) first arbitrary random score vector t
v ← (tTEi)/(tT t) project Ei onto t to create a first v
errorv = 10 first arbitrary error
while errorv > errormax do
vold ← v save the loading vector v
v ← (tTEi)/(tT t) project Ei onto t
v ← v/‖v‖ normalize the loading vector v
t← (Eiv)/(vTv) project the matrix Ei onto v
errorv ← ‖vold − v‖ error between the previous and current loading vectors

end while
Ei+1 = Ei − tvT remove principal component from previous residual
Ti ← t store the score vector t
Vi ← v store the loading vector v

end for
errornipals = A− TV T

A in decreasing order. The singular values are the square roots of the eigenvalues of
the matrix ATA in the case of redundant robots. The columns of V are the normalized
eigenvectors of ATA. Also called right singular vectors, they define, like in the eigen-
decomposition, a basis for the null-space of the linear application A. Each eigenvector
is ordered in column in the same order as the eigenvalues in D.

U : the (normalized) eigenvectors of the matrixAAT (i.e., P TP = I). The columns of
P are called the left singular vectors of A.

Efficient computation of its Moore-Penrose pseudo-inverse A+ can be done using the
svd

A+ = V D+UT , (B.8)

where the computation of D+ is straightforward given its diagonal nature.

B.5 Weighted pseudo-inverse

A Mx,My weighted pseudoinverse of A can be written:

A+
W = M−1

x GT
(
GM−1

x GT
)−1 (

F TMyF
)−1

F TMy, (B.9)

where A = FG is a full rank factorization of A, i.e. F and G are of dimension m×r and
r× n respectively. M−1

x and My are symmetric positive definite1 matrices of dimension

1The Matlab function associated to this work can deal with the case where M−1
x and My are semi-

positive definite. The associated equations still have to be written in this document.
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n× n and m×m respectively.

A] provides the minimum Mx-weighted L2 norm solution which minimises the My-
weighted L2 norm of the error (y −Ax). Linear regression is used to model a linear
relationship between a vector input x named regressor and a scalar output y named
regressand. The W -weighted L2 norm of any vector x is given by:

‖x‖W = 2
√
xTWx. (B.10)

Solution set satisfying

Figure B.1: Using weighted pseudo-inverse and projector method to find the same solu-
tion x.

The regressor x, solution to Equation B.1, which minimize the Euclidean norm
√
q̇T q̇

is defined as
x = A+y. (B.11)

The regressor x, solution to Equation B.1, which minimize the weighted Euclidean
norm 2

√
xTWx is defined as

x = AW+y, (B.12)

Figure B.1 illustrate that this solution may also be reached by the projection method

x = A+y +
(
Id−A+A

)
z, (B.13)
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